


1 Introduction

Consider thze ;Vlasov equation
2 i)+ (0920
ot Y -

~(9.f,V:6(a) /VW|z—y|>(,y, )y dv) = 0. (1)

Here all varlables are real, f = f(t,z,v) is the unknown distri-
bution funct1on of part1cles w1th values in- R deﬁned in the. phase :
space wh1ch is, the ‘Cartesian product R ® R? of the. space of
coordlnates z '€ R and the 'space of velocities v € - RY, G(z) is.
the potential of exterior forces, W = W (|z — y|?) is the potential
of interaction. between two particles occupying the pomts with
coordmates r and y. We shall cons1_der d=1,2,3.

~ The physmal sense of Eq. (1) is that 1t describes a large
number of 1nteract1ng partlcles and any particle at any moment
of t1me is moving accordmg to the Newtonian laws and is subject .
to forces of the exterior field V,G(z) and of the mean field created .
by all other partlcles (see [1]) In view of the sense of the. function
f , one should requlre :

| /kf(t,:.z:,,v)cl:z:‘. clp - e (g)f

for any t. ~ :

~.In the rigorous mathemat1cal sense, the Vlasov equation (1)
was considered :in several ‘papers (see, for example,:[2-8]). Pa-
pers [2,3,5,6] contain results on the well-posedness of the Cauchy‘ :
problem for Eq. (1 ) ‘with the: 1n1t1al data :

ﬂm—hzwlf r.»\{@a

where fo>0and f fo(z,v)dz dv =1 Supplementary, In papers
[4,7,8], various approaches to the derivation of the Vlasov equation
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as a 11m1t equation of the N ewtonian dynamics of a large number
of particles are presented.

In what follows, we shall not consider: the Cauchy problem'

(1),(3), but we shall study the Vlasov equation (1) completed by
a joint distribution of particles.in the coordinate space at two
mornents of time t; < 5. In the next section; we shall give careful
formulations. Here, we want to discuss our results. .

As we noted above we introduce the joint distribution g(:z: )
of our particles i in the coordlnate space (z,y) € R** at two mo-

ments of time. Intultlvely, the sense of the functlon g is clear :
fixing two small volumes dz"and dy in Rd we accept that the',

number of partlcles belonglng to dz at t = t; and 'to dy at t =1,
is ‘equal to Ng(z, y)dz dy up to hlgher correctlons (here N 1s the
number of partlcles)

“ We want to make two remarks here. First, 1f one has denSI—
ties of partlcles 1 and p2 in the coordlnate space ‘at two moments
of time t; << 't2 (of course, dens1t1es are observable experlmen—
tally), then, as it was made many times in statistical physms one

may set g(z,y) = p1(z)pa(y). Although this method is not - rlgor—‘

ously proved, it may give good results because, for t'<<, t2, one

can hope that the partitions of particles at these moments of tlme,

are almost "independent” (see [1,9], for example). Also, we would
like to note that, if one has solved our problem, then he can find
the distribution of particles over velocities. It is clear that this
distribution cannot be simply found experimentally.

In the paper, we do not present our results in the most

general form; but:we want. to show, under severe constraints on
variables in"Eq. (1), only the possibility. of our formulation of’
the. problem. However,.we consider generalized:solutions of this

equation of the most general kind: These solutions belong to the

space of bounded non-negative Borel measures. In addition, we do
not use the probability approach but we exploit the deterministic
one to avoid nnnecessary complications.

constants

In what follows, by C,Ci; 0y, C',C", .. we denote positive '

2 - Formulation of the problem. Exis-
"~ tence of solutions. |

In further considerations, we use the concept of the general-

ized solution of - Eg. (1) which is a normalized Borel measure

at any moment of time. We do not discuss this concept in detail

but we introduce a definition sufficient for our goals of the solution

as a limit in some sense of solutions of finite-dimensional hamil-

tonian equations when the number of particles tends to infinity
and referring readers to the papers [2,4,6-8], for details.

Let M(R™) be the set of non-negative normalized Borel mea-
sures.in R* (n = 1,2,3...). The set M(R") is ‘equipped by the
topology of the weak convergence of sequences of measures (we re-
call that a sequence wi from M(R") of measures weakly converges
towGM(R")lff T &

/qb :n)dwk () - /¢ dw(s) (k- oo)

for all bounded continuous functions ¢ defined on R").
Further, let w;,w, € M(R") and let

(wl,wz—sup|/¢ )i (s /¢ \dun(z

where the supremum is taken over the set of all Llpschltz contm—
‘uous functions ¢ satlsfymg the condltlon ‘ : '

|6(2) = s _ |

il = sup lo@) +_sup 2=

It is known (see [2]) that this distance generates the topology of
the weak convergence in the space M(R").




Let t; < t;. We denote by C(I; M(R™)) the metric space of
continuous in the -above sense functions defined:on the segment
I = [t;,t5] with values in M(R") ‘with the dlstance :

p(wl, w2) = sup V(wl(t)’ ‘wz(t)) o

where Wy, Wy € C’(I M(R"))
Consider a: hamiltonian system of N mteractmg mass pornts
(here N is a p051t1ve 1nteger) w1th the hamlltonlan e

HN(“ Z{'”"' +G(xn)+N Z Wlxn—xk|)}

) » n_ld ‘ ‘ . k—n+l
Here z, = (z}...,28) ¢ R* and v = Tp = (V). )E R?
are ‘the :coordinates and. the veloaty of the nth partlcle T=
(zyiyzn) € R, vi= (vi,... vN) € € RN G(.) ‘RE i R 1is

~ the potential of exterior forces and N~ lW(I:zc — y|?) is the poten-

tial of interaction between particles occupying the points with the

~ coordinates z and y. This system obeys the following system of

equations: , _—
() = “VI"HN 50 |<z peouy O
where V. Hy = (aHg’I(f'"),..., ang(: ")). Let (z(t),v(t)) be a so-

lution of the system (4),(5) and let wy(¢ )E C(I'M(]iﬁd)) be the
measure for each t w1th the den51ty N1 E 5(:1: xn(t) (v—vyn(‘t))

n=1 -

where 0 is the Dlrac delta—functlon in R, As it is known (see’

[2,4,6,8]), the function wy € C(I; M(R*)) is in a sense a gen-
eralized solution of Eq. (1). Using this fact, we introduce the
following : ‘

Deﬁnltlon 1 Let ,uN be the measure with the denszty
N-! Z 5(:1: - mn(t ))6(y — zn(t2)) and let a function

w(t) € C(I; M(R*)) and p € M(R??) be such that p(wn,,w) — 0
and v(pn,, 1) — 0 as k — +oo where Ny is a subsequence of the
sequence 1,2,3,.... Then, we call the function w the (generalized)
solution of Eq. (1) with the joint distribution p in the coordinate
space at the moments of time t = t; and t = t;. Clearly, one has

w(t)(R*) =1 for each t instead of (2).

Remark 2 We could call this solution physical.

Our first main hypothesis is the following.

(hl)-Let the functions W(|x|2),G(x) belong to C%_(R% R)
}z%rsd all their first partial derivatives be bounded as functions in

Lemma 3 Let the hypothesis (hl) be satzsﬁed Conszder the
followzng system of equations =

Vi, G(ta) = NV, W(lun —wel?), n=T,N, (6)
k#n : Vo .
zo(t:) =zh, i=1,2 , (7

where &, za(.), un(.) € R? and u,(t) € C(I; RY). Then, for any
R>0 there exists D > 0 such that ‘

Nea(®)] + )] + [Ea()] < D

for an arbitrary solution of this system, all N = 1,2,3,..., all
t € [t1,12], all continuous functions u, and for all n for which
jan(t)] < R (i = 1,2).

Proof. Fix an arbitrary R > 0. Taklng

o(0) = 2a(t) - =20,y f— ealt),

ty — 1

we find that the functions z, satisfy the followmg equations:

34(t) = gn(uryeyun,t), n=1,N,
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) =0, i=1,2
and there exists P = P(R) > 0 such that

ra

"lgn(z_l,...', 2N, 1)| < P -
for all numbers N and n = 1, N, which implies:
Nen(®)] + 120 ()| + 12:(2)| < D'(R)
for all N and n =1, N. Thus, the statement of Lemma 3 follows.

“Remark 4. A corollary of the proof of Lemma 3 is that for
any N and z,(t;)) (n = I, N, 7 = 1,2) there exists C; > 0 such
that ‘ »

|Za(t)] < max|ea(t)] + C1

for all fﬁnetions‘un(.), all t‘E ![il,tyg] and n=1,N.

‘Lemma 5 Consider the slyStem (4),(5) completed by the
boundary conditions

zt) =1 e RN (i=1,2). | (8)

Then, under the hypothesis (hl) the problem (4),(5),(8) has a
‘solution. v
Sketch of the Proof. Fix an arbitrary number R >

> max max Ixn( ;)| Consider the set
. 1=1,2 n—l 1,N .

P = {a() = (210}, -y 2n() € Cllts i B

za(t:) = 24, |2.(t) < R+ C1}

where-_ i = (zi,...,z%) with 2, € R¢*(: = 1,2, n = 1,N) and
C; is the positive constant from Remark 4. Then, according to
Remark 4, to any u € P there corresponds a unique solution z(t)

of the system (6),(7) which belongs to P. In addition, according
to Lemma 3 ;there exists D > 0 such that ‘

|Za(t)] + |2 (1)} < D R

for all n = 1, N and all u € P. Hence, one has a compact map-

ping of any u(t) € P in z(t) € P. Therefore, according to the
Schauder’s theorem, this map has a fixed point in P, and Lemma
5 is proved.

“Theorem 1 Let p € M(R*). Then, under the hypoth-
esis (h1) for any p. € M(R*) Eq. (1) has a solution w(t) €
C(I; M(R?)) with the joint distribution p at moments of time t1
and ty, such that w(t)(R*) =1 for eacht € I.

Proof. We shall use a theorem about the compactness of a
family of functions oy (.) € C(I; M(R*)) (k =1,2,3,...) (see [2]).
According to this result, the above family is relatlvely compact if
for any € > 0 there exists a compact set Q C R?? such that

(a) or(t)(R¥\ Q) < eforallt € I and k; ‘

- (b) there ex1sts 6 >0 such that

v(ox(t), 0x(s)) < ¢

for all k and for all t,s € I satisfying |t — s| < 6. - :
So let un be a sequence of measures with densities
N-1 E é(z—=z )6(y z?) weakly converging to p. Fix arbitrary,

€ > 0 Then according to the Prokhorov’s theorem (see [10]),
there exists a ball K, ¢ R*, K. = {z € R2d| |z| < R} where
R > 0 such that un(R?\ K, ) < eforall N.. :

Further, let {zn,un} be a sequence of solutlons of the prob-
lem (4),(5),(8 ) and let wN be the corresponding sequence of mea-

sures with densities N~! E §(z—z(t))6(y— vn(t)) Let D'> 0 be

the constant from Lemma 3 corresponding to our R > 0 from the

definition of K,. Take B, = {z € R*| |2| < R+ D}. Obviously,
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by construction, wy(t)(R*\ B) < eforallt and N =1,2,3, ....
Therefore, the condition (a) of the compactness is satisfied.

Let us verify the condition (b). Take an arbitrary function
¢ continuous according to Lipschitz defined on R?? satisfying the
condition ||¢||rip < 1. Then, according to Lemma 3, one has

/¢ )dwn(2) /¢ Jdw (s
426

[fl.sglin(t),i:n(.t)) - ¢(.’Bn(s) xn( ))]l + T < <

n: (z},22 )eA§ B
<Gl o+ %,

we obtain that

v <e

if |t — s] < 6 Thus, the condltlon (b) of the compactness is
satisfied, too, and hence, the sequence {wn} is relatively compact
in the‘space C(I; M(R?)). Therefore, it contains a subsequence
converging to some w € C(I; M(R?*®)). Obviously, w(t)(R*¢) = 1
for all ¢ and w(.) is a non-negative measure. Thus, Theorem 1 is

Taking&z e(6C2)71,

(wN(t)

proved.

3 Uniqueness of solutions
~+In thls section, we assume for 31mp11c1ty that d = 1. Our
hypothe31s is the followmg ‘

(h2) Let G =0and W = W( ) =T(s) € CE.(R") be a con-
cave function. Let T'( ) and T"(s) be bounded functions (s € R).

. i

Lemma 6 Let d = 1 and the hypothesis (h2) be valid. Con-
sider the following system of equations

. M
gy = — Z mkﬂT(gn - gk) + ¢n(t), te (t17t2)7 (9)
k=1, k#n
gt) =g, i=1,2 n=TM (10)

where g.,9%. € R, M is a positive mteger my > 0 and Emk <1

Let g, = Zn and

Yny G = 2,
P, g. =z, respectively. Then, one has the estimate

and ¢, are functions continuous on [t1,t,).
gn = Zn be two solutzons of this system with ¢, =
and ¢, =

teft,ta]

max {Zmn[]zn 5 | — zn”} < C(6; + 6,)

where

[$a(t) = ()]

i :
S 3 62 > max  max
I n wls =1,0.,M tety ta] -

61> max
: n=1,...,M, 1=1,2

and C = Constant > 0 is independent of t, 61,6, M and my.
Proof. From (9),(10) one has for the functions v, = z, — z,:

b=A{v+ R, teftl, . (1)

| on(t)] < 6 GE)
where v = (vy,...,un) € RM, R(t) = (Ri(t), ..., Ru(t)) € C(I; RM)
with |R.(¢)] < &, for all n and t and A( ) is a continuous in
[t1,%2] matrix with the elements a, 2 = — Z meT" (0 k(1))

and anx(t) = miT"(0,x(t)) for k # n (here k,n = 1,..., M and
0nk €.(0,1)). According to the hypothesis‘(h2),‘the matriX'A(t)

1s positive semidefinite for all ¢ because an, = Y |an k| for all n.
k#n



Introduce the following norms and spaces (here z(t) =

= (a1(t), ., zm(t)) € C(I; RM)):
|2(t)[, {Zmnlzn(t }

t5 1 :
l|z]l, = {/ |z(t)|f,dt} (with the space L, = L,(I; RM)).
; .

Let z(t;) = 0 (¢ = 1,2). Then, one obviously has the following
embedding inequalities: , .

1zl < Cllzle, (13)
2]l> < Cllzllz, | -1
max Zmn{lzn ) + 121} < Clizl (15)

telt ,tz]

with a constant C' > 0 independent of z and M.
Set u(t) = v(t) ﬂt—jg:—:’ft—‘l(t —t1)=v(t1). Then, one obtains
from (11),(12): *

= Atju+o(t), teluts], (16)

ult)=0 (17)

with |o,(t)] < C(61 4 62) (n = 1,..., M) where C = Constant > 0
depends only on the potential T'..

Multiplying the nth equation from (16) by m,, multiplying

the obtamed system by u and-integrating over [t, t,]; one obtalns

l6ll2 < C(61+ &2)llull 18)

due to the matrix A(t) being positive semidefinite and (13). By
analogy, multiplying the nth equation from (16) by my, summmg
over n and 1ntegrat1ng over [ty,1,], we find:

li]ly < Callullz + Ca(61 + 62). (19)
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Then, (18) implies in view of (14):
[lull2 < Ca(é1 + 62).

Therefore, by (19)

||ifl; < Cs(81 + 62).
Hence, by (15)

max Zmn|un 1) < (16(51 + 6,)

te[tl |t2]

and

max Zmn|un (t)| < Ci(61 + 62)

telty: t2]
Thus, Lemma 6 is proved.

Lemma 7 Consider the system (9),(10) from Lemma 6 with
N > M and m, = N7'. Then, one has for any n and m

max {|gn(t) = gm(t)| + |9n(t) = gm(t)]} < C(61+ &)

1€ty t2]

where 61 max lgn(t:) — gm ()] , 62 = max_|¢n(t) = ¢m(t)| and
tE[ty,t2] :

C= constant > 0 is independent of t,6,,62, M and N.
Proof. One obtains from (9),(10):

j—;(gn(t)—gm(t)) = —pT"(H(t))(gn—gm)+¢n»(t)‘—_¢m(t), te [t ],

|gn(ti) - gm(ti)l <6

~where p,0(.) € (0,1). Set

11



9(0) = ga(t) = gu(p) - L= Inlt) = 0n(t0) 2 9n0),

X(t —t1) = ga(t1) + gm(t1). (20)
Then, one has '

§(t) = —pT"(6(t)g(t) + $(t), t € [t1, 1), (21)
g(t) =0, i=12 (22)

where |p(t)| < C1(61 + 62) for all ¢. Multiplying (21) by ¢ and
integrating over [t1, %], we obtain, using (22),

t2

/(é(t))zdt < Co(61 + 6) / lg(t)|dt.

t
Since by theembedding theorem

t2

/ '(jq‘:(t))zdt > 03{ ] Ig(t)ldt}z

3]

where C3 > 0 is independent of g, one has

/Ig(t)ldt < Cy(é1 + 62).
Then, it follows from (21) that

/mmwsa/wmw+%m+&y
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Therefore,
[11de < 166+ 6.
This iriéquality with (20) implies the statement of Lemrﬁa 7.‘

Theorem 2 Let the hypotheszs (h2) be valzd Then Eq
(1) with the joint dzstrzbutzon of particles in the coordinate space
p € M(R?) at the moments of tzme t= t1 and t=1ty has ezactly
one solution. ,

~ Proof of Theorem 2. Fix an arbltrary ) > 0. Accordlng to
assumptions, there exists a ball BR = {z € RZI 2] < R} where
R> 0, such that =

(BR) >1-— (5

Let hy = hy =6 and a = (al,az) Then, the straight lines in R?
given by the equations z; = a; +n;h; generate the partition of the

space R’ into open cubes P, ,, where U P,y n, = R? (here

ni,ne=-—00
n; are integers). Obviously, there ex1st numbers a; and a; such

that the measure of the set U Az = (z1,22) € R z, =

ny,np=—00
a1+n1hy or o = ay +n2h2} is equal to zero. We fix this choice of
the vector a. Further, let P, ..., P, be a reindexing of cubes, the
intersections of Wthh with Bg are non-empty. Let m; = ,u(P)
(:=1,10).

Consider an arbltrary sequence puy — p as N — oo where
UN has the dens1ty Z 6(:1:n—:1: )é6(y—z2) and let wy(t ) be the cor-

respondlng sequence of solutions of Eq. (1) and (z¥(t),vN(t)) =
(28, ..., zN, vl ..., u) be the corresponding sequence of solutions
of the vha'miltonian system (4),(5),(8) (generally, these solutions

are not unique). To prove the Theorem, it suffices to prove that

the sequence wy converges in C(I; M(R?)). .

13



Let P = U P;. According to [10] lim lun(P) —mi] =0

i=1

and ]\hm lun(R?*\ P) — u(R*\ P)| =0 for i = 1,1. Fix arbitrary
positive integers M < N. Let N; and M; be the numbers of tra-
jectories of the hamiltonian system (4),(5),(8) satisfying the con-
ditions (z} (21), ) (t2)) € P: and (z} (tl),xn (tg)) € Py, respec-
tively. Reindex coordinates z! (¢) so that (zn, (tl) ( 2)) € P, for
Ni+..4N;i; <n < Ni+...+N; and enumerate other coordmates
arbitrary. Repeat this procedure for. coordlnates xM (1).

Denote z. . . n._ 41(t) by ui(t) and z}f | M 1+1( ) by
vi(t). Let us estimate the distance between p; = (u;, ;) and

¢ = (v;,%;). Using Lemma 7, we have for large enough numbers
M and N:

a2 : ,
dt2 i= Z mJT(u )+a()6
Jj=1, j#i
end |
2o d o ‘
Evi = Z m;T (v,- —v;) + bi(t)é
‘ j=1, j#i

with |a;(¢)|+ |8:(t)| < C' for sufficiently large M and N where C’
~ is independent of N-and M. Hence, applying Lemma 6 one finds
that : -

tén[tié]Zm,{Iu vi(t ]+|u( vi(t |}<C’5 (’z-’.—rl‘,l)A.
| (23)

Let us-estimate p(wn,wpr). Take an arbitrary function ¢
continuous according to’ Lipschitz defined on' R? and satisfying

l{8llip < 1. One has, using (23), for 1arge eno'ugh numbers N

and M:
| [ #erdun(c /«s Jdwae(z

14

l l Ni+...+N;

PO S

i=1 k= N1+ +N. 1+1
Mi+.. +Ml

=M Z Sy ¢(}z£4)

- i=1 k=Mi+..AMi_1+1 ¢

+Ci6<

;M@Jewtﬂ+cw§;;_

<@2}Mn—m+0¢<a5

VoL . z._l
ERAY ,

(here zY = ( nN,xQI)) Smce 6 > 0is arbltrary small it'f‘implies
that there ex1sts Ahrn wN(t) and Theorem 21is proved '
15
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