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1 Introduction 

In our recent paper [1], the notion of involutive bases of polynomial.ideals 
was introduced and an algorithm for computing involutive bases was pre~ 
sented. The improved form of this algorithm together _with the pro(?f of 
its correctness in the zero-dimensional case is given in [2]. In, the positive­
dimensional case, a linear change of variables is generally required for con­
structing involutive bases defined in our sense. It t'urns out' that when the 
involutive basis exists (without change of variables) it ca~ be c~~puteJ' 
considerably faster by our algorithm than the minimal standard basis by 
Buchberger's algorithm [3]. On the other hand,•an involutive basis com­
puted in the total-degree term ordering often looks more complicated than 
the corresponding minimal standard basis. The reason is that the invo­
l uti ve basis of a zero-dimensional ideal is nothing but a standard basis 
enlarged to an "overdetermined" linear algebraic system in' monomials ir­
reducible modulo this ideal. .From ·this fact, some interesting properties 
of involutive bases may be deduced and a simple method for solving zero­
dimensional systems may be co.nstructed. 

In the second section of this paper we recall the notions of the Janet normal 
form and involutive bases of polynomial ideals. We present also a new 
version of algorithm lnvbase for computing involutive bases with further 
improvements in comparison' with that presented in [2]. I~ the third secti~n 
we systematically investigate the str~cture of zero-dimensional involutive 
bases. In the forth section we describe the method of converting the total.: 
degree involutive· basis to the pure lexicographical reduced standard basis 
in case the shape lemma holds [7]. 

2 lnvolutive Bases 

Throughout, we use the following notations. 

K- arbitrary field of characteristic zero; 
K[x1, ••• , Xn]- polynomial ring over K; 
f,g, h- polynomials'from K[xi,; .. , :in]; 
F, G, H- finite subsets in K[x 1 , ••• , Xn]; 
card(F)- number of elements (cardinality) of F; 
u, v, w- terms in polynomials (without coefficients from K); 
deg( u, x;)- degree of u in variable x;; 
deg( u)- total degree ofu; 



cf(!, u )- coefficient of u in f; 
(F)- ideal generated by F. 
Let variables Xi be ordered as X1 < ... < Xn and let <r be some admissible 
term ordering. Denote 

lt(f)-·leading terrri inf w.r.t. <r; 
le(!) = cf (f, lt(f) ); 
lt(F) ~ {It(!)' If E F}; 
deg(F) = 711:ax{deg(lt(f)) If E F}'. 

Definition 1. Variable x; is multiplicative for the term u if its index i 
is not greater than the·index of the· lowest variable in u. Otherwise x; is 
non-multiplicative for u. 

. . ' 

Fo.r a givep. polynomial g denote by N onmult(g) a set of non-multiplicative 
variables for lt(g).. . .. 

Definition 2. The' class of a term u (symbolically class(u)) is the index 
of the lowest variable contained in u with a non-zero power. The class 
of a unit term ( containing all variables iri zero powers) is defined to be 
n + 1, where n is the number of variables. The class of a polynomial g 
(symbolically class(g)) is the class of lt(g) .. 

Denote u · .v by u x v ,if all variables in. v are multiplicative for u or if 
deg(v) = 0. Write also g • u =:= g x u if lt(g) · u = lt(g) x u. 

Definition 3. The term u is ·called a' Janet divisor for the term w'if there 
exists a term V such that w == u X V ( symbolically u IJ w) .. 

Definition 4. The polynomial f reduces to h modulo· G in the sense of 
Janet if there exist g E G and u such that lt(g) • u = lt(g) x u, a= 
cf(f,lt(g) Xu)=/ 0 and h = f- a· g x.u. The polynomialJ is given 
in Janet normal form modulo G if for each term'in I there are no Janef 
divisors in It( G).The polynomial, h is ii; J~net reducedform_ off modulo G. 
(symbolically h = N FJ(f, G)) if there exists a chain of Janet reauctions 
from f to h and his given in Janet norma~ form modulo G. 

In contrast to Janet normal form we denote by N FU, G) a usual normal 
form of f modulo G. An algorithm for computing N FJ may be obtained 
from one for computing NF [3] replacing usual division of-terms by Janet 
division. 

Definition 5. G is autoreduced (in the sense of Janet) ifV9 ,9 iEG,#g' •( lt(g) IJ 
lt(g')). G is completely autoreduced if VgEG N FJ(9, G \ {g}) = g · 

. . . 2. 

Denote by Autoreduce( F) a function that for a given P computes G which 
is autoreduced and (F) = ( G). An algorithm for computing Autoreduce 
may be obtained from the well-known algorithm ReduceAll [3] replacing . 
usual NF by N FJ. 

Definition 6 [l]. G is an involutive basis if it is autoreduced and 

VgEG VxENonmult(g) N FJ(9 · x, G) = 0 (1) 

Some general properties of the involutive bases established in [l, 2] are 
summarized below. 

Properties of involutive base.s [1, 2]. 

• If G is involutive then V /E(G) N FJ(f, G) = 0. 

• If G is involutive th.en Vh N FJ(h, G) = N F(h, G). 

. • Any involutive basis .is a standard basis, generally not minimal. 

• Let G be an involutive basis and Gmin be a minimal standard basis 
of (G). Then, for each term u there exist g E G such that lt(g) bu 
if and only if there exist g' E Gmin such that lt(g') I u. 

• If G, H are involutive bases and (G) = (H) then lt(G) = lt(H). 
Moreover, if G, H are completely autoreduced then G = H up to 
multiplication of polynomials by non-zero elements of I<. 

• If G is involutive then for each g E,G and for each term u such that 
u IJ lt(g) and class( u) > class(g) there exist exactly one g' E G such 
that class( u) = class(g') and u IJ lt(g'). 

• Let G be involutive. The dimension of ( G) is k if and only if T( x;) n 
lt(G) = 0 for 1 :Si :S k and T(xi) n lt(G) =/ 0 for k + 1 :S j :S n 
where for any subset S ~ {xi, .:.,xn} we let T(S) be the set of all 
terms of variables in S. 

• For any zero-dimensional ideal there exist an involutive basis. 

• For any positive-dimensional ideal an invertible linear change of vari­
ables may be found _such that involutive basis of a given ideal does 
exist in terms of the new variables. 

Below, an improved version of algorithm lnvbase for constructing involutive 
basis G of the ideal generated by a given·set Fis presented (see [4]) . 
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Algorithm 1 (G = lnvbase(F)). 
Input: p = {f If E K[xi, ... ,xn]} 
Output: G - involutive basis of (F) 
G := Autoreduce(F); 
L := lt(G); 
while L -:f; 0 do 

g := element of G with minimal lt(g) E L; 
L := L \ {lt(g)}; 
Li := lt(G); 
for each x in Nonmult(g) do 

G := Autoreduce( GU {g • x} );· 
L2 := lt(G); 
L := (L n L2) U (L2 \ Li); 

Algorithm 1 may be obtained from the algorithm Invbase of the paper (2] 
by avoiding the so-called· repeated prolongations. That is, in each step of 
the. while-loop we .add a product g • x to the current basis only if such 
product with the siim'e lt(g) and x has not been already considered in the 
previous steps. Using a noetheriaii arg~ment, it can. be proved. that the 
repeated prolong~tions in fact reduce to zero, a detailed proof is to be 
given elsewhere. Our computational experience shows that avoiding such 
zero-reduced prolongations construction gives a considerable speed-up. 

3 · Structure of Zero-Dimensional IIivolutive 
Bases 

Throughout this section by G is meant an involutive basis of a zero­
dimensional ideal in some admissible term-ordering.<T-· Now we are be­
ginning to study some properties of zero-dimensional involutive bases. 

Theorem 1. For any term v such that deg( v) 2: deg( G) there exist g E G 
such that. lt(g) IJ v. 

Proof. Since G, is an involutive b_asis, and consequeptly .. a standard basis, of 
a zero-dimensional ideal, then for each' 1 S i S n _then~ exist g; E G such 
that {t('jj;) = xf• and d; > 0 (3]. Assu~e for co~tr~diction that there exist 
a term u such that deg(u) 2: deg(G) and'u has no Janet divisors in lt(G). 
Consider two alternative cases. First assume that there exist i such that 
deg( u, x;) 2: d;. In this case u may be represented as u = V • lt(g:). Since 
polynomial ti • gt E ( G), its leading term u has a Janet divisor in It( G); 
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which contradicts our assumption. Another possibility is deg( u, x;) < d; 
for each i ·= 1, ... ,n. Let u' = u lx,=I· Since u' · g; E (G), the term 
u' x xf' has a Janet divisor, say v, in lt(G). The latter should have the 
form v = u' x xf where deg( u, xi) < p S d1 because otherwise v would be 
a Janet divisor for u. Hence deg( u) < deg( v) :S deg( G) which contradicts 
the fact that deg( u) > deg( G). □ 

Let Ube a set of all irreducible terms (in the· sense of Janet) modulo G. 
By the properties of involutive bases (see above), U is nothing but the 
set of all irreducible terms (in the usual sense) modulo a standard basis. 
Since (G) is zero-dimensional, U is finite and D = card(U) is the number 
of roots of (G) countingtheir multiplicities [3]. Let us denote 

U; = {tt EU I clags(u) > i}, D; = card(U;), i = 1, ... ,n. 

Remind that class(l) = n + 1, therefore Un = {l}. It is natural to set 
Uo = U and Do= D. Evidently U;+1 <;;;: U;, hence D;+l :SD;. Denote also 

G; = {g E GI class(g) = i}. 

Now we are ready to state the following interesting property of ·zcro­
dimensional involutive baies.. . 

Theorem 2. Let G be an involutive basis of zero-dimensional ideal and 
let G;, U; be defined as above. Then for all i = 1, 2, ... , n and for all 
g E G; lt(g) lx,=1 E U;. Conversely, for all i = 1, 2, ... ,n and ·for each 
tt E U; there exist exactly one g E G; such that u = lt(g) lx,=l · 
Proof. Let g E G;, that is, lt(g) = u x x7, class(u) > i. Since G is 
a.utoreduced, u has no Janet divisors in./t(G). Therefore, u = lt(g) lr,=tE 
U;. 

Conversely, let u E U; . . Consider v = u x xf such that deg( v) 2: deg( G). 
Fr~m theorem 1 it follows that there·exist g E G such that lt(g) IJ v, that 
is, lt(g) = u x xf. Since u is irreducible modulo G, k > 0, hence g E G;. 
Since any monomial has no more than one Janet divisor in lt(G) (see [l], 
proposition 1), g is determined uniquely. D 

Theorem 3. The number of elements. in G is 
n n 

card(G) = L D; =Li· N;+l 
• i=l i=l 

where D; is defined as above and Ni is a number of all terms of the class 
j irreducible modulo G. 
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Proof. Since G = Ul;.1 G; and G; n Gj = 0 for i -=/- j, then card( G) = 
E7=1 card(G;). By theorem 2, card(G;) = D;. Hence card(G) = E~1 D;. 
Taking in account the recurrence relations D;_1 = D; + N;, i = n, n -
1, ... ., 1 we obtain that card(~)= E7=t i · N;+1• D 

Corollary 1. Let Ginv be an involutive basis of a zero-dimensional ideal; 
Gmin be a corresponding minimal standard basis. Then the following chain 
of inequalj_ties obviously holds: 

· .. card(Gmin) ~ card(Ginv) ~ 1 + (n - l)D1 ~ nD1 ~ nD. 

Theorem 4. Let G be an involutive basis of zero-dimensional ideal. Then 

D;~1 = L deg(g, x;). 
gEG; 

Proof.' By theorem 2, · 

dk ·. ' ' . ' ·, • ' . 
lt(G;) = {uk ·X; I Uk EU;, dk > 0, k= l, ... ,D;}, i = 1,2, ... ,n. 

where u1 -=/- Um for l -=/- m. It is easy to observe that U;.,..1 is a union of 
D; disjoint sets { uk · x{ I O ~ j < dk} where k ·= l, ... , D;. From this it 
immediately follows D;..;1 = Ef~1 dk, which proves the theorem. D 

Corollary 2. Let G be an involutive basis of zero-di~ensional ideal. The 
number of roots of ( G) counting their multiplicities is 

D = L deg(g', x1). 
gEG 

4 · Conversion to lexicographical standard .. , ,, 

basis 

In this section we propose a method for converting an involutive basis of 
zero dimensional ideal in any admissible· (normally, total degree) term or­
dering to the pure lexicographical minimal standard basis. We describe 
the theoretical foundations of the method as well as a version of the cor­
responding algorithm. Our method is based on the following property of 
zero-dimensional involutive bases resulting from the theory developed in 
the previous section. 
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Theorem 5. Let G be a completely autoreduced. involutive basi~ of a 
zero-dimensional ideal and let G;, U;, D; be as defined above theorem 2. 
Then G; is, nothing but a system of D; linear algebraic equation~ i~ .D; :-- 1· 
unknowns u E U; \ {l} over K[xi, ... , x;]. These equations are linearly 
independent over K[xi, ... ,x;].•'; . 

Proof. Since G is completely autoreduced, any term w in the reductum of 
any polynomial g E G; should have'the form w :== ·u x v where u E U;. 
Indeed, if u were not an element of U;, the term w could not be irreducible 
in the sense:of Janet. On the other hand, by theorem 2, for each g eG;_ 
its leading term has the form lt(g) = u x xf, k > 0, u·E U( (inclutling 
u = 1), which gives a one:to-one correspondence between the sets ·u; and 
lt(G;). Thus, G; is evidently a linear algeraic system of D; equations in' 
D; - l unknowns u EU;\ {l}•over K[x1, ... ,x;). . 
Assume for' a contradiction that these equations are not lineadi indepen~· 
dent over K[x1, ... , x;),' that is Ct • 91 + C2 .:92'. + ... + Ck ; 9k' ·~; 0 -~herr 
Cj E K[xi, ... , x;); 9j E G; and, say, Ct -=/- 0. Since class(gj)' = i, we ~ay 
write ' •.· ·, 

; 

lt(gi) X lt( c1) = max{ lt(g2) X It( c2), ... , lt(gk) X lt(ck)} • 

where by max is meant the maximal term in the sense of <T ordering. Let 
lt(g2) x lt(c2) be such a term. Then the term lt(g1 ) x lt(c1) has 2 different 
Janet divisors in G;: the term lt(g1 ) and the term lt(g2). This contradicts 
the fact that G; is autoreduced in the sense of Janet (see [l), proposition 
1). D 

An immediate consequence of theorem 5 is an algorithm for isolating the 
lowest variable X1. Indeed, assuming i = 1 in theorem 5 and derioting Di 
by N, we see that G1 is nothing else but the set of c~mponents of. the 
vector A(x1 ) • u where A(x1 ) is a square N x N matrix whose elements 
are uni'v~iate polynomials in X1 and U is a vector with Di compone~t~ 
u; .E ,U1 arranged so th'at U; > Uj for i < j w.r.t. the pu~e lexicographi~ 
ordering (not'e that UN= l). By theorem 5, the elements of G1 are linearly 
inde'p~ndent over I<(x1), hence d~t A(x1) -=/- 0. P~lynomial matri~ 'A(~1) 

may be 'transformed to the equi~alent upper triangular form . 

B(xi) =II b;j(x1) II, b;;(x1) = 0 (i > j), i,j = 1, ... N 

by means of the left elementary operations (see [5], Chapter VI, Theorem 
1): 
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L Multiplication of the row by a _non-zero number 
2. Addition to some row another row multiplied by any polynomial in X1 

3. Permutation of two rows · ·. 
. ' . . . 

Applying the algorithm described in [5] one _can find the following ~epre­
sentation of the matrix A( xi) 

A(xi) = Q(x1) • B(x1), det Q(xi) = c-::/= 0, c E J< 

where Q(x1 ) is a square N.x N matrix whose elements are polynomials in 
x1• ·From this relation and inequality det A(x1)-::/= 0 it follows detB(xi)-::/= 0 
that implies b;;(xi) -::/= 0 for i = 1, ... N. Let G1 . be a set of components of 
the vector,B( x1 ) • u. Since the left elementary operations correspond to the 
equivalent transformations of the polynomial set Gi, we have ( G'1 ) = ( Gi) 
(we shall refer to G'1 as.a friangular set equivalent to G1 ). Taking into 
acs?u'pt 1that UN = ,l, we.have bNN(~1 ) E (Gi). Below it will be proved 
th_at bNN(x1 ) is just the lowest element of the lexicographical standard 
basis of( G). 

The algorithm for constructing the triangular set G'1 [5] may be formally 
described in the following way. Let <r be any admissible (normally, total­
degree) term ordering, <L be the pure lexicographical term ordering with 
the same order of variables and let G be completely autoreduced zero­
dimensional involutive basis in <r ordering. 

Algorithm 2. 

Input: G1 = {g E GI class(g) = 1} 

Output: G'1 - a triangular basis w.r.t. <L such that (G'1 ) :== (G1) 

1. Fix<L term ordering and rearrange G1 w.r.t. <L 

2. G'1 := Reduce(G1 , 1) 

The function Reduce(F, i) in algorithm: 2 computes an autored:uced form of 
F in terms of the so-called i-division. We say that the term u is an i-divisor 
cif the term V iff U IV and U lx1= ... =x;=1= V lx1= ... =x;=l• The algorithm for 
comptiting'Reduce(.:., i) inay be obtained from the wdl-kriown algofithin 
ReduceAU [3] by replacing usual division by i-division in the n'~rmal fcirm 
algorithm. · · · · · 

As it is shown above, the minimalw.r.t. <L element of G'1 is an equation 
in the single variable x 1• To prove that it is just the minimal element 
of the corresponding minimal lexico'graphical standard basis. we need the 
following theorem. 
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Theorem .6. Let G be a completely autoreduced ze~o-dimensional. in­
volutive basis w.r.t. <r ordering and G1 ... ; = {g E G I class(g) '.S i}. 
Let H be tlie minimal standard basis of (G) w.r.t <L ordering and H; = 
H n J{[x1 ••• x;]. Then for ·each i = 1, ... , n and for each h E H; the ·equality 
N FJ(h, G1. .. i) = 0 holds where N FJ is computed w,r.t. <r ordering. 

Proof. For fixed i = 1, ... , n we let P(U;) be the set of all fi~ite sums of the'. 
form • ~ · 

P(U;) = {L O'.jk. Uj X Vjk I O'.jk .EI<, Uj EU;}. 
. j,k . . ,, 

Evidently, any f E P(U;) is in Janet normal form modulo G\ G1. .. i• Since 
G is .. completely autoreduced, and since for any :term u E U; _all its Jan~t 
divisors also lie in U;, from theorem 5 it follows that G1. .. ; c P(U;f Note • 
that H; is also a stibset of P(U;) (with all ui = 1). Consider any h 'EH;. 
From h E (G) it follows that N FJ(h, G) =:::: 0. We hav~ to prove that iii 
fact a stronger condition holds, namely N FJ(h, G1. . .;) = 0. First we claim 
that any f E P(U;) may be reduced by means of polynoniials from G1...; 
and not from G \ G1...i• Indeed, otherwise the terms in J could not have 
the form u xv (it EU;) since u would not be irreducible modulo G. So, as 
h E·P(U;) n (G), then N FJ_(h, G1...;) = 0. □ 

Corollary 3. (H;) ~ (G1 ... i) for each i = 1, ... , n. □ 

Corollary 4. The minimal element of JI coincides with the minimal 
element ofG1 computed by algorithm 2. 

Proof. Let jj1 E J<[x1] be the minim.alelement of G'1 and h1 E K[x1] b~ the 
minimal element of H. As above, we let G1 be subset of involutive basis 
G containing all the elements of class 1. ;,From algorithm 2 it follows that 
each g; E G1 is a linear combination of Yi E G'1 (i,j-= l', ... ,D1 ) with 

, coefficients in I<[x1]. Because of theorem 6, N FJ(h 1 , Gi) = 0 (w.r.t.<r),, 
~re . . 

D1 D1 

h1 = L c;(xi) · g; = L Cj(xi) · Yi, c;(xt), Cj(xt) E I<[x1]. 
i=l j=l 

Taking into account the triang~lar strudi1re of a; mentioned above algo­
rithm 2, we conclude that cj(xi) = 0 for j = 2; ... , n, and so h1 = c1 (x1 ) ·g1 • 

On the other hand, since JI is a standard basis of (G) in <1, orderin,g ancl 
?11 E I<[x1] n (C:), the equality NF(gi, {h1}):==·0 (,~.r.t.<L) holds, i.e. 
?11 = c(x1). h1 where c(x't) E I<[x;]. Hence [/J = .ht (up to 1Tlllltipli2;ition 
by non-zero clement of I<). D 
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In most cases, applying algorithm 2 gives not only the minimal equation 
but the whole lexicographical standard basis.. So, the following theorem 
holds. 

Theorem 7. Let G, H be as in theorem 6, <T be the total degree and 
<L be the pure lexicographical term ordering. Let card(H) = n and 
{x2 , ••• ,xn} C lt(H). Assume that (G) n E = 0.where EC K[x1,••·,xn] 
is the set of all linear forms in x1 , •.• , Xn. Then, after removing redundant · 
elements, G1 computed by algorithm 2 coincides with H. 

Proof. For each i = 2, ... , n let h; be the element of H such that lt(h;) = x; 
and g; be the element of G1 such that lt(g;) lxi=t = x; where the leading• 
terms are defined w.r.t.<L· Since <T is the total degree ordering, the 
assumption (G) n E = 0 implies {x2 , •• ,,xn} C U1 • Consequently, H C 
P(Ul) and so NFJ(h;, Gi) = 0 for each i = 2, ... ,n. Repeating the same 
reasonings as in the proof of corollary 4, we obtain . 

D1 

h; = L Cj · 9i, 9i E G1, c; E K[x1), i = 2, ... , n. 
j=l 

Taking into account the triangular form of G1 and considering successively 
each i = 2, ... , n, one can easily observe that the only possibility is h; = g; 
for each i. Together with corollary 4 this proves the theorem. D 

Note that the form of H supposed in theorem 7 is known to happen for 
zero-dimensional radicals in generic position [6) and, more generally, for the 
sets of curvilinear points in generic position [7). It means that algorithm 
2 computes the whole lexicographical standard basis for the most zero­
dimensional ideals and may be considered as an alternative to the well­
known FGLM-technique [8). 

Some "natural" generalization of algorithm 2 for the arbitrary zero-dimensional 
ideals is given below. 

Algorithm 3 (H = Invlex(G)). 
Input: G - zero-dimensional involutive basis w.r.t.<T 
Output: H - triangular basis of (G) w.r.t.<L 
H:=0; 
for i := 1 : n do 

H := Reduce(H U G;, i); 
if lt(H) n T(xk) =/- 0 for all k E {l, .. ,n} then go to exit; 

exit: H := Remred(H); 

10 

The function Reduce( ... , i) is computed w.r.t: <'L ordering by using i­
division. Th.e function Rcmred re'moves in a" given set' all redundant ele­
ments, i.e. those elements whose leading terms a~e the rriultiples (in the 
usual sense) of the leading terms of other clements. 

. . - : ... •. 
Algorithm 3 had been tested on many examples, mainly for non-radical 
ideals. Almost always the'output set H is just the minimal lexicographical 
standard basis. However, there arc some examples· (i.e. th'e so-called cyclic 
root problems with 5 and 6 variables) for which the result of algorithm 3 is 
not a standard basis though is very closed to it. Thus if the output set H 
has no the.form as in theorem 7 cine should apply Buchberger's algorithm 
w;r.t. <£-Ordering with H as input. Since H is closed to a standard basis 
or coincides with it this computation is rather fast. 

The algorithm Inv/ex has·been implemented in the computer algebra sys­
tem REDUCE. By using this implementation the author has computed 
the lexicographical standard basis for the famous polynomial system by 
K.Rimey [9) unsolvable during the last 10 years by any computer algebra 
tools and considered as hopeless. The computation took about 10 hours 
on the computer ALPHA/DEC with 50 fv1b memory. 

Aknowledgements. The author is grateful to J.Apel, Yu.Blinkov, v:Gerdt 
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