
P .E.Zhidkov* 

ON A PROBLEM WITH TWO-TIME DATA 

FOR THE VLASOV EQUATION 

ES-95-122 

Submitted to «;Nonlinear Analysis: Theory, Methods and Applications» 

•E-mail: ZHIDKOV@THEOR.JINRC.DUBNA.SU 



1 Introduction 

Consider the,Vlasov equation 

·a 
atf(t, x, v) +(v, V xf)-

-(V vf, '1xG(x) + J '1xW(lx -yl2 )f(t,y,v)dy dv) = 0.. (1) 

Here aH va~~a;ble~ are real, f . .. f(t,x.,v)_istheunkn~wn distri­
bution function of particles with.values in fi defined in the:phase 
space whicl:i' is,· the Cartesian p;~duct Rd ® Rd ~f th~ space of 
coordinates x· E Rd and the ·space. of ,velocities v E Rd, G(x) is 
the potential of exteri~r forces, W = W(lx - yl 2

) is the potenti.al 
of interaction .. between two particles occupying the ppints with 
coordinates x. and y. We shall c.onsider d = 1, 2, 3. 

The physical sense. of Eq. (1) is that it describes a large 
nurribe,r of intera'cti~g ·pa:;ticles land any particle at any moment . 
of time is moving according to the Newtonian laws and is subject, 
to fo;~es of the 'exte~ior.field V xG( x) and of the :mean' field created , 
by all other particles (see [l]). In view of the sense of the function 

1 or , 
f, one should require . 

' . . J f(t, x,.v )dx dv ~ 1 (2) 

for any t. 
In the.rigorous mathematical sense,.the Vlasov equation (1) 

was considered :in several papers (see, for example,; [2-8]). Pa­
pers [2,3,5,6] contain results on the well-posedness 'of the Cauchy 
problem for 1Eq. (l) •with the initial data 

flt=O :- fo(x, v) 

where.Jo 2:: 0 ~nd J fo(x, v)dx d; .:._ 1. Suppl.e~e~tary, _in ~apers 
[4, 7,8], various approaches to _the derivation of the Vlasov equation 



... 

as a limit equation of the Newtonian dynamics o(a large n{i'uiber 
of particles are presented. 

In what follows, we s~all not consider the•Cauchy problem· 
(1),(3), but we shall study the Vlasov equation (1) completed by 
a joint distribution of particles :in the coordinate space at two 
moments of time t1 < t2• In the next section, we shall giv_e careful 
formulations. Here, we want to discuss our results. 

As we n'oted above,· we introduce th~ joint distribution g( X' y) 
of our particles in the coordinate space ( x, y) E R2

d at _two mo­
ments of time. Intuitively, the sen.s"e of the function ii is de~r: 
fixing two small volumes dx' ~nd. dy in Rd,· we accept. that the 
number of particles belonging to dx at t =;= t 1 and' to dy at t ~- t 2 

is equaltoNg(x,y)dx dy up to higher corrections (here N'is' the 
n~Hriber of partides). · .. · _· · : , , . 

. We want to make' two remarks here. First, if one has d~:nsi...'. 
ties of particles p1 and p2 in the coordinate space ~t two mo~e~ts 
oftiine t1 <<'t2' (of course, densities are obser~~ble e:iq>'~dme11-
tally ), then,· as it was made mapy times in.statistical physiJ~,· ?Il,~. 
may set g( x; y) ,. p1 ( x )p2(y ). Alth~ugh this method is not r~g<?r-' 
ously proved, it may give good results because, 'foi- t1 < <; t2 , _,one 
can hope that the paititi6ns of particles at these mbments ~ftiipe. 
are almost "independent" (see [1,9], for example). Also', we would 
like to note that, if one has solvecl our problem, theri he can find 
the distribution of particles over velocities. It is clear that this 
distribution cannot be simply found experimentally. 

In the paper, we do not present our results in the most 
general form, but :we want to- show, under severe constraints on 
variables in: Eq. (1), only the poss~bility. of our ,formulatioi:i of 
the problem. However,: we consider generalized solutions 'of' this 
equation of the most general kind: These solutions belong to the · 
space of bounded non-negative Borel measures. In addition, we do 
not use the probability approach but we exploit the deterministic 
one to avoid unnecessary complications. . 

In what follows, by C, C1; C2 , C', C", ... we 'denote positive ' 
' ., 

constants. 
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'i' ~;.,.;, ). / ,; 'f, ...... 

.,; 

J 

. · i 

2 · Formulation of the problem. Exis­
tence of solutions. 

In further considerations, we use the concept of the general­
ized solution of · Eq. (1) whic~ is a normalized Borel measure 
at any moment of time. We do not discuss this concept in detail 
but we introdure a definition sufficient for our goals of the solution 
as a limit in some sense of solutions of finite-dimensional hamil­
tonian equations when the number of particles tends to infinity 
and referring readers to the papers [2,4,6-8], for details. · 

Let M(Rn) be the_"let of non-negative normalized Borel mea­
sures in Rn ( n = 1, 2, 3 ... ). The set M (Rn) is· equipped by the 
topology of the weak convergence of sequences of measures ( we re­
call that a sequence Wk from M(Rn) of measures weakly converges 
tow E M(Rn) iff , 

j </J(x)~wk(x) ·~ j </J(x)dw(x) (k ~ oo) 

Rn · Rn 

for all bounded continuous functions <p defined on Rn). 
Further, let w1 , W2 E M (Rn)· and let 

v(w1, w2) = s~p I/ </J(x)dw1(x) - J </J(x)~w2(x)I, , 
Rn Rn 

where the supremum is taken over the set of all Lipschitz contin­
·uous functions <p satisfying the condition 

11</JilLip = sup l</J(x)I + sup l</J(~) - <p~y)I ~ 1. 
xeRn x,yER" X - Y 

It is known ( see [2]) that this distance generates the topology of 
the weak convergence in the space·M(Rn) . 
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Let t1 < t2. We denote by C(I; M(Rn)) the metric space of 
continuous in the ·above sense functions defined, on the segment 
I= [t1, t2] with values in M(Rn), with the distance 

p(w1, w2 ) = sup v(w1(t), w2(t)) 
tEl 

where W1,'W2 E C(J; M(Rn)). . 
Consider· a ha:riiiltonian system of N interactin'g mass points 

(here N is a positive· integer), with the hamiltonian '·' · 
, . N , N ,.; •· Iv 12 . . .. ,. . . . , 

HN(x, V) .=<L{ -t- + G(xn) + N-1 L W(lxn .- Xki2)J.. 
n=l k=n+l 

Here .Xn' = (xt ... , x~) E Rd and Vn = Xn = ( v;, ... , v~) 1 E Rd 
are the coordinates and, the velocity of the nth particle,· x = 
( ' ' ) E RdN -- ( ' ' ) E' RdN G( ) '. ·Rd ' ' :R'' . Xi, ... , XN · , V - V1, .•. , VN , . ·. -t . ·lS 

the potential of exterior forces and N-1 W(lx - yj 2) is the poten­
tial of interaction between particles occupying the points with the 
coordinates X and y. This system obeys the follo½jing system of 
equations: 

Xn(t) = Vn(t), 

Vn(t) = -\7~nHN(x,;v)l(x,v)=(x(t),v(t))1 

(4) 

(5) 

h n H _ (aHN(x,v) oHN(x,v)) L t ( (t) (t)) b w ere V Xn N - oxl ' ... ' oxd . e X ' 'V ' ' e a so-
n n ,'\" 

lution of the system ( 4),(5) and let' WN(t) E C(J; M(R1d)) be the 
N 

measure for each ,t with the density N-1 I: 8(x-xn(t) )8( v-vn(t)) 
,:. " '. '· , . ' n=l '. '~ , 

where 8 is the· Dirac delta-function in Rd. As it is known (see· 
[2,4,6,8]), the function WN E C(J; M(R2d)) is in a sense a gen­
eralized solution of Eq. (1 ). Using this fact, we introduce the 
following 

Definition 1 Let µN b~ the measure with the density 
N 

N-1 I: 8(x - Xn(t1))8(y - Xn(t2)) and let a function 
n=l 

4 

~· 

., 

~ 

w(t) E C(J; M(R2d)) andµ E M(R2d) be such that p(wNk, w)-+ 0 
and v(µNk, µ) -+ 0 as k -+ +oo where Nk is a subsequence of the 
sequence 1, 2, 3, .... Then, we call the function w the (generalized) 
solution of Eq. ( 1) with the joint distribution µ in the coordinate 
space at the moments of time t = t1 and t = t2. Clearly, one has 
w(t)(R2d) = 1 for each t instead of (2). 

Remark 2 We could call this solution physical. 

Our first main hypothesis is the following. 

(hl).Let the functions W(lxl 2
), G(x) belong to C1!c(Rd; R) 

and all . their first partial derivatives be' bounded as functions in 
Rd. 

Lemma 3 Let the hypothesis (hl) be satisfied. Consider the 
following syste'fr!, of equations 

Xn=-v'unG(un)-N-1Lv'unW(Jun-ukJ2), n=l,N, (6) 
kf.n 

Xn(ti) = x~, i = 1, 2 (7) 

where x~, Xn(-), Un(-) E Rd and un(t) E C(J; Rd). Then, for any 
R > 0 there exists D > 0 such that 

lxn(t)I + lxn(t)I + lxn(t)I < D · 

for an arbitrary solution of this system, all N = l, 2, 3, ... , all 
t E [t1, t2], all continuous functions Un and for all n for which 
lxn(ti)I < R (i = 1, 2). 

Proof. Fix an arbitrary R > 0. Taking 

Xn(t2) - Xn(t1) . 
Zn(t) = Xn(t) - _..;..___,;___...;___;_(t - t1) - Xn(t1), 

' t2.,... t1 ' 

we find that the functions Zn satisfy the following equations: 

Zn(t) = gn(u1, .... ,uN,t), n = 1,N, 
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· Zn(ti) = 0, i = l, 2 

and there exists P = P(R) > 0 such that 
;f 

lgn(z1, ... , ZN, t)I < P 

for ~11 numbers N and n = l, N, which implies: 

lzn(t)I + lzn(t)I + lzn(t)I ~ D'(R) 

for all N and n =.1,N. Thus, the statement of Lemma 3 follows. 

' Remark 4. A. corollary of the proof of Lemma 3 is that for 
any N and Xn(ti) (n = 1, N, i = l, 2) there exists C1 > 0 such 
that 

lxn(t)j < ~ax lxn(ti)I + C1 
i=l,2 , 

for all functions un(. ), all t E [t1, t2] and n . l, N: 

Lemma 5 Consider the system (4),(5) completed by the 
boundary conditions 

x(ti) = xi E RdN (i = 1, 2). (8) 

Then, under the hypothesis (hl) the problem ( 4), ( 5), ( 8) has a 
·solution. 

Sketch of the Proof Fix an arbitrary number R > 
> ~ax max lxn(ti)I-- Consider the set 
. i=l,2 n=l,N 

'{ dN I P = x(.) = (x1(.), ... , XN(-)) E C([ti, t2]; R ) 

Xn(ti) = x~, lxn(t)I ·~ R + C1} 

where xi= (xi, ... ,xk,-) with x~ E Rd·(i = 1,2, n = l,N) and 
C1 is the positive constant from Remark 4. Then, according to 
Remark 4, to any u E P there corresponds a unique solution x(t) 

6 

"· 

\ 
l 

of the system (6),(7) which belongs to P. In addition, according 
to Lemma 3 ,there exists D > 0 such that 

i±n(t)I + lxn(t)I ~ D 

for all n = l, N and all u E P. Hence, one has a compact map­
ping of any u(t)° E P in x(t) E P. Therefore, according to the 
Schauder's theorem, this map ha~ a fixed point in P, and Lemma 
5 is proved. 

Theorem 1 Let µ E M(R2d). Then, under the hypoth­
esis (hl) for any µ. E M(R2d) Eq. (1) has a solution w(t) E 
C (I; .Af ( R 2d)) with the joint distribution µ at moments of time t 1 

and t2 , such that w(t)(R2d) = 1 for each t E J. · 
Proof We shall use a theorem about the compactness of a 

family of functions erk(-) E C(J; M(R2d)) (k = 1, 2, 3, ... ) (see [2]). 
According to this result, the above family is relatively compact if 
for any E > 0 there exists a compact set Q C R2d such that 

· (a) crk(t)(R2.d \ Q) < E for all't E J and k; 
(b) there exists 8 > 0 such that 

v(crk(t),crk(,r,)) < E 

for all k and for 'all t, s E J satisfying It - si < 8. 
So, let /J,N be a sequence of measures with densities 
N 

N-1 L 8(x - x~)8(y - x~) weakly converging toµ. Fix arbitrary 
n=l · 

E > 0. Then, according to the Prokhorov's theorem (see [10]), 
there exists a ball I<i C R2

d, I<i = ·{z E R2dl lzl ~ R} where 
R > 0 such that µN(R2d \ I<i) < E for all N. •, 1 , •· 

Further, let {xN, VN} be a sequence of solutions of the prob­
lem ( 4),(5),(8) and let WN be the ~orresponding sequence of mea-

N . 

sures with densities N-1 I: 8(x-xn(t))8(y-v~(t))'. Let D > 0 be 
n=l 

the constant from Lemma 3 corresponding to our· R > 0 from the. 
definition of I<i. Take Bi = {z E R2dl lzl ~ R + D}. Obviously, 
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by construction, wN(t)(R2
d \ Et) < E for all t and N = 1, 2, 3, .... 

Therefore, the condition (a) of the compactness is ~atisfied. 
Let us verify the condition (b ). Take an arbitrary function 

</> continuous according to Lipschitz defined on R2d satisfying the 
condition 11</>l!Lip ~ 1. Then, according to Lemma 3, one has 

I j </>(z)dwN(,t)-f <t>(z)dwN(s)1·~ 

S N-• 1 . ,I;, , [¢(x.(t), ±.(t)) - q\(x.(s ), ±.( s )) JI + ~< S. 
n. (xn,xn)El\f · 

. . 2t: 
~ C2lt - sl + 3 . 

Taking 8 = 1:(6C2)-
1

, we obtain th_at 

v(wN(t),wN(s)) < E 

if It - sl < 8. Thus, the condition (b) of the compactness is 
satisfied, too, and hence, the sequence { WN} is relatively compact 
in the space C(I; M(R2d)). Therefore, it contains a subsequence 
converging to some w E C(J; M(R2d)). Obviously, w(t)(R2d) = 1 
for all t and w(.) is a non-negative measure. Thus, Theorem 1 is 
proved. · 

3 Uniqueness of s.olutions 

In this section, we assume for simplicity that d = 1. Our 
hypothesis is the following. 

(h2) Let G = 0 and W = W(s 2
) = T(s) E C1!c(R1

) be a con­
cave Junction. Let T'(s) and T"(s) be_ bounded functions (s ER). 

8 
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Lemma 6 Let d = 1 and the hypothesis (h2) be valid. Con­
sider the following system of equations 

M 

9n = - L mk aa T(gn - 9k) + <Pn(t), t E (t1, t2), (9) 
k=l, kfn gn 

9n(ti) = g~, i = 1, 2, n = 1, Jvf (10) 

where gn, g~ E R, M is a positive integer, mk 2: 0 and L mk ~ 1 
k 

and <Pn are fun·ctions continuous on [t1, t2]. Let 9n = Zn and 
9n = Zn be two solutions of this system with </>~ = "Pn, g~ = ;~ 
and <Pn = ¢n, g~ = z~, respectively. Then, one has the estimate 

M 

max {L mn[lzn -c- znl + lzn - Znl]} ~- C(81 + 82) 
tE(t1.t2] 

n=l 

where 

81 2: max_ lz~ - z~I, 82 2: max max 17/Jn(t) - ¢n(t)1 
n=l, ... ,M, i=l,2 n=l, ... ,M tE[t1,t2] 

and C = Constant > 0 is independent oft, 81 , 82 , M and mk. 
Proof From (9),(10) one has for the functions Vn = Zn - Zn: 

v = A(t)v + R, t E [t1, t2], 

lvn(ti)I ~ 81 

(11) 

(12) 

wherev = (v1, ... ,vM) ERM, R(t) = (R1(t), ... ,RM(t)) E C(J;RM) 
with IRn(t)I ~ 82 for all n and t and A(t) is a continuous in 
[t1, t2] matrix with the elements an,~(t) = - L mkT"(0n,k(t)) 

kfn 
and a~,k(t) = mkT"(0.,:,_,k(t)) for k =l n (here k, n = 1, ... ,Mand 
0n,k E.(O, 1)). According to the hypothesis'(h2), the matrixA(t) 
is positive semidefinite for all t because an,n = L lan,kl for all n. 

k-:j:.n 
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Introduce the following norms and spaces (here z(t) = 
= (z1(t), ... ,zM(t)) E C(J; RM)): 

M l 

lz(t)I, = {~m.lz.(t)I' }', 

t2 1 

llzllv = {! lz(t)l:dt} P (with the space Lv = Lp(I; RM)). 
t1 

Let z(ti) = 0 (i = 1, 2). Then, one obviously has the following 
embedding inequalities: 

M 

llzlh ~ Cllzl'2, 

llzll2 ::!; Cllzll2, 

max L mn{lzn(t)I + lzn(t)I} ~ Cllzlh 
tE[t1.t2] . 

n=l 

(13) 

(14) 

(15) 

with a constant C > 0 independent of z and M. 
Set u(t) _:.. v(t)'- v(t~~=~ft1 )(t-t1)-"-v(t1). Then, one obtains 

from (11),(12): 

ii= A(t)u + o-(t), t E [ti, t2], 

u(ti) = 0 

(16) 

(17) 

with lo-n(t)I < C(81 + 82) (n = 1, ... , M) where C =Constant> 0 
depends only on the potential T .. 

Multiplying the nth equation from (16) by mn, multiplying 
the obtained system by u and integrating over [t1 , t 2], one obtains·, 

llull~ ~ C(81 + 82)llull2 (18) 

due to the matrix A(t) being positive semidefinite and (13). By 
analogy, multiplying the nth equation from (16) by mn, summing 
over n and integrating over [ti, t2], we find: 

lliill1 ~ C2llul'2 + CJ(81 + 82). 

10 

(19) 

Then, (18) implies in view of n4): 

llull2 ~ C4(81 + 82). 

Therefore, by (19) 

I !iii Ii ~ Cs(b1 + 8_2). 

Hence, by (15) 

and 

M 

max L mnlun(t)i ~ C6(81 + 82) 
tE[t1.t2] 

· n=l · 

M 

max L mnlun(t)I ~ C1(81 + 82). 
tE[t1.t2] ·· 

n=l 

Thus, Lemma 6 is proved. 

Lemma 7 Consider the system (9),(10) from Lemma 6 with 
N 2: M and mn = N-1

. Then, one has for any n and m 

max {lgn(t) - 9m(t)I + l9n(t) - 9m(t)I} ~ C(81 + 82) 
tE[t1 ,t2] 

where 81 = i;nax l9n(ti) - 9m(ti)I ; 82 = max l<l>n(t) __:_ <Pm(t)I and 
i=l,2 tE[t1.t2] · 

C = constant > 0 is independent oft, 81 , 82 , M and N. 
Proof One obtains from (9),(10): 

::2 (gn( t)-gm( t)) = -pT"( 0( t))(gn-gm)+<Pn( t)-ef>m( t), t E [t1, t2], 

l9n(ti) - 9m(ti)I ~ 81 

where p,0(.) E (0, 1). Set 
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g(t) = 9n(t) - gm(t) _ 9n(t2) - 9m(t2) ~ 9n(t1) + 9m(t1) X 

t2 - t1 

x(t - t1) - 9n(t1) + 9m(t1). 

Then, one has 

(20) 

g(t) = -pT"(0(t))g(t) + 1/;(t), t E [t1, t2], (21) 

g(ti) = 0, i = 1, 2 (22) 

where 11/;(t)I < C1(81 + 82) for all t. Multiplying (21) by g and 
integrating over [t 1 , t2], we obtain, using (22), 

½ ½ 

j(g(t))2dt :s; C2(81 + 82) J lg(t)ldt. 
t1 t1 

Since by the embedding theorem 

t2 , , t2 2 

j(il(t))2dt:::: c3{/ lg(t)ldt} 
t1 t1 

where C3 > 0 is independent of g, one has 

t2 J lg(t)ldt :s; C4(81 + 82). 
t1 

Then, it follows from (21) that 

t2 t2 

j ljj(t)ldt::; Cs j lg(t)jdt + C6(81 + 82). 
t1 t1 

12 

Therefore, 
t2 J jg(t)ldt :s; C1(81 + 82). 

t1 

This iriequal~ty with (20) implies the statement of Lemma 7 .. 

Theorem 2 Let the hypothesis (h2) be valid. · Then
1 

Eq. 
( 1) with 'the joint distr.ibution ~f particles in the coordinate space 
µ E. M(R2

) at the moments 'a/time t = t 1 and t = t2 has exactly 
one solution. ' · · 

Proof of Theorem 2. Fix an arbitrary 8 > 0. According to 
assumptions, there exis~s a bali'BR · {z E R2 j jzj :s; R} ~here 
R > o; such that . . . 

µ(BR)> 1 - 8. 

Let h1 = h2 = 8 and a= (~1, a2). Then, the straight lines in R2 

given by the equations Xi = ai + nihi generate the partition of the 
00 

space R2 into open cubes Pn1 ,n2 where LJ P n
1 

,n
2 

= R2 (here 
n1 ,n2=-oo 

ni are integers). 0 bviously, there exist numbers a1 and a2 such 
. 00 

that the measure µ of the set u {z = (xi, x2) E R2 I X1 = 
n1 ,n2=-oo 

a1 + n1h1 or x2 = a2 + n2h2} is equal to zero. We fix this choice of 
the vector a. Further, let A, ... , A be a reindexing of cubes, the 
intersections of which with BR are non-empty. Let mi = µ(Pi) 
(i = f,1). 

Consider an arbitrary sequence µN -t µ as N -t oo where 
. . N . . 

µN has the density I: 8(xn-x~)8(y-x!) and let WN(t) be the cor-
n=l 

responding sequence of solutions of Eq. (1) and (xN(t), v~(t)) = 
(xf, .. ;, x%, v[", ... , vi) b~ the corresponding sequence of solutions 
of the ha,miltonian system (4),(5),(8) (generally, these solutions 
are not unique). To prove the Theorem, it suffices to prove that 
the sequence WN converges in C(I; M(R2)) •. 

13 



l 

Let P = LJ Pi. According to [10], lim lµN(Pi) - mil = 0 
i=l N-+oo 

and lim lµN(R2 \ P) - µ(R2 \ P)I = 0 for i = 1,1. Fix arbitrary 
N-+oo 

positive integers M < N, Let Ni and Mi be the numbers of tra-
jectories of the hamiltonian system (4),(5),(8) satisfying the con­
ditions (x;t(t 1 ),x;t(t2)) E Pi and (x;;1'(t1),x;;1'(t2)) E Pi, respec­
tively. Reindex coordinates x;t (t) so that (x;t(ti), x;t(t2)) E Pi for 
Ni+ ... + Ni-I < n :::; N1 + ... +Ni and enumerate other coordinates 
arbitrary: Repeat this procedur~ ·for coordinates x;;I ( t). 

. N . M 
Denote xN1+ ... +N,-i+I(t) by ui(t) and xM1+ .. ;+M,_1+1(t) by 

vi(t). Let us estimate the distance between Pi = (ui, ui) and 
qi= (vi, vi)- Using Lemma 7, we have for large enough numbers 
Mand N: 

and 

. a2 Li . . T'( ) . ( ) c ·-u· = - m· u· - u· + a· tu dt2 i J i J I 

j=l, j=/:i 
I l J: 

a2 ... l 

L mjT'(vi - Vj) + bi(t)8 -·-vi= - . 
dt

2 
j=l, j=/:i 

with lai(t)l + lbi(t)I :::; C' for sufficiently large M and N where C' 
is independent of N and M. Hence, applying Lemma 6, one finds 
that 

l 

inax L mi{lui(t) - vi(t)I + lui(t) - i\(t)l} < C'8 (i = l,l). 
tE[t1.t2) . · 

i=l ' · . · 

(23) 
Let us estimate p(wN,wM)- Take an arbitrary function</> 

continuous according to' Lipschitz defined on R2 and satisfying 
11</>IILip :::; 1. One has, using (23), for large eno·ugh numbers N 
andM: · 

I J </>(z)dwN(z) - J </>(z)dwM(z)j :::; 

14 

'.o 1N-1 t •·· N,f N' ·. ,j,(zi')-
. i=I k=N1 + ... +N,-1 +I 

/ i\f1+ ... +M, I 
-M-

1 ~ _ L . ~(zt1) + C18:::; 
. · 1-l k-M1+ ... +M,-1+1 

,-::,t· ~.1 t m; [ ,f,(p;) -· ,j,( q;)] I+ G28 ::::; .·· 
1=1 

I .:::; c\z:= milPi - qil + C28:::; C48 
\ i=l 

(here z1;; = (x;t,x;t)). Since 8 > 0.is arbitrary small, it-implies 
that there exists lim WN(t), and Theorem 2 is proved. 

1 , • , , ._ • N--+oo ~ ,: , , ,_ ~ .. , 
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)KimKOB Il.E. 
06 O.D;HOH 3a.z:,;aqe .D;fl51 ypaBHeHH51 BnacoBa C .z:,;aHHhlMH. 
B .D;Ba MOMeHTa BpeMeHH • 

· ES..;95-122 

. McCJie.z:,;yeTC51. ypaBHeH~e BnacoBa, .D;OIIOJIHeHHOe. COBMeCTHhlM pacrrpe.z:,;e-· 
JieHHeM qaCTHI~ B KOOp.D;HHaTHOM rrpoCTpaHCTBe B .D;Ba MOMeHTa. BpeMeHH •. 
.D:i51 rJia.D;KOfO IIOTeHI~aJia B3aHMO.D;eHCT~H51 C orpaHHqeHHhlMH 1IpoH3BO.D;HhlMH 
.D;OKa3aHhl cy~eCTBOBaHHe H e.z:,;HHCTBeHHOCTI, pemeHH51. 

Pa6oTa BhlIIOJIHeHa B Jla6opaTOpHH TeopeTHqecKo:u cpH3HKH HM.H.H.Boro-
JIIOOoBa OM.sIM. · · · 

, . 

.· ripenp~HT 000>eJ{1meirnoro HHCTmyTa ll,l1eJ)HblX HCCJleJ{OBaHHH. )fy6ua, 1995 .. 
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' 
. Zhidkov P .E. ES-95-122 
On~ ~roblem wi~h Two:-Tim~ Data for the Vlasov Equation 

We . investigate the Vlasov equation completed by a joint distribution 
of particles in the coordinate space at two moments of time. For a smooth 
potential of interaction with bounded derivatives; we prove the existence 
and uniqueness of a solution:. 

The investigation has: been performed at. the Bogoliubov Laboratory 
of Theoretical Physics, JINR •. 
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