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M3 OHOIO yMOPSAOYEHHS B APYTOE

B nanHO# paGoTe ONMCAH HOBHIA MOOYJb MPOrpaMMHOra nakera ASYS,
HANHMCAHHOrO Ha A3eKe aHasntTHueckux BHuncaeHuit REDUCE u npeguasua-
YEHHOTO J/14 HCCJIEA0BAHMS CHCTEM HEJMHEHHRIX anredpanueckKnx ypPaBHEHHIA.
3ToT MOZy1b BHINOMHSAET Npeobpasosanne 6asuca IpebHepa HyABMEPHOTO MAE-
ana B apyroit 6aszuc I'peGHepa, onpenengeMblil APYIUM yriopIa0UEHHEM MOHO-
moB. Takoe npeo6pazoBaHue OCOGEHHO NMOJIE3HO HA NMPAKTHKE IUIS PEIICHUS
CHCTEM MOJIMHOMHAJIbHBIX ypaBHEHHH. JIng paia npaMepoB NpUBEICHH BpeMe-
Ha cueTa B cpaBHeHNH co ctaHaapTHeM nakeroM GROEBNER, BCTpOEHHEIM B
cucremy REDUCE.

Pab6ora BeinosineHa B JJaGopaTopMH BHIYHCHTEABHON TEXHUKH M aBTOMA-
tuzauun OUSAH,
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Implementation of Zero-Dimensional Grobner Bases
Transformation from One Order into Another

In this paper a new module in the REDUCE package ASYS has been
designed for analysis of nonlinear algebraic equations is described. This module
performs the transformation of a Grobner basis of zero-dimensional polynomial
ideal into any other Grébner basis specified by change of monomial ordering.
Such a transformation is especially useful in practice for solving polynomial
equation systems, The timings for a number of examples are given in comparison
with the transformation module of the REDUCE standard package
GROEBNER.

The investigation has been performed at the I.aboratory of Computmg
Techniques and Automation, JINR.
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1 Introduction

In [1] a new version of the special-purpose computer algebra package ASYS for
analysis of multivariate polynomial systems by the Grobner basis technique [2]
was described. The package has two built-in term orders: lexicographical and
degree-reverse-lexicographical. The former order is the most important for the
root computation. However, the complexity of the lexicographical Grébner basis
construction is much higher than of one in degree-reverse-lexicographical order
So, in zero-dimensional case (finitely many solutions) the complexity are dr

and d" respectively, where d is a degree and = is a number of variables in the
system.

Recently the most opnmal stra.tegy of the lex1cograph1cal Grobner basis
computation for zero-dimensional ideals was proposed in [3]. The basic idea is
to compute the degree-reverse-lexicographical basis and than to convert it into
the lexicographical one by the algorithmic method incorporating linear algebra
technique. The comple)\lty of the converting procedure is d*. Hence, one can
compute lexicographical bases with the same a.symptotrc complexity as total
degree ones.

The method of paper [3] has been 1mplemented in computer algebra system
REDUCE [4] as a part of the GROEBNER package [5] included in the system.
In this paper we present a version of the algorithm [3] implemented in the form of
a module of ASYS [1]. This very recent implementation allowed us to construct
lexicographical bases which could not be computed neither with ASYS nor with
GROEBNER using the straightforward computational procedure Some of such
large examples are presented below..
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2 Algorithm

In this section we present the detailed version of the algorithm of paper [3] whlch
has been implemented in ASYS.

Let K[zy,...,z,] be a ring of polynomials in-n variables over the ﬁeld I,
and I be a zero-dimensional ideal in K[zy,...,z,]. Let <1, <z be two different
admissible term orderings and G be a Grobner basis of I w.rit. <. The problem
is to find-a reduced Grobner basis H of ideal I w.r.t. <. : I

The mathematical foundation and general description of ‘the algorlthm for
solving this problem was proposed in {3]. Here we present the stepwise form of
that algorithm.

1. Let H:=0, §:=0, L:={1}, k:=0. S g
2. If L =0 then return H. ~ B PR

3. Let u be the minimal (w.r.t. <;) monomial in L. Rerrrove u from L.
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4. If u is a multipld of some element in S, then go to Step 2.

5. Compute the polynomial p := N F(u,G), where NF(rt;G)iis the fofmal
form of u modulo G W.I. t <i. .
6. Check whether the’ hnear re]atron ho]ds ,

k=1 ' o
p+21\zp.—0 Nek D

t--l

» bwhere p. are the normal forms of monomlals m; have been earher consid-
ered at Step 5,

7. If relation (1) holds, then add the polynomial u + Zf:ll /\.-m; to I, then
'addutoSand gotoStep2 : o

B 8. 1f relatlon (1) does not hold then put. k= k +1, my := u, pi = p, add
all the products u- :L', (1=1,:..,n) to L and go to Step 2.

The correctness of the algorlthm was proved in [3). There it was also shown
that the running cost of the algorithm is O(nD3) field operations, where n is
a number of variables and Disa number of roots of 1deal I counting their
multlpllcmes

“The key point of the algorlthm is. verlﬁcatlon of (1) Consxdermg /\, in
(1) as unknowns and collecting the like terms we obtain the overdetermined
system of hnear algebraJc equations in ;. Hence, the problem is reduced to
1nvest1gat1ng the compatibility and solving the system. This direct approach
based on solving the linear system has been implemented in the standard package
GROEBNER [5] has, however, the practical complexity at least O(D*) instead
of the theoretical one O(nD3). Indeed, it is easy to see that solving a linear
system in k unknowns of Step 5 needs O(k®) operations with & running from 1
to at least D.

In this paper we propose much more efficient lmplementatlon of the FGLM
algorithm. The idea is to introduce an auxiliary ”triangular™ polynomial basis
F. In addition to polynomial p we compute the polynomial p’ = NF'(p, F),
where N F'(p, F) is the reduced form of p modulo I w.r.t. <3, such that the
reductions of p are performed only multiplying elements of ' by elements of K
but not by power products as in usual computation of the normal form. ;: . :

. In- tlus way one. obtains the representatlon ‘

P=p- Za,f., - RN

where o; € K and It(p') <; 1t(f;) for all 3.

'Here and below we denote 1{p) and Ic(p) the leading monomial and the leading coeflicient
of p w.r.t. <y, respectively.

If p' # 0 we go to Step 7, assign p to the variable fi where index k corre-
sponds to the loop variable in the above algorithm. '

This process guarantees that at each step of the algorlthm the set F =
{f1, f2,-.., fx} has the "triangular” structure: ; :

WD) A1), i # 5

It follows that condition (2) and the equality N F'(p,F) = 0 are equivalent.
Storing the coefficients «; in representation (2) at cach computation of NF': -
allows one to determine A; in (1) by recurrent relations rather than by solving -
lincar. algebraic systems.

Taking all that into account the algorrthm for a Grébner basis conversion
can be presented in the following structured form’

Algorithm: I = FGLM(G).

Input: <,, <2 - admissible terin orderings, —— e
G~ Grébner basis for zero-dimensional ideal [ C K[r,,... , ] Wt <.

Output: H— reduced Grobner basis Qf ideal T w.r.t. <z.
H:=0;, F:=0; S:=0; L:={1}; k = 0;

while L # ( do
u := a minimal element of L W.T. t <5

L:=L\{u};
if © is not a multiple of any element of S then
p = Ni(u,G);

= NP F) = p- S ks
1fp # 0 then "
k:i=k+1; fi -p/IC(p’) F = FU{fk}
mg = Uy P =P Bry = I/IC(P );
feri:=1:k-1do Bri = —ﬂkk ZJ =i !,B_ny
fori:=1:ndo L:=LU{u-z;}; :
else
il -IIU{u-—E (E a,ﬂj,) m;};
=SU{u};

3 Examples
In this section a numl)er Zero- dxmensxonal polvnonnal systems \vhlch are well-

known as benchmarks for Grobuor bascs soﬂ\mro [1],[3], [()] are comxdorml as
illustrations.



Example 1
Ordering - a > b > e
2bc+abzc+abC +abc+ab+ac+bc-'0
ab?c + ab®c® + a’be+abc+be+a+c=0,
a®b’c® ¥ a®bc+ ab’c+abc +ac+c+ 1 =0.
Exampié 2
Ordering - z >'y.> z. ’ L
o ‘ L4y +2-3=0,
v+ +2-3=0,
23+~z2+y—3=0.'

Example 3
Ordermg r>Yy>=z > t.

yz+2zyt 2:1:—2—0

—z3z 4 4zy z+4zyt + 283t + 4z% = 10y° + 42z — 10yt +2 =0,

Qyzt+at’ —z -2 =0, . .
—22° + 4y2®t + dz2t? + 2yt° + dzz + 427 — 10yt — 1062 + 2 = 0.

Example 4
Ordering - 1 > 22 > 23 > T4 > Ts.

it+zp+r3tzates =0,

T1Z3 + 2223 + 2324 + 2475 + 2571 = 0,

T12223 + 7323%4 + Taz4Ts + TizsT1 + T5T1T2 = 0,

T1Z2T3T4 + T2TIT4Ts5 + T3T4T5T1 + T4T5T1T2 + 25212223 = 0,

T1T9T3z425 — 1 = 0.

Example 5
Ordering - 5 > T4 > T3 > 76 > T2 > I).
Ty +ZT2+ T3+ Ta+ T35+ 76 =0,
172 + 2373 + T3T4 + T4Ts + T5T6 + TeT) = 0,

T1T2T3 + T2T3T4 + T3T4ZT5 + T4Ts5Te + T5TeTa + zeT1T2 = 0,

el . ‘f"” .-

Example 6 ,
Ordering - U > Uz > 11.4k> ugy >q1‘11 > ﬂo

—uo+2u1+2u2+2u3+2u4+2u5=0

21[0111 + 2u1u2 + 2u2u3 + 2u3u4 + 2u4u5 - ul = 0
21[0112 + ul + 2ujuz + 2![2?14 + 2uats —ug =0,

. 2uous + 2ujug + 2u1u4 + 2u2u5 ~u3 =0,
2uoryg + 2ujug + 2u1u5 + u2 —uy = O
Ug + 2uy + 2ug + 2us + 2ug +2u5 — 1 = 0.

Example 7

Ordermg T3> T1 > T3> T4 > T5.
$1+$2+$3+1‘4+1’s—0 ,
122 + Toz3 + T3T4 + T4T5 + 2571 = 0,

T1Z9%3 + T2T3T4 + T3Z4T5 + T4T5T1 + 52122 = 0,

TaZ3Tq + T3T3T4T5 + TaT4T521 + 24252122 + Ts21T023 = 0,

T1T9T3T4Ts — 1 =0.

In Table 1 we give the timings for the above examples on SPARC station JPX

with the 32 Mb memory.
Table 1

ASYS | GROEBNER

Example 1 4.0” 28.6”
Example 2 8.9” 69.5”
Example 3 7.7 57.4”
Example 4 | 10.6” | . 66.9”
Example 5 | 58" 6112”

Example 6 | 1693” 11295”
Example 7 | 4176” 26796
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