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1. INTRODUCTION 

In Ref. [I J the problem has been investigated on consistency, or compatibil· 
ity, of linear transports along paths in vector bundles and bundle metrics, i.e. 
when the transports preserve the (scalar products defined by the) metric. 
The present paper generalizes this problem to and deals with the problem 
of consistency (compatibility) of arbitrari transports albng paths in fibre 
bundles [2] and acting between these fibre bundles bundle morphisms [3,4]. 
This task is sufficiently general, to cover from a unified point of view,· all 
analogous problems from the literature available to the author. 

The problem for consistency of transports aJoll'g paths and bundle mor
phisms is stated in a general form in SecL 2 .. Some necessary and sufficient 
conditions for such consistency are found. It is proved that the introduced 
concept for consistency is a special case. of the. one for. sections of a fibre 

·,:· \:! _i;o.) ~-: ,;· .J;- ·--~.'>'< '/i c-} ••.. ~ • 

bundle transported by means of a· trailspcirt'·aJong··paths· [2]. • In Sect:· 3 
.. these concept_ and results are applied to the special case of a transport along 
paths· ~nd. bundle m~rphis,ti!s acting in ~i:te altd the ~~me fibre bundle. Also 
·-s~ine\ixamples 'are prese"nted:. Sec~ .. 4 i:~iitai!ls ;;detailed i~ye~tig~iim;~f tiie 
consis~~ncy betw~~n linear tra~spo~t~ aioni p;;.ths in' a_ veaor bundle and 
. a Herinitian stru~ture in it:' Seci. 5 closes the p~per withsmne. concluding 
remarks .. ·,, ..... , . , . . ... .·; , ...• ,,,· .... ·, '• _..; · . 

Below we sumniarize certain definitioi:tsand resultsfrom [2] needed for 
thispaJ>er, , , ·.•.• • · · •· .. · .-.-. ·_ .. · · . . .. · · ' · ·· ·, , . · 

By (E,'If,B) is denoted an arbitrary (topological) fibre bundle with a 
base B, bundle space E, projection 'If : E-+ B, and homeomorphic fibres 
'lf-1(x), x E B (4-6]. . 

The set of sections of (E,'If,B) is Sec(E,'If,B), i.e. "E Sec(E,i,B) 
means": B -+' E and 'If o" = idB, where idx is the identity map of the set 
X. 

By J. and 'Y : J -4 B are denoted, respectively; an arbitrary real interval 
and a path in B. 
·c The transport along paths in (E,'If,B) is a map /':'7 r-+ P,-where 
P: (s,t) .:-. r;_,, s,t E J in ~hich the maps r;_,: 'lf-1(/'(s))-+ 'lf-1(-y(t)) 
satisfy the equalities 

Ji.:-.r 0 fi-+t = Ji-_r, 
IJ;..., = id~-'h(•))• 

1 

r,s,t EJ,. 
s E J, .. · 

,·,· 

(1.1) 

(1.2) 



and its general form is described by 

J7~, = (P,')-1 oF,', s,t E J, ( 1.3) 

F;: ,-1(1(s)) ___, Q, s EJ being one-to-one maps onto one and the same 
set Q. 

In the case. of a linear transport along paths in a vector bundle [7] the 
corresponding to (1.3) general form of the transport matrix is (see [7], propo-
sition 2.4 ). · . . 

. ·. -1.. . .. 
H(t,s;1) =F. (t;')')F(s;')'), s,t EJ ( 1.4) 

in which F( s; 1) is a nondegeneratematrix function. 
:--

2. . GENERAL THEORY . .. :;.. ,: . 

... 
.-,~-. ; -

Let there be given iw'Cifibnibundles"~h:= (Ei.;,;.;Bh); · ii= 1,2 in whicl1 
defined ire, respectively, the traiisports'along j>aths 1/iuid 2/. Let ( F; f) be a 
bundle morphismfroiii ~1into ~2 , i.e. (se~ [3,4]) F :e1 -'-' E2; f:' B1 -'-> B2 

a11d 1r2oF;, fo7r;.LetF/:~ F!1r~1 (x)f~rx E lhand'r :J '-+B1 bean 
arbitrary path in· B1. ·· · •· · · · ·· '· ·. . · ··' ".· ' · 

Definition 2.1. The bundle morphism (F,f) and the pair CI,'i) of 
·transports, or the transports 1[ and 2/, along paths will be called consistent 
(resp. along the path 1') if they commute in a sense that the equality 

.. . \ . ' . .. . '. - . 

F. ·. I rr · 2/fo~ F. .. 
-y{t) 0 JS-t = s-+t 0 -y(s)' 

is fulfilled for ever~( resp. the given) path 1 . . 

s; t E J (2.1) 

This definition contains as an evident special case definition 1.1 from 
[1]. In fact, to prove this it is sufficient to put in it: 6 = (E, "• B) x 
(E,1r,B), where (E,1r,B) is a vector bundle; (2 = (R,7ro,O), whereO E R 
and 7ro : R ---> {0}; F. = g., where g. : ,-1(x) X ,-1(x) ---> R, x E B 
are nondegenerate symmetric and bilinear maps; f : B X· B ""'· .{0} c R; 
1J7.:../ =· J7~, x J7..:.,,. where P is a transport along 1 : J ---> B in ( E, 1r, B) 

d J 21Jo-r ·a an s, t E ; s-+t = z R· 
Analogously to the considerations in [1], Sect. 2 here can be formulated 

in a general form, for exaniple, the following problems: to be found necess~ry 
and/or sufficient conditions for consiste1icy betV.Ceen bundle morphisms and 
(ordered) pairs of transports along paths; to be found, if any, all. bundle 
morphisms ( resp. transports along paths) which are consistetit with a given 
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pair of transports along paths ( resp. bundle morphism), etc. Further we 
will consider some results in this field. 

Proposition 2.1. The bundle morphism (F,f) and the pair (II, 2!) of 
transports along paths are consistent (resp. along the path 1') iff there exist 
so E J and a map 

(:(so;')',/ o /): 7r]
1
(1'(so)) ___, "21((! o 1')(so)), (2.2) 

such that 

F. _ 2[fo-y · C( . J ) IT! 
"Y(s) - so-+s 0 so, f, 0 I 0 s-+so (2.3) 

·for every (resp. the given) path/-

Remark. The reason for which as <i.rguments of Care written so, -y and 
f o 1 will be de'ared up below in propo~ition 2.2, where its general structure 
is described. 

Proof. If ( F, f) is consistent with (II, 21) (resp. along 1 ), then, by 
definition, (resp. along 1') is valid (2.1 ), which, due. to (J7~,)-1 = r.~, (see 
(1.3)), is equivalent to · 

F-,(t) = 2/f~"', oF-,(~) o 1f(~,, s, t E J. 
~-· ,_ 

(2.4) 

Fixing so E J and putting s = s0 and t = s in thi's equality, we get (2.3) 
(resp. along 1 )with C( s; 1; f o 1') = F~(so)· And vice versa, if (2.3) is true 
(resp.· along 1') for some s0 and C, then due to (1.1), we have 

p lp · 2Jfo-y G'( J ) If! lf! 
-y(t) 0 s-t = so-+t 0 so; "f, 0 I 0 t-+so 0 S-+t_ = 

- 2// o-y 2[f o-y . c' ( . . f ) 1/-y 2/h F. 
- s-+t 

0 
so-+s 0 ~o;o, 'Y' 0 'Y 0 s-+so = s-+t 0 -y(s)' 

i.e. (2.1) is identically satisfied (resp. along 1') for s,t E J, so (F,/) and 
(II, 2/) are consistent (resp. along 1')-• 

Corollary 2.1. The equality (2.3) is valid iff 

.. F-,(s),; 21{,":!., o C(to;')',f o 1') o 1J7~10 , (2.3') 

where 

C(to; 1, f o 1) = 2If.
02,10 o C(s0 ; 1 ,J o 1') o 1JZ~,, (2.5) 

for arbitrary to E J, i.e. the existence of's0 E J and a map (2.2) for which 
(2.3) is valid leads to the existence of maps (2.5) for which (2.31) is true for 
every to E J and vice versa. 
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We have written (2.5) as an equality, but not as a definition of C( to; 1, f o 
1), bec.ause from ( 1.3) and (2.5), considered as a definition of C, for arbitrary 
t0 E J and fixed so E J the validity of (2.5) follows for every to, so EJ. 

Proof. If (2.3) is valid, then by proposition 2.1 (F,f) and (1
/,

2
/) are 

consistent, i.e. (2.4) is true, from where (2.3') with C(to;/,J o 1) =}~(to) 
follows. In the opposite direction the proposition follows from the su bstitu
tion of (2.5) into (2.3') and the usage of (1.1). (The same result follows also 
directly from (2.3) and u::~,)- 1 = 17~. (see (1.3))).• . 

Corollary 2.2. The bundle_ morphism (F,J) and the pair ('I, 21) of 
transports along paths are consistent (resp. along the path 1) iff there 
exists a bundle morphism (C,f) from6 on 6 such that for every (resp. the· 
given) 1: J-+ 13t is fulfilled:' a) (C,j) I1(J) := (C I >rj1(/(J)),J I1(J)) is 
a bundle morphism from 6 I~<Jl 011 6lu·~HJl• i.e. C(s;.,,fol) := c~<·l := 

C I >rj1(I(s)): >rj1(1(J))-+ >r21((Joi)(J)), s E J; b) (C,f) is consistent 
with ('I, 2!) and c) the equality(2.3') i.s valid. 

Proof._ If (F,j) and ('I, 2!) are consistent (resp. along 1), then by 
proposition 2.1 and corollary 2.1 (2.3') and (2.5) are fulfilled; so defining the 
bundle morphism (C,j) through c~(•o) := c I >rj 1 (/(so)) := C(so;I,J 0 

1), s E.J from (2.5) and definition 2.1 (see also (2.4)), we see that (C,f) 
and ('I, 2!) are consistent (resp. along 1). On the opposite, if there exists 
a bundle morphism ( C, f) with the pointed properties, then there are valid 
(2.3') (the condition c)) and (2.5) (follows from the condition b) and (2.4) 
which is equivalent to definition 2.1) and by proposition 2.1 ( F, f) and ('I, 2!) 
are consistent (resp. along 1)-• 

From a functional point of view the general structure of the transports 
along paths is described by [2], theorem 3.1 and has the form (1.3). The 
usage of this theorem allows us to clear up the sense of proposition 2.1, as 
well as to solve (locally, i.e. along a given path) the question for the full 
description of all bundle morphism~ which are (locally) consistent with a 
given pair of transports along paths. 

Let, in accordance with [2], theorem 3.1, be chosen sets Q, and Q2 and 
one-to-one maps "Fi,.': >rh' 1(1h(sh))-+ Qh, h = 1,2, which are associated, 
respectively, with the paths /h : Jh -+ Bh; 8h E Jh, h = 1,2 and are 
such that (cf. (1.3)) · 

""'• = ("IC~·) -l 0 "F" Sh thE '" !s-h-th th sh' ' ' h = 1,2. (2.6) 

Proposition 2.2. The bundle morphism ( F, f) a.nd the pa.ir ('.I, 2!) of 
transports a.long paths, which are given through {2.6) by n-;eans of the ma.ps 

4 

1F atH1 2F. ai·(' consistPnt. (n•sp. along a path 1) iff thcrc exists a map 

Cob, f o 1) : (Ji ~ (h, 

such that 
• (2 •fo~)-l • . I ·•o) fo(s)= f., oCo(i.fol)o(f,, 

or, ~quival~ntly, that 

Fo(s)= 
21/;2, o C(.<o;/,j o 1·) o 11;_,

0
, 

wh.erc so E J is arbitrary and 

C(~o;-y.fo/) := (>r;,·~r oC(J(-y.foJ)o ('F:'.,) 

(~.I) 

(2.8) 

(2.9) 

(2.10) 

for every (i·esp. the given) path -y. . . 
Proof. The substitution-of (2.6) into (2.1) shows the equivalence of the 

latter with . . . . . · 

(2rf•o) r ('"")-1 (2r:of•o) r · ('F')-I rt o r"Y{l) o rt- = c 8 o r"Y(.s) o _ s 

for any .<, t E.l. I knee, if ( F, f) and ( 1/, 2!) are consistent ( r~sp. along 1 ), 
i.e. (2.1) is satisfi<•d, then the last expression does not at all depend 01i 

. . . I 

s, t E J and, ·<>.g., fixing arbitrary some lo E ./ and putting I = lu and 

Co(-y,j o 7):= (>!·~~·') o f~·(to) o {'f~~f 1 
from the last equality, W<' <•asily 

obtain (2.8). 
The equivalcnre of (2.8) and (2.9) follows direetl.v from the eq. (2.6) a.nd. 

definition (2.10). -

On the opposite, if it is valid (resp. along 7), e.g., (2.9), then by proposi
tion 2.1 the bundle morphism ( F, f) and the pair ( 1/, 21) of trims ports along 
paths are consistent (resp. along 1). • 

Evidently, the proposition 2.2 is a dir~ct get\Na]ization of proposition 
2.2 of [I], whirh is its specia] case .. 

The differ~nce between propositions 2.1 and 2.2 is that tho la.t\.<'r, through 
the equality {2.10), establishes tlw general funetional form. of the map (2,2). 

As ~y {2], propo~_jtion ~.5_ the maps h.fi,.h, h = 1, 2 arC' defined up to a 
transformation of a form (see [2], eq._ (;1.11 )) "F,:• - ("D") o ("r;;,•) , h = 
1, 2, where hD1 h : Qh - Q-h, is a- ot_w-t.o-one map of qh onto· somP :wt 

- " 



Qh, h ;::;; l, 2. then there exists also nonuniqucrH'SS in the choir<' of the 
map (2.8). An elementary check shows the validity of {rf. [I], eq. (2.7)) 

hf"'s:h --+ (hD'Yh) o ("f~:h), h ;::;; I, 1 

~Co(/,/ o-y) ~ ('D'''r' o Co(/,/ o 1) o ( 1D'). (2.11) 

Proposition 2.3. If for a given pair e1, 21) of transports along paths . . 

the representation (2.6) is chosen, then all consistent along 1 : J -+ B1 with 
it bundle morphisms ( po.!o', f) along 1 are obtained from the equality 

~.Jo~ ·- (2 foo) -
1 

• (1 "} 2 fo~ • . 1 ~ F~(s) .- F, oCo(l,fo-y)o f, = l,_,oC(so,-y,fo-y)o 1,_,0 , 

(2.12) 
where so E .J is arbitrary, Cis defined by (2.10) in which Co(/,/ o I') is a 
one-to-one map from Q1 onto Q2 • 

Proof. This proposition is a conse<Jnence of the proof of proposition 2.2, 
as from it is clear that (2.12) is the general solution of the C;JUation (2.i) 
with respect toF~(t) when 1! 'and 2/ are given. • . 

The definition 1.1 of [I] for consistency between bundle metries and 
transports along paths seems rather natural by itself for a difference of the 
definition 2.1 for consistency between bundle morphisms and a pair of trans
ports along paths, whose introduction needs some explanation. As we saw 
in the written after definition 2.1 the former definition is a special case of 
the latter. Now we shall show that in this context the definition 2.1 itself 
is a special case of definition 2.2 of [2] for a section of a given fibre bundle 
transported along a path. 

Let there be given two fibre bundles (h = (Eh,7rh,8h), h = 1,2. We 
defilie the fibre bundle ( 0 = ( E0 , rr0 , 8 1 ) of bundle morphisms from 6 mr f.2 
in the following way: 

Eo:= {(Fb.,f): Fb,: rrj' 1(b;) ~ rr2 1(/(bt)), b, E Bto I: 81-+ 82}, (2.13) 

rro((Fb.,/)) := bt. (Fb.,f) E Eo,. b, E B1. • (2.14) 

It is clear that every section ( F, f) E Sec(o is a hundle morphism from 
6 into 6 and viCe versa, every bundle morphism from 6 on 6 is a section 
of ( 0 • (Thus a bundle stri1cture in the set M or /(6, (2) of bundle morphisms 
from 6 on 6 is introduced.) . 

If in f.o given is a transport [( along the paths in B1, then according to 
[2], definition 2.2 (see therein eq .. (2.4 )), the bundle morphism ( F, f) E Secf.o 
is ( [(-)transported along 1 : J ~ 81 if 

(F~(t)•/) = I<;_,(F~<•>•f), s,t E J. (2.15) 

6 • • 

If in 6 and 6 are !!;iven, respectively, the transports 1[ and 2! along 
the paths, respectively, in 81 and 82, then they generate in (o a "natural" 
transport 0

/\ along the paths in 81. The action of this transport along 
1: J ~ 81 on (Fo(•)• f) E rr0\-y(s)) for a fixed s E J and arbitrary t E J is 
defined by 

0/(;_,(F~(•)•/) := CI!.:i 0 F~(·) 0 
1
{(_,, t) E rr() 1(-y(t)). (2.16) 

Proposition 2.4. The map 0/\}_, : rr01 (-y(s)) -+ rr01(-y(t)) defined 
through (2.16) is a transport along 1 from sto t, s,t E J and, consequently, 
in f.o 0

[( is a transport along paths .. 
Proof. Using the properties (1.1) and (1.2) ofthe transports along paths 

it is easy to check with the help of (2.16) that the maps 01(;_,, . s,t E J 
satisfy the equalities 

0 .-, 0,(~ _ o,
1
n 

'A. o I' r-.s, ~ I' r-o ,_, 
0 ~ 'd 1<.-, =' •o'h(•))' 

r,s,teJ, 

s E J 

(2.17) 

(2.18) 

and hence, by [2], definition 2.1, 01(;_, is a tran.sport along 1 from s tot, 
i.e. in {o 0

1{ really defines a transport along paths.• · · 
Lemma 2.1. If (F,f) E Sec(o, then (2.1) is equivalent to 

(F~(t)•f) = °K;_,(F~(•)•f), s,t E J. (2.19) 

Proof. At the beginning of the proof of proposition 2.1 we saw that 
(2.1) is equivalent to (2.4), that is equivalent to (2.19) because of (2.16), i.e. 
(2.1) and (2.19) are equivalent.• · 

Proposition 2.5. The bundle morphism (F,J) and the pair ('I, 21) of 
transports along paths are consistent (resp. along the path -y) iff (F,/) is 
transported along every (resp. the given) path 1 with ·the help of the defined 
from ('/,'I) in {0 transport along paths 0/( • 

Proof. The proposition follows directly from lemma 2.1, definition 2.1 
and definition 2.2 of [2] (see (2.15) and [2], eq. (2.4)).• · 

Taking into account the comment after definition 2.1 it is not difficult to 
verify that proposition 3.1' of [I] is, in fact, a variant of proposition 2.5 in 
the special case when one studies the consistency of S-transports and bundle 
metrics. 
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3. CONSISTENCY WITH MORPHISMS 
OF THE FIBRE BUNDLE 

In this section we are going to apply the general theory of Sect. 2 to the 
case of bundle morphisms of a given fibre bundle. The results so-obtained 
will be illustrat.ed with often used examples. 

Let in the fibre bundle (E, "• B) a (bundle) morphism F be given. By 
definition [4,5] this means that ( F, idB) is a bundle morphism from ( E, 1r, B) 
into (E, 7r, B). Hence it is 1iatural ( cf. · definition 2.1) F ai1d the: tra1isport 
along' paths lin ( E, 1r; B) to be called globally ( resp~ locally) coi1sistent if 
(F, idB) and the pair (I,/) are globally (resp.locally) consistent,i.e. in this 
case· definition' 2.1 reduces to' . . . ... . . 

Definitio.;• 3.L ·The transport.alimg piths I in '(E, ,..·,B) is globally 
(resp. locally) consistent with the bundle morphism F of (E,1r; B) if •· 

F0 (t) or;_, = t;:"., o F0 (s)• s, t E J (3.1) 

is fulfilled for every (resp. the given) path7: J---> B. 
This_ definition fo.rm_alizes_ the condition for commutation_ of a transport 

along paths and a bundle niorphism oft he fibre bundle, in wliicb the trans
port acts, or, in other 'words, the equality (3.1) is an exa~t express.ion of 
the phrase that "tli~· bundle morphism F and the transport .. along paths I 
commute". 

Comparing definitions 3.1 and 2.1, we see that from the first of them the 
second can be obtained if in the former we put ·· 

(Eh,,..h,Bh) = (E,,..,B), h = 1,2,/ = i<IB, 11 =if= I. (3.2) 

If we,make,these substitutions in' the whole s.ection 2 ~11-;1 take into ac
count definition 3;1, then the stated therein propositions and. definitions, 
concernitig bundle morphis1;1s between fibre bun(Ues; take the following for· 
mulations in the case of bundle lnorphisms of the fibre bundle.( E, 1r, B):· 

Proposition 3.1. The bundle. morphism· F and the tninsj>ort along 
paths I are consistel;i (resp. along 1) If ando1ily if there exist'~o. E . .] and . ' - .. - . . .. 
am~p 

· C(so;l): ,.-1(1(so))---> ,..- 1(1(so)), 
: ,• '• . 

such that 
Fo(•) = T;,_, o C( so; 1) o r;_,, 

for every (resp. the given) path I· 

8 

. (3.3) 

.-.,, 

(3.4) 

Corollary 3.1. The equality (:!.4) is true iff for evNy 10 E .J, we have 

Fo(s) = ~-s o C( lo; 1·) o 17_10 , ( :!.4') 

whe>H' 

C( to; 1) = !-;,_,, o C{ .<o; 1) o ~~-". (3.5) 

Corollary 3.2. The bundle morphism F and the transport along paths 
I are ronsisteut ( resp. along 1) iff tlwre exists a bundle morphism C of 
{E,7r,LI) such that for every (resp. the giV<•n) path 1:.] ___, B we have: a) 
C / ,..-1

(/(.J)) is a morphism of (E, "• B) lo(J)= (7r-1{f{.J))," /1(.Jl./(.J)): 
b) (.'and I are consistent ( resp. along 1· ); and r) ( :l.4') is true. 

Proposition 3.2. The bundle morphism F and the transport. along 
, th.:. 1 rlnfl .. ,..,l ].,. tl,~ ,. •• ~1:, .. T"Y - 'r•'"l'\-1- ,,')' • E' • • {1. •:i)'j 1)?.., ....... ~ _ ........... _.""·'"II'<: e\,u«.tii ... Y. 's-t -_ \rt_ J or 5 , 1, s J _{see _-·~ arc 
consistent (rcsp. along 1l if and only if there ~xists a map Co{ I): Q .:... Q, 
s1irh thit · · · · 

f~(s) = { F,o)-
1 

o Co{ 1') o 1·7 = ((_, o C( ,<; .Yl? 17_, s, t E J {:l.6) 

where 

C(s;1) := (J-7)- 1 oC'o(7) of~'· (:P) 

Proposition 3.3. If a transport along paths I with a representation 
17_, = (/'~0 )- 1 

o FJ, s E.] (see (J.:l)) is fixed, then any bundle morphism 
'F along 1 consistent along 1:.] ___, B with it is obtained fro1n the equality 

0 1--:_,(,) := ( v,')-
1 

o Co(!) o F;' = 17,_, o C( s0 ; 1) o !;'_,,, { 3.8) 

where ,<o E J is arbitrary, Co·: Q ___, Q is one-to·one and (' is defined by 
(3.7). 

According to (2.13) and (2.15) the fibre bundle (E0 , 7ro, B) of tlw bundle 
morphisms of (E, 1r, B) is defined through the cqJJa!ities 

Eo=.= {F;,; fl,: ,..- 1{b) ___, ,..- 1(b): bE B}, 

"c(Fb) := b, Fb E Eo, bE B. 
(3.9) 

{:!.10) 

Evide1;tly, ifF is a morphismo((E, "·B), then f E Scc(E0 , 1r0 , B) and vice 
. - . '. . . . versa. 

According to [2], definition 2.2 if in (Eo, 1ro, B) is given a transport along 
paths f(, then FE Sec( Eo, 7ro, B) is /(-transported along 1:.]- B if 

FJ(t) = /\;_,( f~(s) ). (:!.11) 

n 



If I is a transport along paths in (E. 1r, 11), then in (Eo. ,-0 ./J) it indnrPs· 
in a. 

11
1la.tura.l" transport along paths 01\" who:-><> a.rt.ion along 1· : ./ - /J on 

f~ 1 , 1 E rr01(1(s)) is 

0/\;_,(f'ots)l := 1;_, o Fo(s) o 1'(_, E r.0
1{')(1)), s,t E./. (3.12) 

Proposition 3.4. The mapping 0A·;~,: ,-01(/'(s)) ~ rr01(/'(t,)), defined 
by (3.12), is a transport along -y from.< tot, . .<,t E./ and, consequently, 
0
/\ defines a transport along paths in (E0 ,r.o, B). 

Lemma 3.1. The equality (3.1) is equh·alent t.o 

F~(t) ~ °K;_,(f;(,l), .<, t E ./. (3.J:l) 

·Proposition 3.5. In (Eo,rr0 ,Bjthe bun~lle hiorphism F and tlie tt·ans-' 
port along paths fare 'consistent ( resp: alont(r )iff F is tra.ns]JOrt~<i .~loi•g 
every (resp. the given) path -y with the help of the transport along'\>aths · 
0/\ defined. by f in ( E0 , rro, B). 

Now we shall consider examples for c:onsistency of concrete. bundle ,;wr
phisms in vector bundles with transport along paths in them. 

Example 3.1. Consistency with an J{[mosi complex structure 
Let the bundle. morphisin J of the real vector bundle (E; 1r, B) define 

an almost complex structure in it [8-10], i.e. Jx := J Jrr-1(x), a: E B to. 
be R,linear isomorphisms defining complex structure in the fibres ,-1 (a:), 
which means that 

Jx 0 Jx := -id,-·'(x)· (:l.l4) 

Evidently, if (E, rr, B) is the tangellt bundle to some manifold and J is 
a linear endomorphism, then J defines an almost complex ftructure on that 
manifold [3,8]. In this case, following the accepted terminology, a tl'ansport 
along paths consistent with J may be called almost complex. 

Proposition 3.6. A bundle morphism J consistent with a transport 
along paths I of the vector fibre bundle ( E, rr, B) defines an almost complex 
structure in it if and only if the involved in (3.4)-(3.7) (with J~(s) instead of 
F~(sj) map C(.<;-y) or map C'o(-r) define a coniplex structure in ,-1(/(s)) or 
Q respectively, i.e. when they satisfy the following equalities: 

C(s;-y) o C(.<;-y) = -iil,-'h(s))> . (3.15) 

C0(-y) o Co( I)= -idq. (3.15') 
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Or, in other words, the almost complex structure J and the transport along 
paths I are t>;lobally (resp. locally) consistent, i.e. they commute globally 
(resp. locally), if and only if there are fulfilled (3.4) (or (3.6)), (3.15) and 
(:J.I5') for ewry (resp. the given) path ')'; besides, eqs. (3.15) and (3.15') 
are equivalent. 

Proof. According to proposition 3.1 J and I are consistent (resp. along 
)') iff ( 3.-1) holds for F = J and every ( resp. the given) path 'Y, so we get 
J~(s) oJ,.<,l = r,,_, o C( s0; -y) o C( .<o; -y) or,_,,, whence it follows that (resp. 
along -y) (3.13) is equivalent to (3.15) for s ;= s0 • . , 

Analogously, based on the coi1siderations on. (3.6), on~pnives· (resp. 
along -y) the equivalence of (3.13) with (3.14)(for every s) and (3.1,5'). . . 

. The equivalence of (3.i5) and (3.15') is a CO~Jseque11ce'of(3.7).• .' ' 
. '· ' . ' ·, . . . ' . ' . . 

Excunple 3.2._ Qonsisiency with a~_I!mit,iplication w_ith 1~1fl!lbers 
Let (E,rr, 8) be a real (resp.- complex) veCtor bundle, X E. R (resp. 

A E C) and the bundle morphism 'F of (E, 1r, B) be defined \>y .'f'(u) ,:= 
>. · 1L = . .xF,(,.)(u) for every u EE. . . , .,., , 

·,Definition 3.2. The transport along paths J in.the real (resp._ complex) 
vector, bundle ( E, 1r, B) is called ~o.nsistent ;,.,ith the. operation ,tnu)tiplica-. 
tion with real(resp. complex) numbersif it is consistent with the· bundle: 
morphisms >.p for every.>. E R (resp. A E C). 

Proposition.3.7 •. The Vansportalong paths J is globally (resp. lo
cally) consistent with the multiplication with, respectively, real or complex 
numbers if and only if 

r,_,(>.u) ~ >.(J.'_,(u)), u E ,-1(-y(s)) (3.16) 

for every, respectively, >. E R or A E C and every (resp; the given) path 
"(:J---+B .. 

F'roof. The proposition is a simple corollary of definitions 3.\ and 3.2,. 
proposition 3.5, lemma 3.1 and (3.12).• · 

In other words we may say that the consistency with multiplication with 
numbers m.eans simply. the validity of the. con.dition for homogeneity (3.16) 
or, which is the same, the operations of /-transportation along paths and 
multiplication with numbers in the fibres to commute. 

Example 3.3. Consistency with tile operati~n additi;n. 
Let (E,rr,B) be a vector fibre bundle, A eSec(E;rr,B) and Ap be a 

bundle morphism of ( E, 1r, B) defined by AF'( u) := u +A( rr( u )) =A F,(u)( u) 
for every 1i E E: 
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Definition 3.3. The transport along paths I in the vector fibre bundl<> 
(E, "• B) is called globally (resp. locally) consistent with the operation 
addition if it is consistent with the bundle morphisms Ap for every section 
A /-transported along every (resp. the given) path. 

Proposition 3.8. The transport I is globally (resp. locally) consistent 
with the operation addition iff these operations commute, i.e. iff 

r,_,( u + v) = J7_,( u) + r,_,(v), u, v E ,-' ('l(s)), (3.17) 

which means that the usual additivity condition in the fibres is to be fulfilled 
for every (resp. the given) path 1': J ->B. 

Proof. According to definition 3.1 the transport I and tlw above defined 
bundle niorphisms AFare globally (resp. locally) consistent iff the equality 

A(l'(t))+ r,_,(u) = J7_,[A(I'(,<)) + uJ, "E ,-l ('l(s)) · (3.18) 

is valid for every ( resp. the given) path ')'. 

The condition A to be ]-transported along 1' section means (see [2], 
definition 2.2 and proposition 2.1) that A(l'(t)) = P,_;,A(l'(s)), s,i E J, 
which,· when substituted into the previous equality, due to the arbitrari
ness of A (i.e, of A(l'(s))) gives (3.17) (see [2], proposition 2.2) in which 
A(l'(s)) is denoted with v. On the opposite, if (3.17) is valid and A is a 
section !-transported along 1' section, then (3.18) is identically satisfied and, 
consequently, AF and I are consistent.• 

Example 3.4. Consistency between tmnsport along pa.ths and 
Finslerian metrics 

Let in a manifold M a Finslerian metric be given [11] by means of a 
Finslerian metric function F: T(M) _, R.l :.=-{A: A E R, A~ 0} having 
the property F(x,AA) = AF(x,A) for A E R+ := {A: A E R, A > 0}, 
x E M, A E Tx(M) and satisfying the conditions described in the above 
references. Here T(M) := UxEMTx(M), where Tx(M) is the tangent to M 
space at x EM; 

Definition 3.4. The Finslerian metric and the transport along paths I 
are consistent (resp. along 1': J _, M) if the equality 

F(I'(-<),A) = F(l'(t),l7_,A),. s,t E J, A E T
7
(sJ(M) (3.19) 

is fulfilled for every (resp. the given) path 1'· 

This definition.is a special case of definition 2.1 and it is obtained from 
it for: (I= (T(M),1r,M);(2 = (R.J,,0 ,0), whereO E Rand 1r0 : R.J _, {0};, 
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in tlw bundle morphism (F,f) F: T(M) ~ R 0 is the Finslorian metric 
function, /·~·(A)= F(:~:,A), A E T,.(M) and f: M - {0}: 1P = P: 
2Jfo' = idr4. 

Exmnpl<• 3.5. Consistency betiVeen tramport.s along pat.!Js and 

symplectic nwt.rics 
A real symplectic metric a: x >->a,., a,.: ,-1(l:) X ,-1(:c)- R in a 

fibre bundle (E •. 1r, H) differs from a real symmetric metric g (cf. [1]) only in 
that it is antisymmetric, i.e. a,.(u,v) = -ar(J•,u) for u,v E ,-1(l:). Hence, 
modifying Mfinition l.lof [1], we can say that the transport along paths I 
and a are ronsistent ( resp .. along ')') if 

~ T"Y ' ,....,. \ 
ll.,Y(s) = a,.(t) o \1 5_-1 X t s-CI' ·· .~, t E J '(3.20) 

is fulfilled for t•vol·y ( resp. the given) path 1'.: J :..... B. \ 

4. CONSISTENCY WITH A HERMITIAN 
STRUCTURE· 

By a Hermitian stnicture ii1 the real vortor bundle ( E, 1r; B) we understand 
( c.f. [I 0]) a pair (J, g) of ahnost complexstrurturo J; i.e. a bundle morphism 
J: E _, E with the property·J oJO:-idE, and a t·onsistont with it bundle 
symmfl'trk mctrir _q (g : 3: ~ g;J., such that .Qx is bilinear, symmf'trir and 
9x = 9x o (J,. X J,.)) in that bundle (called a lli>rmitiatl metric; see [10], rh. · 

IX,§!) . 
. Definition 4.1. If I is a transport a[ong paths in (E, 1r, B), then tht• 

Hermitian strurt.~:ro (J,g) a.nd I are consistent (rosJi. along t.h<' path/) if 
the pairs J and I and g a.nd I a.re consistent separately; i.e. 

J 7 (1). o P,_, = r,_, o J7 (s)> 

97(s) = 97(1) 0 ( r,_, X r,_,) • 
( .l.J) 

( 4.2) 

for ~very (l·esp. the r;iven} path')': 
RemB.rk. Tlw coi1ditioi1 (4.2) for 'c~nsi~to;lCY between g and I \vas 

introduced and investigated iti [1]. · . . ' . 
'! In ,iartkular, if ( E, ",B) = (T( M); ", M)) is the tangent bundle tot he 
manifold· M, then ·(4.1). and (4.2) dofin,; (a.i1 "almost. llehnitiau") t~a.ns
port consistent with the ·Jicrinitian structur~· (J;g) of the alniost ]INmitiall' 
wanifold (M,J,g) (d. [10], ch. IX, §2) .. 
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Further \ve sha.ll dwell on tlw question for consistenr.Y betv .. ·<.·en line>a.r 
transports (L-transports) along paths Lin a \Wtor bundle(£, 1r, IJ) [7] and 
Hermitian structures (J,g) in it, such that J is a linear endomorphism. 

Let along the path 1 : J ~ B there be fixed bases { c;( .< ), i = I, ... , 
dim(1r-

1
(x)), x E B} in ,.- 1{1-(s)), s E J, in which J is defined by til<' 

matrices J{J-(s)) = JIJ;j{/(s))/1, Lis defined through the matrices F(s;1) 
by (1.4) and g- through the matrix G(/(s)) = Jlg,(•J(c;(.<),cj(8))11· Th<•n 
the condition g =go (J X J) for consistency along 1 between J a.nd g takes 
the form 

JT{/(s))G{1-(s))J{/(s)) = Gb(-')), (4.3) 

where T lllf':ans transposition of ma.trir.Ps, a.nd thC' the condition for consis
tency between J and /, due to propositions ;l.2 and 3.6, looks like 

J(1(s)) = p-'(s;I)Co(/)F(s;l), Co(/)Co(i) =-I, ( 4.4) 

where Co(/) is a nondegenerate matrix and I is the unit matrix. 
Let i), ( E,7r, B fan L-transport aloi1gpaths L be given (7]. The following 

two propositions solve the problems for the existence and a full (local and 
global) description of all consistent with L Hermitian structures. 

Proposition 4.1. Along the path 1: J ~ B the class of all Hermitian 
structures {along 1) which are locally c.onsistent with the L-transport along 
paths L is given in the above pointed bases through the equalities 

J(1(s);,) ~ r'(s;I)Co(IJn•;l), ( 4.5a) 

G(/(s);,) = FT(,<;I)C(I)F(,q) 

in whkh the matrix functions C0 and C satisfy the equations 
( 4.5b) 

I eTc-' c· c· c·Tc·c· c·-' = ,- = - ·o -·o = o ·' -o · · ( 4.6) . 

Proof. The equalities (4 .. 5a) and (4.5b), and also the first two from 
(4.6), follow, respectively, from (4.4) and [I], proposition 2.3 (see therein eq. 
(2.8)). The last equality from (4.6) is obtained by the substitution of (4.5) 
into the condition for consistency between J and g expressed now by (4.3).• 

Proposition 4.2 .. Let there be given au £-transport along paths L 
defined along 1 : J ~ B through ( 1.4) by the matrices. 

F(,q) = Y(1)Z(s;1)D- 1(1(s)), s E J, (4.7) 
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where Y and f) are non degenerate matrix functions and Z is a pseudoortho
gonal of some type (p, q ), 11 + q = dim{1r- 1 

( 1( s) )) matrix function, i.e. 

ZT(s;I)G,,,.z(s;l) = Gp,q := diag(~,~)- (4.8) 

p-times q-times 

Then every Hermitian structure (J,g) globally consistent with L, if any, is 
_given by the equalities 

J(1(s)) = D(l(s))Z-1(s;1)PZ(s;1)D- 1(1(s)), ( 4.9a) 

G(l(s)) = (D- 1(!(s)))TGp,qD- 1(1(s)), (4.9b) 

where f is a constant wit!; respect to s and 1· matrix, which may depend 
on p and q and is. explicitly constructed below (see( 4.11 )), and Z besides 
( 4.8) satisfies the ~onditi~n that z-l (s; 1)P Z(s; 1) depends only on 1( s ), 

. ' -- •' ' 
but not on ,< and 1 separately. 

Remark. The necessity of the representation ( 4. 7) for P(s; 1) is a con
sequence of that we want a globally consistent with L metric g to exist (see 
[I], proposition 2.6). · 

Proof. The equality (4.9b) is a c.orollary from proposition 2.6 from (!]. 
The consistency of Land J is equivalent to (4.4), due. to which substituting 
(4.7) into (4.4), we get (4.9b) with 

P = y-'(I)Co(I)Y(I), Co(I)Co(l) =-I. (4.10) 

As J and g must form a Hermitian structure, they have to be consistent, 
i.e. ( 4.3) must be true which, as we shall now prove, is a consequence of 
tl1e independence of P of I· In fact, substituting (4.9) into (4.3) and using 
( 4.8), we find . 

pT G,,qP = Gp,q• (4.lla) 

i.e. Pis a pseudoorthogonalmatrix of type (p, q) which, as a result of ( 4.10), 
satisfies 

pp =-I. (4.llb) 

If we consider ( 4.11) as a system of equations with respect to P, then, 
its solution, if any (see below), is independent of any parameters as it is 
a function' only of I and Gp,q, i.e. the elements o{ P are independent of 1 
numbers. This conclusion is a consequence of the observation that ( 4.lla) 
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does not change when it is transposed, i.e. pT G11,9
P is a symmetric, a.nd 

(4.11b), due to (4.11a), is equivalent to (Gp,,P)T;: pTGp,q = -(,'
1
,,,1', 

i.e. Gp,qP is antisynuuetric. Hence (4.11a) and (4.11b) contain respectively 
n(n + 1)/2 and n(n- 1)/2, 11 = dim(rr-1(x)), x E P, or commonly n2 , 

a number of independent scalar equations for the n 2 components of P. So, 
if P exists, it is constant (along ')' ). 

The condition for that the matrix z- 1(s;1·)PZ(s;')') to depend only 011 
'l'(s) is a result from that J must be globally defined, i.e. J(')'(s)) must 
depend only on the point 'l'( s ), but not on the path 'l' : J ~ B, so from 
(4.9a) the above pointed condition follows.• 

Remark. It may be proved that for an even n, i.e. for n = 2k + I, k = 
1,2, ... , the equations (4.11) have no solutions with respect toP, which is in 
accordance with the fact that in this case in ( E.1r. B) ~~·complex structure.~ 

: .. - - . . . . ' ' ' -' .' . . ' - ., 
cannc;>t be introduced (see [10], ch.IV, §1). For an odd n, i.e. 'for n = 2k, 
the equations·( 4: II) have different soluiions ·with respect to P. For in stan c.•, 
for n = 2 these solutions for p = 2 ~ 2- q, p = q = I and 2- p = 2 = q, 
respectivel.y, are: · . . 

Plo = ± (_~ ~) ± (0 I) ± ± P,,, = ± i. 0 ' Po,>= -P2,o· 

For p = n = 2k, q = 0, we have P =diag(P" ... , Pk), P" ... , n E 
{ P2~o• Pi~o} · 

In the general case; the answer to the problem for the existence of [
transports consistent with a given Hermitian structure (J,g) is i~egative. 
Below we shall analyze the reasons for this. 

Let in a fibre bun.dle a Hermitian structure (J,g) be given. We want 
to see Whether there exist £-transports along paths consistent with it and, 
possibly, to describe them. . 

First of all, for the existence of L consiste11t wit.h g the signat11re {and 
consequently the number of positive eigenvalues) of g must not depend on 
the point at which it is (they are) calculated (see [1], proposition 2.4). 

By proposition 2.5 of [I], from the consistency between Land g it follows 
that the matrix function F describing L through (1.4) has the form (4.7) in 
which Y is arbitrary, Z satisfi~s ( 4.8) and p, q and D are define by 

DT(x)i?(x)D(x) = Gp,q 

for any point x from tiHi base of the bundle. 
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(4.12) 

Th0 ronsist<'nry hf'tWf't'tl J and L shmvs that. for some Co the function 
F must satisfy (·1.-1) and, due to (4.7), nw matrix function z is a solution 
of the C'qua.t.ion 

z-1(.<;')')PZ(s;1) = A(/(-•)) := D-1(1(-<))J(1(s))D(1(-<)), ( .l.];j) 

wlwre Pis !';iven by (4.10) for some Co and. in accordance with the consis
tency bt'twcen J a.1HI g (s<•e (·1.:!)), does not depend on ')' (see the proof of 
proposition -1.2). 

So, the matrix function F defining L ha~< the form (4.i) in which Z is a 
solution of the s_\'stem (see (4.R) aud (4.1:!)) 

ZT(;<; 1 )G1,,,Z(-<;/) = G,,,,. (4.14a) 

PZ(.<; 1l- Z(.<;')'),\('1'(-<)) = 0. (-1.1-lb) 

The e<1ualities (4.14) form a system of n(n + 1)/2 + n2 scalar equations 
for n2 elenwuts of Z( .<; 'l' ), as a consequence of which, generally, it has no a 
solution with respect to Z (se<', in particular, the analysis made in [12] for · 
the.existelH'e of solutions for the equation AX + .\: B =· C with respert to 
X). 

. The above consider~tion prove the following 
Proposition 4.3. Let in a fibre bundle there be given a Hermitian 

structure (J,g) and the signature of g be independent of the point at which 
it is calculated. Let D, p and q be defined by (4.12). Then if for every 
(resp. a. given) path')' and some l'('l') and C0(I) there exists a (constant) 
matrix P satisfying (4.10) and (4.11), for which the system (4.14) (with 
A defined from (4.13)) has a. solution with respect to Z(-<;1). then the L 
transport along paths (resp. the give:n path 1l defined by the matrices (·1.7) 
is globally ( resp. locally aim\g ')') consistent with (J ,g). The L-t~ansports 
along paths (resp. along')') obtained iti tl~is \vay form the class of all globally 
(resp. ]orally along')') consistent with (J,g) L-transports along paths (resp. 
a.long 1 ). 

5. CONCLUSION 

-In this work we have considered the problem for consistency (or ,compat
ibility) of transports along paths iii (different or coinciding) film• bundl<•s 
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and buncll~ morphisms between them. Our approach to 11Iis problem is suf· 
firiently general and as its special rc\scfi iurludPs all ki1own to t.llf' author 
analogous problems posed in th~ litNature. In particular, ell\(-' IIIO::it. often 
rom<.>s to tlw question for consist<>ncy of a ronnertiuu and some ot.hf.•r llla.th
ematkal structure, like a metric, complex or almost romplPx structure. It 
can equivalently be formulat~d as a special case of the above probl~m in the 
following way. On one hand, the connection ran equivalently be expressed 
in terms of a corresponding parallel transport, a kind of transport along 
paths [13] .. On the other hand, the mentioned mathematical structures, at 
least, in the known to the ai1thor analogous problems in the available to him 
literature, ran equivalently be put in a form of bundle morphisms of the fi. 
bre bundle in which the parallel trans1iort a.rts. So, the consistency between 
a connection a.ud a mathemati<:al structure is equiva.Jent to the (·.onsisteury 
of a corresponding- para.Uef t~a:nspori and a hun<ii~ morpllism .. A LJ-'.pkal 
example of this kind is the eonsistency between a symmetric (Riema.nnianj 
metric and a linear connection (in the tangent bundle to a manifold). whkh 
in other terms is treated hy proposition :1.2 of [I] (see also the comment 
after definition 4. i of the present paper). . , · .. 

In connection· with proposition 2.:! ·there arise two problems. First, to 
di;scribe, if any, all pairs of transp;rts (locally) consistent along a fixed 
path with a given· bundle n!orphism. Second, to describe, if any, all bundle 
morphisms (resp. pairs of transports along paths) globally, i.e. along every 
path, coitsistent with a given pair of transports along paths (resp. bundle 
morphism). These problems will be investigated elsewhere. 

At the end, we want to note that in the very special case when the 
bundle morphism ( F, f) is si1ch that there exists the inverse map F-1 (and 
hence also the map f-1 ), then all pairs of transports along paths c.onsistent 
with .(F,f) are (1/, 21),· where 2/ is arbitrary and 1/ is given by 1fL, = 
F~(:) o 

2/f:; o F~(s)· This result is an evident corollary by eq. (2.1 ). 
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