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1 Introduction 

In our recent paper [1], the notion of involutive bases of polynomial.ideals 
was introduced and an algorithm for computing involutive bases was pre~ 
sented. The improved form of this algorithm together _with the pro(?f of 
its correctness in the zero-dimensional case is given in [2]. In, the positive
dimensional case, a linear change of variables is generally required for con
structing involutive bases defined in our sense. It t'urns out' that when the 
involutive basis exists (without change of variables) it ca~ be c~~puteJ' 
considerably faster by our algorithm than the minimal standard basis by 
Buchberger's algorithm [3]. On the other hand,•an involutive basis com
puted in the total-degree term ordering often looks more complicated than 
the corresponding minimal standard basis. The reason is that the invo
l uti ve basis of a zero-dimensional ideal is nothing but a standard basis 
enlarged to an "overdetermined" linear algebraic system in' monomials ir
reducible modulo this ideal. .From ·this fact, some interesting properties 
of involutive bases may be deduced and a simple method for solving zero
dimensional systems may be co.nstructed. 

In the second section of this paper we recall the notions of the Janet normal 
form and involutive bases of polynomial ideals. We present also a new 
version of algorithm lnvbase for computing involutive bases with further 
improvements in comparison' with that presented in [2]. I~ the third secti~n 
we systematically investigate the str~cture of zero-dimensional involutive 
bases. In the forth section we describe the method of converting the total.: 
degree involutive· basis to the pure lexicographical reduced standard basis 
in case the shape lemma holds [7]. 

2 lnvolutive Bases 

Throughout, we use the following notations. 

K- arbitrary field of characteristic zero; 
K[x1, ••• , Xn]- polynomial ring over K; 
f,g, h- polynomials'from K[xi,; .. , :in]; 
F, G, H- finite subsets in K[x 1 , ••• , Xn]; 
card(F)- number of elements (cardinality) of F; 
u, v, w- terms in polynomials (without coefficients from K); 
deg( u, x;)- degree of u in variable x;; 
deg( u)- total degree ofu; 



cf(!, u )- coefficient of u in f; 
(F)- ideal generated by F. 
Let variables Xi be ordered as X1 < ... < Xn and let <r be some admissible 
term ordering. Denote 

lt(f)-·leading terrri inf w.r.t. <r; 
le(!) = cf (f, lt(f) ); 
lt(F) ~ {It(!)' If E F}; 
deg(F) = 711:ax{deg(lt(f)) If E F}'. 

Definition 1. Variable x; is multiplicative for the term u if its index i 
is not greater than the·index of the· lowest variable in u. Otherwise x; is 
non-multiplicative for u. 

. . ' 

Fo.r a givep. polynomial g denote by N onmult(g) a set of non-multiplicative 
variables for lt(g).. . .. 

Definition 2. The' class of a term u (symbolically class(u)) is the index 
of the lowest variable contained in u with a non-zero power. The class 
of a unit term ( containing all variables iri zero powers) is defined to be 
n + 1, where n is the number of variables. The class of a polynomial g 
(symbolically class(g)) is the class of lt(g) .. 

Denote u · .v by u x v ,if all variables in. v are multiplicative for u or if 
deg(v) = 0. Write also g • u =:= g x u if lt(g) · u = lt(g) x u. 

Definition 3. The term u is ·called a' Janet divisor for the term w'if there 
exists a term V such that w == u X V ( symbolically u IJ w) .. 

Definition 4. The polynomial f reduces to h modulo· G in the sense of 
Janet if there exist g E G and u such that lt(g) • u = lt(g) x u, a= 
cf(f,lt(g) Xu)=/ 0 and h = f- a· g x.u. The polynomialJ is given 
in Janet normal form modulo G if for each term'in I there are no Janef 
divisors in It( G).The polynomial, h is ii; J~net reducedform_ off modulo G. 
(symbolically h = N FJ(f, G)) if there exists a chain of Janet reauctions 
from f to h and his given in Janet norma~ form modulo G. 

In contrast to Janet normal form we denote by N FU, G) a usual normal 
form of f modulo G. An algorithm for computing N FJ may be obtained 
from one for computing NF [3] replacing usual division of-terms by Janet 
division. 

Definition 5. G is autoreduced (in the sense of Janet) ifV9 ,9 iEG,#g' •( lt(g) IJ 
lt(g')). G is completely autoreduced if VgEG N FJ(9, G \ {g}) = g · 

. . . 2. 

Denote by Autoreduce( F) a function that for a given P computes G which 
is autoreduced and (F) = ( G). An algorithm for computing Autoreduce 
may be obtained from the well-known algorithm ReduceAll [3] replacing . 
usual NF by N FJ. 

Definition 6 [l]. G is an involutive basis if it is autoreduced and 

VgEG VxENonmult(g) N FJ(9 · x, G) = 0 (1) 

Some general properties of the involutive bases established in [l, 2] are 
summarized below. 

Properties of involutive base.s [1, 2]. 

• If G is involutive then V /E(G) N FJ(f, G) = 0. 

• If G is involutive th.en Vh N FJ(h, G) = N F(h, G). 

. • Any involutive basis .is a standard basis, generally not minimal. 

• Let G be an involutive basis and Gmin be a minimal standard basis 
of (G). Then, for each term u there exist g E G such that lt(g) bu 
if and only if there exist g' E Gmin such that lt(g') I u. 

• If G, H are involutive bases and (G) = (H) then lt(G) = lt(H). 
Moreover, if G, H are completely autoreduced then G = H up to 
multiplication of polynomials by non-zero elements of I<. 

• If G is involutive then for each g E,G and for each term u such that 
u IJ lt(g) and class( u) > class(g) there exist exactly one g' E G such 
that class( u) = class(g') and u IJ lt(g'). 

• Let G be involutive. The dimension of ( G) is k if and only if T( x;) n 
lt(G) = 0 for 1 :Si :S k and T(xi) n lt(G) =/ 0 for k + 1 :S j :S n 
where for any subset S ~ {xi, .:.,xn} we let T(S) be the set of all 
terms of variables in S. 

• For any zero-dimensional ideal there exist an involutive basis. 

• For any positive-dimensional ideal an invertible linear change of vari
ables may be found _such that involutive basis of a given ideal does 
exist in terms of the new variables. 

Below, an improved version of algorithm lnvbase for constructing involutive 
basis G of the ideal generated by a given·set Fis presented (see [4]) . 
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Algorithm 1 (G = lnvbase(F)). 
Input: p = {f If E K[xi, ... ,xn]} 
Output: G - involutive basis of (F) 
G := Autoreduce(F); 
L := lt(G); 
while L -:f; 0 do 

g := element of G with minimal lt(g) E L; 
L := L \ {lt(g)}; 
Li := lt(G); 
for each x in Nonmult(g) do 

G := Autoreduce( GU {g • x} );· 
L2 := lt(G); 
L := (L n L2) U (L2 \ Li); 

Algorithm 1 may be obtained from the algorithm Invbase of the paper (2] 
by avoiding the so-called· repeated prolongations. That is, in each step of 
the. while-loop we .add a product g • x to the current basis only if such 
product with the siim'e lt(g) and x has not been already considered in the 
previous steps. Using a noetheriaii arg~ment, it can. be proved. that the 
repeated prolong~tions in fact reduce to zero, a detailed proof is to be 
given elsewhere. Our computational experience shows that avoiding such 
zero-reduced prolongations construction gives a considerable speed-up. 

3 · Structure of Zero-Dimensional IIivolutive 
Bases 

Throughout this section by G is meant an involutive basis of a zero
dimensional ideal in some admissible term-ordering.<T-· Now we are be
ginning to study some properties of zero-dimensional involutive bases. 

Theorem 1. For any term v such that deg( v) 2: deg( G) there exist g E G 
such that. lt(g) IJ v. 

Proof. Since G, is an involutive b_asis, and consequeptly .. a standard basis, of 
a zero-dimensional ideal, then for each' 1 S i S n _then~ exist g; E G such 
that {t('jj;) = xf• and d; > 0 (3]. Assu~e for co~tr~diction that there exist 
a term u such that deg(u) 2: deg(G) and'u has no Janet divisors in lt(G). 
Consider two alternative cases. First assume that there exist i such that 
deg( u, x;) 2: d;. In this case u may be represented as u = V • lt(g:). Since 
polynomial ti • gt E ( G), its leading term u has a Janet divisor in It( G); 
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which contradicts our assumption. Another possibility is deg( u, x;) < d; 
for each i ·= 1, ... ,n. Let u' = u lx,=I· Since u' · g; E (G), the term 
u' x xf' has a Janet divisor, say v, in lt(G). The latter should have the 
form v = u' x xf where deg( u, xi) < p S d1 because otherwise v would be 
a Janet divisor for u. Hence deg( u) < deg( v) :S deg( G) which contradicts 
the fact that deg( u) > deg( G). □ 

Let Ube a set of all irreducible terms (in the· sense of Janet) modulo G. 
By the properties of involutive bases (see above), U is nothing but the 
set of all irreducible terms (in the usual sense) modulo a standard basis. 
Since (G) is zero-dimensional, U is finite and D = card(U) is the number 
of roots of (G) countingtheir multiplicities [3]. Let us denote 

U; = {tt EU I clags(u) > i}, D; = card(U;), i = 1, ... ,n. 

Remind that class(l) = n + 1, therefore Un = {l}. It is natural to set 
Uo = U and Do= D. Evidently U;+1 <;;;: U;, hence D;+l :SD;. Denote also 

G; = {g E GI class(g) = i}. 

Now we are ready to state the following interesting property of ·zcro
dimensional involutive baies.. . 

Theorem 2. Let G be an involutive basis of zero-dimensional ideal and 
let G;, U; be defined as above. Then for all i = 1, 2, ... , n and for all 
g E G; lt(g) lx,=1 E U;. Conversely, for all i = 1, 2, ... ,n and ·for each 
tt E U; there exist exactly one g E G; such that u = lt(g) lx,=l · 
Proof. Let g E G;, that is, lt(g) = u x x7, class(u) > i. Since G is 
a.utoreduced, u has no Janet divisors in./t(G). Therefore, u = lt(g) lr,=tE 
U;. 

Conversely, let u E U; . . Consider v = u x xf such that deg( v) 2: deg( G). 
Fr~m theorem 1 it follows that there·exist g E G such that lt(g) IJ v, that 
is, lt(g) = u x xf. Since u is irreducible modulo G, k > 0, hence g E G;. 
Since any monomial has no more than one Janet divisor in lt(G) (see [l], 
proposition 1), g is determined uniquely. D 

Theorem 3. The number of elements. in G is 
n n 

card(G) = L D; =Li· N;+l 
• i=l i=l 

where D; is defined as above and Ni is a number of all terms of the class 
j irreducible modulo G. 
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Proof. Since G = Ul;.1 G; and G; n Gj = 0 for i -=/- j, then card( G) = 
E7=1 card(G;). By theorem 2, card(G;) = D;. Hence card(G) = E~1 D;. 
Taking in account the recurrence relations D;_1 = D; + N;, i = n, n -
1, ... ., 1 we obtain that card(~)= E7=t i · N;+1• D 

Corollary 1. Let Ginv be an involutive basis of a zero-dimensional ideal; 
Gmin be a corresponding minimal standard basis. Then the following chain 
of inequalj_ties obviously holds: 

· .. card(Gmin) ~ card(Ginv) ~ 1 + (n - l)D1 ~ nD1 ~ nD. 

Theorem 4. Let G be an involutive basis of zero-dimensional ideal. Then 

D;~1 = L deg(g, x;). 
gEG; 

Proof.' By theorem 2, · 

dk ·. ' ' . ' ·, • ' . 
lt(G;) = {uk ·X; I Uk EU;, dk > 0, k= l, ... ,D;}, i = 1,2, ... ,n. 

where u1 -=/- Um for l -=/- m. It is easy to observe that U;.,..1 is a union of 
D; disjoint sets { uk · x{ I O ~ j < dk} where k ·= l, ... , D;. From this it 
immediately follows D;..;1 = Ef~1 dk, which proves the theorem. D 

Corollary 2. Let G be an involutive basis of zero-di~ensional ideal. The 
number of roots of ( G) counting their multiplicities is 

D = L deg(g', x1). 
gEG 

4 · Conversion to lexicographical standard .. , ,, 

basis 

In this section we propose a method for converting an involutive basis of 
zero dimensional ideal in any admissible· (normally, total degree) term or
dering to the pure lexicographical minimal standard basis. We describe 
the theoretical foundations of the method as well as a version of the cor
responding algorithm. Our method is based on the following property of 
zero-dimensional involutive bases resulting from the theory developed in 
the previous section. 
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Theorem 5. Let G be a completely autoreduced. involutive basi~ of a 
zero-dimensional ideal and let G;, U;, D; be as defined above theorem 2. 
Then G; is, nothing but a system of D; linear algebraic equation~ i~ .D; :-- 1· 
unknowns u E U; \ {l} over K[xi, ... , x;]. These equations are linearly 
independent over K[xi, ... ,x;].•'; . 

Proof. Since G is completely autoreduced, any term w in the reductum of 
any polynomial g E G; should have'the form w :== ·u x v where u E U;. 
Indeed, if u were not an element of U;, the term w could not be irreducible 
in the sense:of Janet. On the other hand, by theorem 2, for each g eG;_ 
its leading term has the form lt(g) = u x xf, k > 0, u·E U( (inclutling 
u = 1), which gives a one:to-one correspondence between the sets ·u; and 
lt(G;). Thus, G; is evidently a linear algeraic system of D; equations in' 
D; - l unknowns u EU;\ {l}•over K[x1, ... ,x;). . 
Assume for' a contradiction that these equations are not lineadi indepen~· 
dent over K[x1, ... , x;),' that is Ct • 91 + C2 .:92'. + ... + Ck ; 9k' ·~; 0 -~herr 
Cj E K[xi, ... , x;); 9j E G; and, say, Ct -=/- 0. Since class(gj)' = i, we ~ay 
write ' •.· ·, 

; 

lt(gi) X lt( c1) = max{ lt(g2) X It( c2), ... , lt(gk) X lt(ck)} • 

where by max is meant the maximal term in the sense of <T ordering. Let 
lt(g2) x lt(c2) be such a term. Then the term lt(g1 ) x lt(c1) has 2 different 
Janet divisors in G;: the term lt(g1 ) and the term lt(g2). This contradicts 
the fact that G; is autoreduced in the sense of Janet (see [l), proposition 
1). D 

An immediate consequence of theorem 5 is an algorithm for isolating the 
lowest variable X1. Indeed, assuming i = 1 in theorem 5 and derioting Di 
by N, we see that G1 is nothing else but the set of c~mponents of. the 
vector A(x1 ) • u where A(x1 ) is a square N x N matrix whose elements 
are uni'v~iate polynomials in X1 and U is a vector with Di compone~t~ 
u; .E ,U1 arranged so th'at U; > Uj for i < j w.r.t. the pu~e lexicographi~ 
ordering (not'e that UN= l). By theorem 5, the elements of G1 are linearly 
inde'p~ndent over I<(x1), hence d~t A(x1) -=/- 0. P~lynomial matri~ 'A(~1) 

may be 'transformed to the equi~alent upper triangular form . 

B(xi) =II b;j(x1) II, b;;(x1) = 0 (i > j), i,j = 1, ... N 

by means of the left elementary operations (see [5], Chapter VI, Theorem 
1): 
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L Multiplication of the row by a _non-zero number 
2. Addition to some row another row multiplied by any polynomial in X1 

3. Permutation of two rows · ·. 
. ' . . . 

Applying the algorithm described in [5] one _can find the following ~epre
sentation of the matrix A( xi) 

A(xi) = Q(x1) • B(x1), det Q(xi) = c-::/= 0, c E J< 

where Q(x1 ) is a square N.x N matrix whose elements are polynomials in 
x1• ·From this relation and inequality det A(x1)-::/= 0 it follows detB(xi)-::/= 0 
that implies b;;(xi) -::/= 0 for i = 1, ... N. Let G1 . be a set of components of 
the vector,B( x1 ) • u. Since the left elementary operations correspond to the 
equivalent transformations of the polynomial set Gi, we have ( G'1 ) = ( Gi) 
(we shall refer to G'1 as.a friangular set equivalent to G1 ). Taking into 
acs?u'pt 1that UN = ,l, we.have bNN(~1 ) E (Gi). Below it will be proved 
th_at bNN(x1 ) is just the lowest element of the lexicographical standard 
basis of( G). 

The algorithm for constructing the triangular set G'1 [5] may be formally 
described in the following way. Let <r be any admissible (normally, total
degree) term ordering, <L be the pure lexicographical term ordering with 
the same order of variables and let G be completely autoreduced zero
dimensional involutive basis in <r ordering. 

Algorithm 2. 

Input: G1 = {g E GI class(g) = 1} 

Output: G'1 - a triangular basis w.r.t. <L such that (G'1 ) :== (G1) 

1. Fix<L term ordering and rearrange G1 w.r.t. <L 

2. G'1 := Reduce(G1 , 1) 

The function Reduce(F, i) in algorithm: 2 computes an autored:uced form of 
F in terms of the so-called i-division. We say that the term u is an i-divisor 
cif the term V iff U IV and U lx1= ... =x;=1= V lx1= ... =x;=l• The algorithm for 
comptiting'Reduce(.:., i) inay be obtained from the wdl-kriown algofithin 
ReduceAU [3] by replacing usual division by i-division in the n'~rmal fcirm 
algorithm. · · · · · 

As it is shown above, the minimalw.r.t. <L element of G'1 is an equation 
in the single variable x 1• To prove that it is just the minimal element 
of the corresponding minimal lexico'graphical standard basis. we need the 
following theorem. 
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Theorem .6. Let G be a completely autoreduced ze~o-dimensional. in
volutive basis w.r.t. <r ordering and G1 ... ; = {g E G I class(g) '.S i}. 
Let H be tlie minimal standard basis of (G) w.r.t <L ordering and H; = 
H n J{[x1 ••• x;]. Then for ·each i = 1, ... , n and for each h E H; the ·equality 
N FJ(h, G1. .. i) = 0 holds where N FJ is computed w,r.t. <r ordering. 

Proof. For fixed i = 1, ... , n we let P(U;) be the set of all fi~ite sums of the'. 
form • ~ · 

P(U;) = {L O'.jk. Uj X Vjk I O'.jk .EI<, Uj EU;}. 
. j,k . . ,, 

Evidently, any f E P(U;) is in Janet normal form modulo G\ G1. .. i• Since 
G is .. completely autoreduced, and since for any :term u E U; _all its Jan~t 
divisors also lie in U;, from theorem 5 it follows that G1. .. ; c P(U;f Note • 
that H; is also a stibset of P(U;) (with all ui = 1). Consider any h 'EH;. 
From h E (G) it follows that N FJ(h, G) =:::: 0. We hav~ to prove that iii 
fact a stronger condition holds, namely N FJ(h, G1. . .;) = 0. First we claim 
that any f E P(U;) may be reduced by means of polynoniials from G1...; 
and not from G \ G1...i• Indeed, otherwise the terms in J could not have 
the form u xv (it EU;) since u would not be irreducible modulo G. So, as 
h E·P(U;) n (G), then N FJ_(h, G1...;) = 0. □ 

Corollary 3. (H;) ~ (G1 ... i) for each i = 1, ... , n. □ 

Corollary 4. The minimal element of JI coincides with the minimal 
element ofG1 computed by algorithm 2. 

Proof. Let jj1 E J<[x1] be the minim.alelement of G'1 and h1 E K[x1] b~ the 
minimal element of H. As above, we let G1 be subset of involutive basis 
G containing all the elements of class 1. ;,From algorithm 2 it follows that 
each g; E G1 is a linear combination of Yi E G'1 (i,j-= l', ... ,D1 ) with 

, coefficients in I<[x1]. Because of theorem 6, N FJ(h 1 , Gi) = 0 (w.r.t.<r),, 
~re . . 

D1 D1 

h1 = L c;(xi) · g; = L Cj(xi) · Yi, c;(xt), Cj(xt) E I<[x1]. 
i=l j=l 

Taking into account the triang~lar strudi1re of a; mentioned above algo
rithm 2, we conclude that cj(xi) = 0 for j = 2; ... , n, and so h1 = c1 (x1 ) ·g1 • 

On the other hand, since JI is a standard basis of (G) in <1, orderin,g ancl 
?11 E I<[x1] n (C:), the equality NF(gi, {h1}):==·0 (,~.r.t.<L) holds, i.e. 
?11 = c(x1). h1 where c(x't) E I<[x;]. Hence [/J = .ht (up to 1Tlllltipli2;ition 
by non-zero clement of I<). D 
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In most cases, applying algorithm 2 gives not only the minimal equation 
but the whole lexicographical standard basis.. So, the following theorem 
holds. 

Theorem 7. Let G, H be as in theorem 6, <T be the total degree and 
<L be the pure lexicographical term ordering. Let card(H) = n and 
{x2 , ••• ,xn} C lt(H). Assume that (G) n E = 0.where EC K[x1,••·,xn] 
is the set of all linear forms in x1 , •.• , Xn. Then, after removing redundant · 
elements, G1 computed by algorithm 2 coincides with H. 

Proof. For each i = 2, ... , n let h; be the element of H such that lt(h;) = x; 
and g; be the element of G1 such that lt(g;) lxi=t = x; where the leading• 
terms are defined w.r.t.<L· Since <T is the total degree ordering, the 
assumption (G) n E = 0 implies {x2 , •• ,,xn} C U1 • Consequently, H C 
P(Ul) and so NFJ(h;, Gi) = 0 for each i = 2, ... ,n. Repeating the same 
reasonings as in the proof of corollary 4, we obtain . 

D1 

h; = L Cj · 9i, 9i E G1, c; E K[x1), i = 2, ... , n. 
j=l 

Taking into account the triangular form of G1 and considering successively 
each i = 2, ... , n, one can easily observe that the only possibility is h; = g; 
for each i. Together with corollary 4 this proves the theorem. D 

Note that the form of H supposed in theorem 7 is known to happen for 
zero-dimensional radicals in generic position [6) and, more generally, for the 
sets of curvilinear points in generic position [7). It means that algorithm 
2 computes the whole lexicographical standard basis for the most zero
dimensional ideals and may be considered as an alternative to the well
known FGLM-technique [8). 

Some "natural" generalization of algorithm 2 for the arbitrary zero-dimensional 
ideals is given below. 

Algorithm 3 (H = Invlex(G)). 
Input: G - zero-dimensional involutive basis w.r.t.<T 
Output: H - triangular basis of (G) w.r.t.<L 
H:=0; 
for i := 1 : n do 

H := Reduce(H U G;, i); 
if lt(H) n T(xk) =/- 0 for all k E {l, .. ,n} then go to exit; 

exit: H := Remred(H); 
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The function Reduce( ... , i) is computed w.r.t: <'L ordering by using i
division. Th.e function Rcmred re'moves in a" given set' all redundant ele
ments, i.e. those elements whose leading terms a~e the rriultiples (in the 
usual sense) of the leading terms of other clements. 

. . - : ... •. 
Algorithm 3 had been tested on many examples, mainly for non-radical 
ideals. Almost always the'output set H is just the minimal lexicographical 
standard basis. However, there arc some examples· (i.e. th'e so-called cyclic 
root problems with 5 and 6 variables) for which the result of algorithm 3 is 
not a standard basis though is very closed to it. Thus if the output set H 
has no the.form as in theorem 7 cine should apply Buchberger's algorithm 
w;r.t. <£-Ordering with H as input. Since H is closed to a standard basis 
or coincides with it this computation is rather fast. 

The algorithm Inv/ex has·been implemented in the computer algebra sys
tem REDUCE. By using this implementation the author has computed 
the lexicographical standard basis for the famous polynomial system by 
K.Rimey [9) unsolvable during the last 10 years by any computer algebra 
tools and considered as hopeless. The computation took about 10 hours 
on the computer ALPHA/DEC with 50 fv1b memory. 

Aknowledgements. The author is grateful to J.Apel, Yu.Blinkov, v:Gerdt 
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