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Solving Zero-Dimensional Involutive Systems

A new method for solving zero-dimensional polynomial systems is
proposed. Given a set of generators of a zero-dimensional ideal, the method
computes an involutive basis of this ideal in the total-degree term ordering and
then converts it to a triangular basis in the lexicographical ordering by means
of a simple linear algebra algorithm. It is proved that in most cases of zero-
dimensional ideals the result of a conversion algorithm is a lexicographical
Graébner basis.
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1  Introduction

In our recent paper (1], the notion of involutive bases of polynomial.ideals
was introduced and an algorithm for computing involutive bases was pre--
sented. The improved form of this algorlthm together with the proof of
its correctness in the zero-dimensional case is given in [2] In the posmvee ,
dimensional case, a linear change of variables is genera.lly requ1red for con-
structing involutive bases defined in our sense. It turns out that when the’
involutive basis exists (without change of variables) it can be computed
considerably faster by our algorithm than the minimal standard basis by
Buchberger’s algorithm [3]. 'On the other hand, an involutive basis com-
puted in the total-degree term ordering often looks more complicated than
the corresponding minimal standard basis. The reason is that the invo-
lutive basis of a zero-dimensional ideal is nothing but : a standard basis
enlarged to an “overdetermined” linear algebraic system in'monomials ir-
reducible modulo this ideal. ' .From this fact, some-interesting properties
of involutive bases may be deduced and a simple method for solvmg Zero-:
dimensional systems may be constructed.

In the second section of this paper we recall the notions of the Janet norma.l
form and involutive bases of polynomial ideals. ‘We.present ‘also a new
version of algomthm Invbase for computing involutive bases with further
improvements in comparison with that presented in [2]. In the third section
we systematically investigate the structure of zero-dimensional involutive
bases. In the forth section we describe the method of converting the total-
degree involutive basis to the pure lexicographical reduced standard basis
in case the shape lemma holds [7}.

2 Involutive Bases

Throughout, we use the following notations.

K — arbitrary field of characteristic zero;

K|[zy,...,z,]— polynomial ring over K;

f+9, h— polynomials‘from K([z1;:..,,];

F,G, H— finite subsets in K[zy,...,z,];

card(F)— number of elements (cardinality) of F;

u,v,w— terms in polynomials (without coeflicients from K);
deg(u, z;)— degree of u in variable z;;

deg(u)— total degree of u;
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cf (f,u)— coefficient of u in f;

(F)— ideal generated by F.

Let variables z; be ordered as ¢, <'... < =, and let <7 be some admissible
term orderlng Denote ' o S

It(f)- leadmg term in f w;t <T, L

le(f) = cf (f, 1t(f));

i(F) = {it(f)| f € F};

deg(F) = maz{deg(It(f)) | f € F}.

Definition 1. Variable z; is multiplicative for the term u 1f its index 1
is niot greater than the'index of the lowest variable in u. Otherw1se z. is
non- mult1phcatzve for u. : : »

For a glven polynomlal g denote by N onmult(g) a set of non- mnltlphcatlve
varlables for lt(g)

Definition 2. The class of a term u (symbolically class(u)) is the index
of ‘the lowest variable contained in u with' a non-zero powér. The class
of a unit term (containing all variables in' zero powers) is defined to be
n 4+ 1, where n'is the number of variables: The class of a polynomzal g
(syrnbohcally class(g)) is the class of lt(g)

Denote u-p by UX v, 1f all varlables in.v are multlphcatlve for u or if
deg(v) = 0. Write also g-u=gxuif It(g)-u=1t(g) x u.

Definition 3. The term u is called a' Janet divisor for the term w'if there
exists a‘term v such that w =u x v (symbohcal]y uly w)

Definition 4. The polynomial f reduces to h modulo G in the sense of
‘Janet if there exist ¢ € G and u such that lt(g) - v = lt(g) x u, a =
cf(f,lt(g) xu) # 0and h = f —a-g x u. The polynomial f is given
in Janet normal form modulo G if for each term'in"f there are fio Janet
divisors in /t(G).The polynomial 4 is a Janet reduced form of f modulo G
(symbolically & = NF;(f, G’)) if theré ex1sts a chain of Janet reductlons
from f to h'and A is-given in Janet normal form modulo G.

In contrast to Janet normal form we denote by NF(f,G) a usual normal
form of f modulo G. An algorithm for computing N F; may be obtained
from one for computlng NF [3] replacmg usual division of terms by -Janet
division. = : .

Definition 5. G is autoreduced (in the sense of Janetl) ifV;,,ngG,g;ég_; =(1t(g) 1s

It(¢")). G is completely autoreduced if Voec NFy(g9, G\ {g}) =g

Denote by Autoreduce(F) a function that for a given F' computes G which.

is autoreduced and (F) = (G). An algorithm for computing Autoreduce - -

may be obtained from the well-known algorithm ReduceAll [3] replacing
usual NF by NF;.

Definition 6 [1]. G is an involutive basis if it is autoreduced and

VgGG VzeNon.mult(g) NFJ(g 2) G) =0 . (1)

Some general properties of the involutive bases established in [1, 2] are
summarized below.

Properties of involutive basee 1, 2].
o If G is involutive then Vsg) NFy(f,G) = 0.
e If G is involutive then V;, NF;(h, G) NF(h, G)
_e Any involutive basis is a standard ba.SIS generally not mlnlmal

e Let G be an involutive basis and G, be a minimal standard basis”
of (G). Then, for each term u there exist ¢ € G such that lt(g) |; v
if and only if there exist g € Gumin such that lt( 7 l u.

o If G, H are involutive bases and (G) = (H) then It(G) = lt(H)
Moreover, if G, H are completely autoreduced then G = H up to
multiplication of polynomials by non-zero elements of K.

o If:G is involutive then for each g €.G ‘and for each term u such that
u |7 lt(g) and elass(u) > class(g) there exist exactly one ¢’ € G such
that class(u) = class(g') and u [ It(g').

e Let G be involutive. The dimension of (G) is k if and only if T'(z;) N
H(G)=0for 1 <i<kand T(z;)NIG) #Dfork+1<j<n
where for any subset S C {z,,...,z,} we let T(S) be the set of all‘

_terms of variables in S. .

o For any zero-dimensional ideal there exist an involutive basis.

e For any positive-dimensional ideal an invertible linear change of vari-
. ables may be found such that involutive basis of a given ideal does
exist in terms of the new variables.

Below, an improved version of algorithm Invbase for constructing involutive
basis G of the ideal generated by a given'set F' is presented (see [4]).



Algorithm 1 (G = Invbase(F)).
Input: F = {f | f € K[z1,..., 2]}
Output: G - involutive basis of (F)
G := Autoreduce(F);
L:=1(G);.
whlle L#0do
g := element of G with minimal it(g) € L;
L= L\ {t(9));
for each z in Nonmult(g) do
G := Autoreduce(G U {g - z});
Lz = It(G); :
= (LNL)U (L2 \ Lv);

Algorithm 1 may be obtalned from the algorrthm Invbase of the paper [2]
by avoiding the so-called repeated prolongations. That is, in each step of
the while-loop we add. a product g - z to the current basis only if such
product with the same lt( ) and z has not been already considered in the
previous steps. Using.a noetherian argument it can be proved.that the
repeated prolongations in fact reduce to zero, a detailed proof is to be
given elsewhere. Our computational experience shows that:avoiding such
zero-reduced prolongations construction gives a considerable speed-up.

3 ~Structure of Zero-Dlmensmnal Involutlve
- Bases

Throughout this section-by G is meant an involutive basis of a zero-
dimensional ideal in some admissible term-ordering.<r.. Now we are be-
ginning to study some properties of zero-dimensional involutive bases.

Theorem 1. For any term v such that deg(v) > deg(G) there exist g € G
such that l(g) | v. : \ ,

Proof. Since G is an involutive basis, and consequently a standard basis, of
a zero—d1mens1ona1 ideal, then for each'1 < i <n there exist g7 € G such
that [#(g7) = z& and d; > 0 [3]. Assume for contradiction that there exist
a term u such that deg(u) > deg(G) and u has no Janet divisors in I4(G).
Consider two alternative cases. First assume that there exist ¢ such that

deg(u,z;) > d;. In this case u may be represented as u = v - lt(g,) Since -

polynomial v - g;* € (G), its leading term u has a Janet divisor in It(G),

e

which contradicts our assumptron Another pOSSlbll]tV is deg(u, z;) < d;
for each t=1,.,n. Let v/ = u |,.,,__1 Since v’ - g7 € (G), the term
w' x =¥ has a Janet divisor, say v, in lt(G). The latter should have the
form v = u’ x z] where deg(u,z,) < p < d; because otherwise v would be
a Janet divisor for u. Hence deg(u) < deg(v) < deg(G) which contradicts
the fact that deg(u) > deg(G). O . .

Let U be a set of all irreducible terms (in the sense of Janet) modulo G.
By the properties of involutive bases (see above), U is nothing but the
set of all irreducible terms (in the usual sense) modulo a standard basis.
Since (G) is zero-dimensional, U is finite and D = card(U) is the number
of roots of (G) counting their multiplicities [3]. Let us denote

Ui={ueU]class(u) > 1}, D;=cardl;), i=1,..,n.

Remind that class(1) = n + 1, therefore U, = {1}. It is natural to set
Uo = U and Dy = D. Evidently Uy, C U;, hence D;yy < D;. Denote also

—{gGGlclass (9) =1}

Now we are ready to state’ ‘the following mterestnlg property of -zero-
dlmensronal 1nvolut1ve bases

Theorem 2. Let G be an 1nvolut1ve basis of zero- dlmensrona] 1deal andf
let G;, U: be defined as above. Then for all i = = 1,2,...,n and for all
g € Gi U(g) |zim€ Ui Conversely, for all 7 =1, 2,.. n and- for each
v e U; there exist exactly one g € G; such that u = l{(g) ]I'=1

Proof. Let g € Gi, that is, lt(g) = u x'z¥, class(u) > i. Since G is
Zutoreduced, « has no Janet divisors in.lt(G). Therefore, u = 1(g) |z=1€
Conversely, let u € U;. .Consider v = u x z¥ such that deg(v) >.deg(Q).-
From theorem 1 it follows that there exist g € G such that it(g) |; v, that
is, It(g) = u x zf. Since u is irreducible modulo G, k> 0, hence g € G;.

Smce any monomlal has no more than one Janet d1v1sor in lt(C (see [1],
proposition 1) 9 is determmed umquely o - "

Theorem 3. The number of elements inG is

card Z D; = Z i Nij

i=1

where D; is defined as above and N;is a numl)er of all terms of the class
J irreducible modulo G.



Proof. Since G = UL,G; and G;NG; = @ for i # j, then card(G) =
> iz card(G;). By theorem 2, card(G;) = D;. Hence card(G) = Y %, D;.
Tal\mg in account the recurrence relations D;_; = D; +N;,, i=n,n-—
1,. 1 we obtaln that card(G) Yorgi- N O

Corollary 1. Let G;,, be an involutive basis of a zero-dimensional 1deal
Gynin be a corresponding minimal standard basxs Then the following chain
of 1nequa11t1es obviously holds: :

' ;>card(G,',,’,~,,)_’§ card(Giny) < 1 + (n~1)D, <nD, <nD.

Theorem 4. Let G be an involutive basis of zero—dimensionat ideal. Then

l-l = Zdeg .97:1:)‘ E

.‘IGG
Prdof.‘By theorem 2, ‘
(G) = {ur- 2 |wp € Uiy d > 0, k=1,., D), i=1,2,..5n

where £ upm for l;é m. It iseasy to observelthat Ui-1 is a union of
D; disjoint sets {ug -z} | 0 < ] < di} where k = 1,...,D;. From this 1t
immediately follows D;_ ;= Zk <1 dx, which proves the theorem a

Corollary_Z‘. Let G be an involutive basis of zero-drmensxonal ideal. The
number of roots of (G) counting their multiplicities is '

D=3 deg(g;m).

9€G

4 Conversion to lex1cographlcal standard
basis

In this section we propose a method for converting an involutive basis. of
zero dimensional ideal in any admissible (normally, total degree) term or-
dering to the pure lexicographical minimal standard basis. We describe
the theoretical foundations of the method as well as a version of the cor-
responding algorithm. Our method is based on the following property of
zero-dimensional involutive bases resulting from the theory developed in
the previous section.

[

i s o

Theorem 5. Let G be a completely autoreduced. 1nvolut1ve basis of a
zero-dimensional ideal and let G;, U;, D; be as deﬁned above theorem 2.
Then G; is nothing but a system of D; linear algebralc equatlons in D; —1
unknowns u € U; \ {1} over K|zy,...,z;]. These equations are linearly
independent over K|z, ...,z;].”" o e

Proof. Since G is completely autoreduced, any term w in the reductum of
any polynomial g € G; should have the form w = u xv where u € Ui.
Indeed, if u were not an element of U;, the term w could not be irreducible

. in the sense'of Janet. On the other hand, by theorem 2, for each g €'G;

its leading term has the form li(g) = u x z¥, k> 0, u'€ U;- (1nclnaing
u = 1), which gives a one-to-one correspondence between the sets U; and
I4(G:). Thus, G; is evidently a‘linear algeraic system of D equatlons in
D; — 1 unknowns u € U; \ {1}-over K[z, iy - oo 0 P
Assume for a contradlctlon that these equatlons are not hnearly mdepen-
dent over K[ml, s il that is ¢ - g+ g2+ .+ ok < gx =0 where
¢; € K[zy1,..,z;);, g; € G; and, say, ¢, # 0. Slnce class(g,) =1, we may
write

a3

(gl) X lt(cl) = mam{lt(gg) X lt(cz), " (gk) X lt(ck)}

where by maz is meant the max1mal term in the sense of <T orderlng Let
1t(g;) x lt(cz) be such a term. Then the term It(gy) x lt(c;) has 2 different

~ Janet divisors in Gi: the term lt(gl) and the term [t(g;). This contradicts

the fact that G; is autoreduced in the sense of Janet (see [1], propos1t10n \
1). O >

An immediate consequence of theorem 5 is an algorithm for isolating the
lowest variable ;. Indeed, assuming i = 1 in theorém 5 and denoting D,
by N, we see that G, is nothing else but the set of components of the
vector A(z;) - u where A(a:l) is a square N x N matrix whose elements
are univariate polynomlals in z; and u'is a vector with Dy components
u; €, U arranged so that u; > u; for i < j w.r.t. the pure lex1oograph1c
orderlng (note that uy = 1). By theorem 5, the elements of G1 are hnearly'
mdependent over K(zl), hence det A(z1) 76 0.~ Polynomlal matrlx A(:z:l)
may be transformed to the equivalent upper triangular form :

B(zl) —‘” bi;(1) ”1 bij(z1) =0 (i > ), .7 =1,. N

by means of the left elementary operations (see [5], Chapter VI Theorem

1):

1



1. Mult1pl1ca.t10n of 'th:e row by a nonrzero number
2. Addition to some row another row mult1p11ed by any polynomial in T
3. Permuta.t1on of two rows .

Applymg the a.lgonthm described in [5] one can find the followmg repre-
sentation of the matrix A(zp)

A(zl)—Q(zl)  B(zy), detQ(ftr)‘-‘-C?éO ce K

where Q(z,) is a square N X N matrlx whose elements are polynomxals in
;. From this relation and inequality det A(z,) # 0 it follows det B(z,) # 0
that implies b;;(z1) # 0 for ¢ = 1,...N.. Let G} be a set of components of
the vector, B(z;)-u. Since the left elementary operations correspond to the
equivalent transformations of the polynomial set Gy, we have (Gy) = (G1)
(we shall refer to Gl as.a triangular set equivalent to ;). Taking into
account that uy = 1, we have byn(z1) € (G1). Below it will be proved
tha.t bNN(:cl) is just the lowest element of the lex1cograph1cal standard

basis of (G).

The algorithm for constructing the triangular set Gy [5] may be formally
described in the following way.  Let <7 be any admissible (normally, total-
degree) term ordering, <;, be the pure lexicographical term ordering with
the same order of variables and let G be completely autoreduced Zero-
dlmens1ona.l involutive bas1s in <t ordering. '

Algorlthm 2.

Input: G, = {g € G| class(g) = 1}

Output Gl - a triangular basis w.r.t. <; such that (Gl) = (G,)
1. Fix <L term ordering and rearrange Gy wrt.. <

2. G, := Reduce(Gh,1)

The function Reduce(F ¢) in algorithm 2 computes an autoreduced form of
Fin terms of the so-called i-division. We say that- the term u is an é-divisor
of the term v iff u | v and u [_.,1="____,.=1 v |,,=_"=,'=1 The algorithm for
computmg Reduce( z) may be obtamed from the well-known algorlthm
ReduceAll [3] by replacing usual d1v151on by i-division in the normal form

algorithm.

As it is shown above, the minimal w.r.t. < element of G, is an equation
in the single variable z,. To prove that it is just the minimal element
of the corresponding minimal lexicographical standard basis: we need the
following theorem:. ‘

Theorem 6. Let G be a completely autoreduced zero- dlmenswnal in-
volutive basis w.r.t. <z ordering and G, ; = {g € G | class(g) < i}.

Let H be tlie minimal standard basis of (G) w.r.t <, ordering and H; =
H N K|[z;...z;]. Then for each i ='1,...,n and for each h'€ H; the equality
NFE;(h,G1.5) =0 holds where NF_] is computed w.r.t. <T ordermg

Proof. For fixed i = 1,. n we let P(U) be the set of all ﬁmte sums of the. .
form
P(U = {EQJ" uJ X v,k [ aJk €K, u; € U}
SE ,

Ev1dently, any f € P(U;) is in Janet normal form modulo G\ Gi.... Smce
G is completely autoreduced, and since for any . term u € U; all its Janet
divisors also lie in U,, from theorem 5 it follows that Gy.; C P(U) Note ™
that H; is also a subset of P(U;) (with all uj = 1). Consider any h'€ ‘H;..
From h € (G) it follows that NF;(h,G) = 0. We have to prove that in
fact a stronger condition holds, namely N F;(h, G,_;) = 0. _First we claim

. that any f € P(U;) may be reduced by means of polynomials from Gy..;

and not from G \ Gi.:;. Indeed, otherwise the terms in f could not have
the form u x v (v € U;) since u would not be irreducible modulo G. So as

hePU)N (G), then NFJ(h Gr.. ,) = 0 m

Corollary 3. (H) C (G1 i) for each 7 = 1 n. O
Corollary 4. The minimal element of I coincides with the mmlmal
element of Gy computed by algorithm 2. ' : :

Proof. Let §, € K[z1] be the ‘minimal element of G, and hy € K[z;] be the
minimal element of H. As above, we let Gy be subset of involutive basis
G containing all the elements of class 1. ;From algorithm 2 it follows that

" each g; € G, is a linecar combination of §; € Gy (i,j-= 1,..,Dy) with
. coefficients in K [zl] Because of theorem 6 NFJ(hl, C’l) = 0 (w r.t.<t),.

lience
Dy Dy -
=Y alz) gi= Y &@) G aler), &) € Kz
1=1 1=1 .o

Taking into account the triangular structiire of G; mentioned above algo-
rithm 2, we conclude that é(xy)=0forj=2,..,n,andso hy = é(x1)-gr.
On the other hand, since H is a standard baqxq of (G) in <y, ordcrmg and
g1 € K[z,] N (G), the equality NF(g, {hl}) =0 (w.r.t. <L) holds, i.e.
a1 = c(z1) - Iy where c(:rl) € K[z;]. Hlence §; = hl (up to mult1pllcatlon ,
by non-zero clement of K). O



In most cases, applying algorithm 2 gives not only the minimal equation
but the whole lexicographical standard basis. So, the following theorem

holds.

Theorem 7. Let G, H be as in theorem 6, <7 be the total degree and
<1 be the pure lexicographical term ordering. Let card(H) = n and
{z2,...,zn} C It(H). Assume that (G) N E = 0 where E C K{z,,...,z,]

is the set of all linear forms in z,...,z,. Then, after removing redundant -

elements, é’l computed by, algorithm 2 coincides with H.
Proof. For each i = 2,...,n let h; be the element of H such that lt(h;) = z;

and §; be the element of G, such that 1£(g;) |z;=1= z; where the leading -

terms: are defined w.r.t.<r. Since <z is the total degree ordering, the
assumption (G) N E = @ implies {z,,...,z,} C U;. Consequently, H C
P(U,) and so NF;(h;, G;) =0 for each i = 2,...,n. Repeatmg the same
reasonings as in the proof of corollary 4, we obtam . :

. hi = ZCJ 'gj, .6] € G~'1, Cj € I{[II], Z = 2,...,ni

i=1

Taking into account the triangular form of G, and considering successively

each 7 = 2,...,n, one can easily observe that the only possibility is h; = g, ,

for each 1. Together with corollary 4 this proves the theorem. O

Note that the form of H supposed in theorem 7 is known to happen for
zero-dimensional radicals in generic position [6] and, more generally, for the
sets of curvilinear points in generic position [7]. It means that algorithm
2 computes the whole lexicographical standard basis for the most zero-
dimensional ideals.and may be considered as an alternative to the well-
known FGLM-technique [8].

Some "natural” geueralization of algorithm 2 for the arbitrary zero-dimensional

ideals is given below.

Algorithm 3 (H = Inviez(G)).
Input: G - zero-dimensional involutive basis w.r.t.<r
Output H - trlangular basis of (G) w.r.t.<g
={; .

for i:=1:ndo

H := Reduce(H U G;, 1);

if H(H)NT(zx)#0 for all ke {1,..,n} then go to ezxit;
exit: H := Remred(H);

10

The function Reduce(...,i) is computed w.r.t; <, ordering by using i-
division. The function Remred removes in a given set all redundant ele-
ments, i.e. those elements whose leading terms are the rriultiples (in"the
usual sense) of the leading terms of other elements.

Algorithm 3 had been tested on many examples mamly for non- radlcal
ideals.- Almost always the'output set H is just the minimal lexicographical
standard basis. However, there are some examples (i.e. the so-called cyclic
root problems with 5 and 6 variables) for which the result of algorithm' 3 is
not a standard basis though is very closed to it. Thus if the output set H-
has no the form as in theorem 7 one should apply Buchberger s algorithm
wir.t. <p-ordering with H'as input. Since H is closed to a standard basis
or coincides with it this computation is rather fast.

The algorithm Invlex has been implemented in the computer algebra sys-
tem REDUCE. By using this implementation the author has computed
the lexicographical standard basis for the famous polynomial system by
K.Rimey [9] unsolvable during the last 10 years by any computer algebra
tools and considered as hopeless. The computation took about 10 hours
on the computer ALPHA/DEC with 50 Mb memory.
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