


1. INTRODUCTION

In Ref. {1] the problem has been investigated on consistency, or compatibil-
ity, of linear transports along paths in vector bundles and bundle metrics, i.e.
when the transports preserve the (scalar products defined by the) metric.
The present paper generalizes this problem to and deals with the problem
of consisténcy (compatibility) of arbitrary transports along paths in fibre
bundles {2] and acting between these fibre bundles bundle morphisms [3,4].
This task is sufficiently general, to cover from a unified point of view, all
analogous problems from the literature available to the author.

The problem for consistency of transports along paths and bundle mor-
phisms is stated in a general form in Sect: 2.. Some necessary and sufficient
conditions for such consistency are found. Tt is proved that the introduced
concept for consistency is a specml case.of the one for, sectlons of a ﬁbre
bundle transported by means of a° transport a,long paths [2] "In Sect™
_these concept and results are apphed to the special case of a transport along
'pa,ths and hundle morphlsms a,ctmg in one a,nd the same ﬁbre bundle Also
“some examples are presented Sect 4 conta.ms a. deta.ﬂed mvestlgatmn of the
cons:stency between lmear tra.nsports along pa,ths in a vector bundle and
“a Hermitian structure in it.” Sect. 5 closes the paper w1th some concludmg
. remarks ‘ :
| Below we summarize certa,m deﬁmtlons a,nd results from {2] needed for
thrs paper o

By (E,x,B) is  denoted an arbitrary (topologlcal) fibre bundle with a
‘base B, bundle space E, projection 7 : E — B, and homeomorphic fibres

=~ (z), z € B [4-6].

The set of sections of (E,x, B) is Sec(E, 7, B), i.e.: ¢ € Sec(E, 7, B)
means fed :'B' —FEand moo = idg, where z'dx is the identity map of the set _
.By J-and v: J - B are denoted respectwely, an arbxtra,ry real mterva.l
a.nd a path in B.

"% The transport along’ paths in (E r, B) lS a. map I Ty I"r where
I7: (s,t) — 1),y st €J in which the maps I 1(7(3)) - 1(7(13))
satisfy the equalities

Hls = idyga(yy)y SES (1.2)



and its general form is described by
L= (F) " oF, stel, (1.3)

FJ 1771 (v(s)) = @, s € J being one-to-one maps onto one and the same
set Q. :

In the case of a linear transport along paths in a vector bundle {7] the
co_iresponding to (1.3) general form of the transport matrix is (see {7}, propo-
sition 2.4)_ ' ' ‘ ) -

L Hsm) =FEDFs), sted (1)

in which F(s;7) is a nondegenerate matrix function. = = = & -

.....

2. GENERAL THEORY
Let there be given two fibre ‘bundlés"f;;":;_(_E};‘i Ty Bu);  '="1,2 in which
defined 4re, respectively, the transports along paths '/ 'and 1. Let ( F,f)bea
bundlé morphism from £; into &, i.e. (see[34)) F: By — By, " f* By = By
and my0 F = fony, Let Fyi= Fla Yz} forz'c By andyJ = B; be an
arbitrary path in' B;. S e
~ Definition 2.1. The bundle morphism (F, f} and the pair ('/,2]) of
transports, or the transports '/ and %, along paths will be called consistent
(resp. along the path ) if they commute in a sense that the e_quiﬂity‘ o
R o L =0 By sited T (20)
is fulfilled for everyu(resp. the given) path 7. . T
-This definition contains as an evident special case definition 1.1 from
[1]. In fact, to prove this it is sufficient to put in it: & = (E,7,B) x
(E,n, B), where (£,x, B) is a vector bundle; £, = {R, 70,0}, where 0 € R
and mp : R — {0}; Fp = g, where g, : 77 (z) x 7" 2) = R, z € B
are nondegenerate symmetric and bilinear maps; f : B x-B — {0} C R;
YL =T, X I].,; where I7 is a transport along v : J — B in (E, 7, B)
and s,t € J; 4% = idp. S
Analogously to the considerations in [1], Sect. 2 here can be formulated
in a general form, for example, the following problems: to be found necessary
and for sufficient conditions for consistency between bundle morphisins and
(ordered) pairs of transports along paths; to be found, if any, all bundle
morphisms (resp. transports along paths) which are consistent with a given

p:.tir of t.ransports along paths (resp. bundle morphism), etc. Further we
will consider some results in this field. '
Proposition 2.1. The bundle morphism (£, 1) and the pair (',%) of

transports along paths are consistenti, (resp. along the path ¥) iff there exist
sp € J and a map

Clooi v, S 09 1y (3(s0)) = 757 ((f 0 ¥)(50))s (2.2)
such that -
- F’)’(s) = 21.{:30-:3 0 C(SG; ge) f o 7) ° II;Y-—-mlo ‘ ._ (23)

“for every (resp. the given) path y. -

Remark. The reason for which as grguments of C are written sp, 7 and

~foy will becleared up helow in proposition 2.2, where its general structure

is described. - : o .
l:frloof.' If (F, f) is consistent with” ()1,%) (resp. along 7), then, by
definition, (resp. along ) is valid (2.1), which, due to (F7,,)™" = I7,_ (see
{1.3)), is equivalent to ‘ : I
- Fyy="1{0 Fygo'll, sted. - (2.4)
Fixing s € J and putting s =39 and t = s in this equality, we get (2.3)
(resp._ along 7) with C(s;7,foy) = Fly(so)- And vice versa, if (2.3) is true
(resp. along ) for some sg and C, then due to (1.1), we have -

- 1 _, 2rfoy. t ) -
Eyy o Ly = 10 0 Clsoiy, fon) o Mgy o MY =

=410 o LN o Csoiy, foy)o UL, =217 o F

S~ S s—+1 ’Y(S) t

i.e. (2.1)is _identically's-a,tisﬁed (resp. along ¥) for s,¢ € J, so (F,f) and

(11,7I) are consistent (resp. along v).m
Corollary 2.1. The equality (2.3) is valid iff

. Py =, oClosys for)o i, (2.3)

where : : '
Cltoivs fom) =L 0 Clsoim for) o MY, (2.5)

for ar‘bitrary to € J, i.e. the existence of 39 € J and a map (2.2) for which
(2.3) is valid leads to the existence of maps (2.5) for which (2.3') is true for

.every tg € J and vice versa.



We have written (2.5) as an equality, but not as a definition of C(fg;7, fo
7), because from (1.3) and (2.5), considered as a definition of C', for arbitrary
to € J and fixed so € J the validity of (2.5) follows for every fg, 50 €J.

Proof. If (2.3) is valid, then by proposition 2.1 (F, f} and (/%) are
consistent, i.e. (2.4) is true, from where (2.3') with Cto;7v,f o 7) = Fyp)
follows. In the opposite direction the proposition follows from the substitu-
tion of (2.5) into (2.3'} and the usage of (1.1). (The same result follows also
directly from (2.3) and (J7_,)”" = I7., (see (1.3))).m

Corollary 2.2. The bundle morphism (F, f) and the pair ('1,%) of
transports along paths are consistent (resp. along the path ) iff thele
exists a bundle morphism (C, f) from & on & such that for every (resp. the
given) v :J — By is fulfilled: a) (C, f) | ¥(J) := (C | #7 (W) F | 7(I)) Is
a bundle morphism from &1 {,(s) on & |(foy)()s I-€- C(s ¥ fov)i= Cygy =
C |27 y(8)) s a7 () = 75 ((for)(I)), s € J;b) (C, f) is consistent
with (,%) and ¢) the equality (2.3) is valid. o

Proof. If (F,f) and ('1,%) are consistent (resp. along 7), then by
proposition 2.1 and corollary 2.1 (2.3') and (2.5) are fulﬁlled; so defining the
bundle morphism (C, f) through Cy(q) 1= C | 77 ((s0)} := C(s057,f o

7),- s € J from (2.5) and definition 2.1 (see also (2.4)), we see that (C' f)
and (Y,%) are consistent (resp. along 4). On the opposite, if there exists
a bundle morphism (C, f) with the pointed properties, then there are valid
(2 3’) (the condition ¢)} and (2.5) (follows from the condmon b) and {2.4)
which is equivalent to definition 2.1) and by proposition 2.1 {F, ) and (1,4)
are consistént (resp. along v).m

From a functional point of view the general structure of the transport%
along paths is described by 2], theorem 3.1 and has the form (1.3). The
usage of this theorem allows us to clear up the sense of proposition 2.1, as
well as to solve (locally, i.e. along a given path) the question for the full
description of all bundle morphisms which are (Ioca,l]y) conslstent with a
given pair of transports along paths.

Let, in accordance with [2] theorem 3.1, be chosen sets Q) and Q2 and
one-to-one maps "FJ 1rh (va(sn)} — Qr, h = 1,2, which are associated,
Tespectively, with the paths 4 : Jy — B, s € Jh, h = 1,2 and are
such that (cf. {1.3)) )

M= (FR) TR stie s k=12 (26)

Proposition 2.2. The bundle worphism (F, f) and the pair (',*) of
transports along paths, which are given through (2.6) by means of the maps

'F and 21, are consistent (resp. along a path 7) ifl there exists a map

Colr, foy): Q1 — Qa. (2.7)
such that 1 .
 Fyy = (21:;1"”) o Co(y-fov) o ('), (2.8)

or, equivalently, that ' '
F’T(S) - 21.!0015 o ("(30; ’)Sf ° F}) 11?—‘30 L] ] ‘ (2.9)

whe:o s € J is arbitrary and

Clsoir o) i= (P o Ci. fov) (7 i)
for every (resp. the gn eu) path 7. - - V |

Proof. The subatztutlou of (2. 6) into (2 1) shows the equivalence. of t]le
lal.tor \Vlt]l :

(PRI} o Fyg 0 () (JFM) o Fyyo (')

for any s,1 €J. Ilence, if (F, f) and (1, 21’) are consistent (mbp along 7).
ie. (2.1) is satisfied, then the last expression does not at all depend on
s, 0 € J and, e.g., fixing arbitrary some te € J and putlmg i = ty and )
Coly,f 07} := (2! f°7) 0 Fyg)© (‘F[;) froin the last oqlmht_\f, we casily
obtam (2.8). . -

The equivalence of (2. 8) and (2.9) follows d]ro( tly from the eq. (2.6) and
definition (2.10).

On the opposite, if it is valid (resp. along v), é.¢., (2.9), then by proposi-

‘tion 2.1 the bundle morphism (F, ) and the pair {1,%) of transports along

paths are consistent (resp. along 7). W
-Evidently, the proposition 2.2 is a direct genera]wamon of p!opommn

2.2 of [1], which is its special case.

The difference between prol)osmom 2.1 and 2 2is that the Iatlcr thoug.,h
the equalltv (2. 10), establishes the general functional form of the map (2.2).
As by {2], proposition 3.5 5 the maps *7*  h = 1,2 are defined up to a
transformation of a form (see [2], eq. (3.11)) “F* — ("D"”‘) o("For), h=

h
1,2, where 2D : Q, — Qh, is a one-to-one map of Q) onto some set



@5, h = 1,2, then there exists also nonuniqueness in the choice of the
map (2.8). An elementary check shows the validity of (cf. 1], eq. (2.7))

R — (MDY o (MDR), h=1,2
= Co(7, for) = (WD) o Co(r, for) o (D). (2.11)

Proposition 2.3. If for a given pair (/,%) of transports along l)a.tlis
the representation (2.6} is chosen, then all consistent along v : J — By with
it bundle morphisms {( F"/°7, f) along 7 are obtained from the equality

-1
F:(;f;'y 1= (2st°”) oCo(y,fox)o (IF;") = 2[50"’15 o C(sp;v,foey}o 1[;”_,30,
, ' . (242
where sg € J is arbitrary, C is defined by {2.10) in which Co(y,foy) is a
one-to-one map from Q, onto (2. o :
Proof. This proposition is a consequence of the proof of proposition 2.2,
as from it is clear that (2.12) is the general solution of the equation (2.1)_
with respect to' F¢yy when Y/ and ¥ are given. m ' o
The definition 1.1 of [1] for consistency between bundle metrics and
transports along paths seems rather natural by itself for a difference of the
definition 2.1 for consistency between bundle morphisms and a pair of trans-
ports along paths, whose introduction needs some explanation. As we saw
in the written after definition 2.1 the former definition is a special case of
the latter, Now we shall show that in this context the definition 2.1 itself
is a special case of definition 2.2 of [2] for a section of a given fibre bundle
transported along a path.

Let there be given two fibre bundles &, = (Ep, 7, By), = 1,2. We

define the fibre bundle & = ( Eg, mo, By) of bundle morphisms from & on &,
in the following way: ’ C

Eo = {(Fy, f): £, rfl“l(b{) — 73 (f(b1)), by € By, f: By — B2}, (2.13)

WO((anf)) = bla (Fbuf) G'Eﬂ's‘ bl EBI' . (2'14)

It is clear that every section (F, f) € Secto is a bundlé morphism from

& into & and vice versa, every bundle morphism from & on & is a section

of £9. (Thus a bundle structure in the set Mor f(£;,&2) of bundle morphisms
from & on & is introduced.) ' S

If in & given is a transport K along the paths in By, then according to
[2], definition 2.2 (see therein eq. (2.4}), the bundle morphism (F, f) € Seco
is { ' —)transported along v :J — By if -

(F'f(‘)’f) = 1{:—-1(F1(s):f)a s,ited . (215)

6 +

If in & and & are given, respectively, the transports '/ and f along

" the paths, respectively, in B; and B, then they generate in £ a "natural”

transport °A" along the paths in B;. The action of this transport along

Yid = Bron (Fy.f) € w&‘(’y(s)) for a fixed s € J and arbitrary ¢t € J is
defined by

K P ) 2= (Crizyo Py o', et (216)

Proposition 2.4. The map °K7, : 75" (y(s)) — 75 (7(t)) defined
through (2.16) is a transport along v from s to ¢, s,¢ € J and, consequently,
in & OK is a transport along paths.. = .

Proof. Using the properties (1.1) and ('1.'2)'0f_ the transports along paths
it is easy to check with the help of (2.16) that the maps °KY_.,. st e J
satisfy the equalities : ‘ . l -

UK 0Ky =KLy st €, (2.17)

fmd.hence, by [2], definition 2.1, °K T isa tra,n:épdrtr along v from s to ¢,
i.e. in & %K really definés a transport along paths.m ' ‘
Lemma 2.1, If (F,f)e Sec{f_,, then (2.1)is equivalent to

(FynJ) = KL Fygs /), sit € J. (2.19)

Proof. At the beginning of the proof of proposition 2.1 we saw that
(2.1) is equivalent to (2.4), that is equivalent to (2.19) because of (2.16), i.e.
(2.1) and (2.19) are equivalent.m -

Prppositipn 2.5. The bundle morphism (F, f) and the pair (f,%) of
transports along paths are consistent (resp. along the path v) iff (F, f)is
transported along every (resp. the given) path v with the help of the defined
from (Y, in & transport along paths %K . : ' o

Proof. The proposition follows directly from lemma 2.1, definition 2.1
and definition 2.2 of [2] (see (2.15) and [2], eq. (2.4))m" R ‘

Taking into account the comment after definition 2.1 it is not difficult to
verify that proposition 3.1/ of {1] is, in fact, a variant of proposition 2.5 in
the special case when one studies the consistency of §-transports and bundle
metrics.



3. CONSISTENCY WITH MORPHISMS
OF THE FIBRE BUNDLE

In this section we are going to apply the general theory of Sect. 2 to the
case of bundle morphisms of a given fibre bundle. The results so-cbtained
will be illustrated with often used examples. .

Let in the fibre bundle (£, 7, B) a (bundle) morphism F be given. By
definition [4,5] this means that ( F, idp) is a bundle morphism from (E 7, 13)

into (E, =, B). Hence it is natural (cf." definition 2. 1} F and the’ transport

along paths / in (E,x, B) to be called g!obal]y (resp. ]ocally) consistent if
(F,idp} and the pair (/,1) are globally (rer Iocal]y) cons:stent ie. in thiq
case definition’ 2.1 reduces to* '

" Definition' 3.1." The transport along paths I in (E T, B) is global]y
(resp. locally) consistent with the bundle morphism F of (E,x, B) if =

'y(.‘.) o I:—»t = ry (3)1 8 t ed (3])

is fulfilled for every (resp the given) 1)at11 7 J’ - B.

This definition formalizes the condition for commutation of a transport
along pa,ths and a bundle morplusm of the fibre bundle in which the trans-
port acts, or, in other words, the equahty (3.1) is an -exact explessxon of
the phrase that "the bundle morplusm F and the transport along paths /
commute”, . :

Comparing deﬁmtlons 3.1and 2. 1 we see that from the first of them the
second can be obtained if in the former weput . .- - v

(Exsrns Ba) = (B, B), fmzf-uzs,*';,?k’:_f.’ (3.2)

If we make these substitutions i in the whole sectlon 2 and take mto ac-
count deﬁmtlon 3.1, then the stated therein proposrtions and, defi mttons,
concerning bundle morphlsms between fibre bundles, take the followmg fo:~
mulations in the case of bundle morphlsms of the ﬁbre bundle. (E,x, B):

Proposition 3. 1. The bundle morphism’ F and the transport along,
paths I are cons:stent (resp along 'y) 1f and oniy if there ex1st *o € J and
a map ‘ ‘

o Clsoin) i r a(so) = T (sl (33)
such that ‘ L e
‘Y(-‘?) = A5 © C(SU;‘Y) °© I.;r—»so (34)

for every (resp. the given) path 4.

Corollary 3.1. The equality (3.4) is true iff for every g € J, we have

Fogsy = Ty 0 Cllos ) 0 1], (3.47)
where
Clto;7) = {3, 0 Clsoi ) o I, (3.5)

Corollary-3.2. The bundle morphism £ and the transport along paths
I are consistent {resp. along ) iff there exists a bundle morphism ¢ of
(E,m, B) such that for every (resp. the given) path v :J — B we have: a)
C I == ((J)) is a morphism of (E.x, B) iy = ( N () ():
b} ¢’ and I are consistent (resp. along 7); and ¢) (3.4'} is true.

Propos:tlon 3.2. The bundle morphlqm F and the transport along
"?..”‘c I ’]“r ""’! ‘n' the \?\[umu.y 1':_.! = \rt Jul OI‘, , I, s E o (SP(’ (l J)J are
c01151<;tent (résp. along ¥)if dl]d ou]\, if Lhere emsts a map Co('y) Q —
su(h that ' '

Fyey = (1”)“ o Co(7)o FY =TI ,oClssy)o I, st€d  (36)
where ‘ ’ : : ‘ .
Clsim) = (F)) " o Coly) o £7. (3.7

Proposntlon 3.3. If a transport along paths I with a representation

1‘V -
1Y, =(F ) o Y. s € J (see (1.3)) is fixed, then any bundle morphism
'F along v consistent along ¥ : J — B with it is obtained from the equality

"y = (F:)“ oCo(y)o F =13 _ 0 Cso;7)0 I, (3.8)

where sp € J is atbltrary, Co: Q — @ is one-to-one and ( is defined by

(3.7). ,
According to (2. IJ) and (2 lo) the fibre bundle ( £y, mg, B) of the bundle

morphists of (E, 7, B) is def‘ned through the equalities o

130:..:{]'(,‘:7 Fg,:?f"'(b)f'?t_'(b), be B}, : (3'.9)_
cme(Fp)i=b, Fye k. beb’ ‘ L (3.10)

Ev1dent!y, ifFisa morplnam of(E T, B), then [ e Ser(bo, Ty, B) and vice
versa.

‘According to [2], definition 2.2 if in (Eo, 7o, B) is given a transport along
paths K, then F € Sec{ Eg,mo, B) is K- -transported along vy : J — B if
F"y(t) = I\:—ot( ,"'y(s]) ) (.fl l}

9



If s a transport along paths in (£.7, 8), then in { Ep, 7. B} it induces’

in a natmal“ transport along paths °A" whose action along 7 : J — H on
JL'){s} €y (7( s)} is

W Fy) = Lo P o I, €757 (1), st (3.12)
Proposition 3.4. The mapping °N' ), : 75 ' (1(s)) — x5 (7(1)), defined
by (3.12), is a transport along v from s. to t s, L € J and, conbequently,
9K defines a transport along paths in ( Fy, g, B) :
Lemma 3.1. The equality (3.1} is equivalent t_o .
Foy = 01(:_,1(1';(5,” sted. L (3a3)

'Proposition 3. 5. In (Eg,?ro, B) the bundle morplusm F and tlle Ltmm-‘

port along paths [ are consistent {resp. along'y) iff F is transported aloug

every (resp. the given) path v with the help of the transport along’ ‘paths

OK defined. I)y I'in (Eo,mo, B). - . .
Now we shall consider examples for cousmtencv of concrete bund}e mor-
phisms in vector bundles with transport along paths in them.

Example 3.1. Consistency with an almosi complex structure
Let the bundle. morphism J of the real vector bundle (E,r, B) define

an almost complex structure in it [8-10],i.e. J.:=JF | 77(z), 2 € B to.

be R-linear isomorphisms defining complex structure in the fibres 7~ (2},

which means that 7 ‘
Jzodyi= —id, Sy, ' (3.14)

Evidently, if { £, 7, B) is the tangent bundle to some manifold and J is
a linear endomorphism, then J defines an almost complex structure on that
manifold [3,8]. In this case, following the accepted tenumology, a tlanspmt
along paths consistent with J may be called almost complex. :

Proposition 3.6. A bundle morphism J consistent with a transport
along paths [ of the vector fibre bundle ( E,r, B) defines an almost complex
structure in it if and only if the involved in (3.4)-(3.7) (with J.,(s) instead of

Fiy(s)) map C(s;7) or map Co(7) define a coniplex structure in #” ‘(7(3)) or.

@ respectively, i.e. when they satlsfy the following equalities:

C(s;7) 0 C(s;7) = ~illa1 (s 0 (3.19)

Co(v)oCor) = —idg. (3.15)
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Or, in other words, the almost complex structure J and the transport along
paths [ are globally (resp. locally) consistent, i.e. they commute globally
(resp. locally), if and only if there are fulfilled (3.4} (or (3.6)), (3.15) and.
(3.15") for every (resp. the given) path 7; besides, eqs. (3.15) and (3.15")
are equivalent. : :

Proof. According to proposition 3.1 J and I are consistent (resp. along
')') il (3.4) holds for F' = J and every (resp. the given) path v, so we get

J(5)0da1s) = Foa—s 0 C(80;7) 0 Cs057) 0 15y, whence it follows that (resp.

along v) (3.13) is equivalent to (3.15) for s = s,

Analogously, based on the conslderatlous on (3 6), one proves (resp."
along ) the equivalence of (3. 13) with (3. 14) (for every s) and (3. 15’)

The eqmvalence of (3 lo) and (3 15') is a consequeuce of (3 LY ’

" Let (E,m, B) be a 1eal (resp comp}ex) vector bundle, X € R (resp.
A€ C) and the bundle morphism *F of (E, 7 B) be defined by AF (u) =
Aou=AF wy(w) for every w €E. .

Deﬁmtmn 3. 2 The transport anng paths I in the rea.l (resp compIex)
vector bundle (E,n, B) is called consistent wnth the .operation multiplica-.
tion with real (resp. comp]ex) numbers if it is_consistent with the Dundle..
morphisms *F for every A € R (resp. Xe C). >

Proposition. 3.7.. The transport along paths I is globally (lesp 1_0-
cally) consistent with the multiplication with, respectively, real or complex
numbers if a,nd only 1f

H(m (0 ot(u)) uew"l'(v(s)) (316)”-

for every, respectlvely, A e R or /\ e C a,nd every (resp the ngen) path.-
v:J — B, - :
. Proof. The proposmon isa snnple corol]ary of deﬁmtlons 3 I a.nd 3. 2 )
proposition 3.5, lemma 3.1 and (3.12).m . SR
In other words we may say that the consistency with mu]tlphcatlon W1th
numbers means simply- the validity of the condition for homogeneity (3.16)
or, which is the same, the operations of 7/-transportation along paths and
nulltipl:ca,tlon w1t11 numbers in the fibres to commute

Ekdlllple 3.3. Cons:stency with the operat:on addition
Let (E,n, B) be a vector fibre bundle, A & S’ec(E 7, B) and AR be a
bundle morphism of (E 3 B) deﬁned by AF(u) =u + A(Jr(u)) =4 Frwy(u)
for every u € F. : o

11



Definition 3.3. The transport along paths 7 in the vector fibre bundle
(E,m,B) is called globally (resp. locally) consistent with the operation
addition if it is consistent with the bundle morphisms AF for every section
A I-transported along every (resp. the given) path.

Proposition 3.8, The transport 1 is globally (resp. locally) consistent
with the operation addition iff these operations commute, i.e. f

(et o)= L)+ L), wve 7 ((s)), (3.17)

which means that the usual additivity condition in the fibres is to be fulfilled
for every (resp. the given) path v : J —B. R .

Proof. According to definition 3.1 the transport / and the above defined
bundle ntorphisms 4F are globally (resp. locally) consistent iff the equality

AV + IL(w) = I [AG() + ], ver(o(e)) | (@3a8)

is valid for every (resp. the given) path 7. :
The condition A to be I-transported along 7-section means (see {2],
definition 2.2 and proposition 2.1) that A(y(t)) = 1), A(y(s)), st € J,
which, when substituted into the previous equality, due to the arbitrari-
ness of A (i.e. of A(y(s))) gives (3.17) (see (2], proposition 2.2) in which
A(7(s)) is denoted with v. On the opposite, if (3.17) is valid and A is a

section I-transported along 7 section, then (3.18) is identically satisfied and,
consequently, 4F and I are consistent.m

Example 3.4. Consistency between trausport afong paths and
Finslerian metrics :

Let in a manifold M a Finslerian metric be given [11] by means of a
Finslerian metric function F : TM)—Ro:={A: AeR, A> 0} having
the property F(z,AA4) = AF(z,A)yfor A€ Ry :={A: A€R, A> 0},
T €M, Ae T,(M)and satisfying the conditions described in the above

references. Here T(M) := UzemTo( M), where Tx(M) is the tangent to M
space at ¢ eM. . : B . o

Definition 3.4. The Finslerian metric and the transport along paths /
are consistent (resp. along y:.J — M ) if the equality

FOA) = FOULILA) sted, ATy(M)  (319)

is fulfilled for every (resi). the given)- path 4. oo .
This definition is a special case of definition 2.1 and it js obtained from
it for: & = (T(M), 7, M); & = (R, 70,0), where 0 € R and 7g.: Ry — {0}; -

i2

in the bundle morphism (F, f) F : T(M) — Rp is the Fins]olri?;l n_‘_m;i(:
function, () = F(a,A), A € To(M)and f: M — {0} = I
2 for = idp, .

Exawmple 3.5. Consistency between transports along paths and
svinplectic metrics ] . '
) . H El - - o — ]1 a
A real symplectic metric ¢ : r — ap, a;: 1r (2) >< T &) Rll. E
fibre bundle (E,7, B) differs from a real symmetric metric ¢ (cf; {1 c;in yin
| ’ ic, 1 (u “Ha) nce.
that it is antisymmetric, e, az(u,v) = —az(v,u) for v,v €7 ](a) (:1 ; ;
modifying definition 1.1 of [1], we can say that the transport along paths
and a are consistent (resp. along ) if_
T, o sred o (3.20)

a30) = gy © ULy X Famgdh st
is fulfilled for cvety (resp. the given) path y:J —B. *
4.  CONSISTENCY WITH A HERMITIAN .7
STRUCTURE =~ =~

By a Hermitian stricture in the real iroc_tor bundle ({‘3,#;78) w‘ﬁ undef's;::::

(cf. [10]} a pair (I, g) of almost conllp}e>f‘ structurp J, ie a b-u_n(. (; n-:o:lp ‘“e
J : E — E with the property J o J=-idg, and a COE’!?IStOI]t with it .'mn( 1
syminetric metric ¢ (9 1 @ — ga, _such that gz s 'b}!i}lear, s‘.\iimnettlag} a:tl: )
g'm-zl gz 0 {(JFx x J)) in that bundle {called a Hermitian metric; see [10], ch.
{h’%lgﬁnition 4.1. If I is a transport along patl)s‘iln (E,m, B), then th.(;
Hérinitian structure (J.g) and [ are consistont'(rosp. 31.0115 the patl‘a 7)‘ i

the pairs J and [ and g and [ are consistent separately, i.e.

J’f(f).o [:_," = I:—»'t o J'\v(s)—ai C (i;)
In(s) = 9y © (oe X Lg} s (4.2)

for every (resp. the glvon) "pa‘.th . S o .

Refnérk.' The condition (4.2} for consistency })e?wgeu- q (_\.n(l ! was
introdiced and investigated in {1]. _ D S
“In partienlar, if (£,7, B) = (T(M),x, M )} is the tangent }32111(1,10 lo thA(‘
manifold "M, then (4,1) and (4.2) define (an "almost Hermitian™) trans-
port consistent with the Herinitian structure (J, g) of the almost Hermitian
manifold (M, J,g) (. [10], ch. IX, §2).
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l “lth(’l we S] a we (9] 1] e85 T L4 { b FIIear
h . (]II b llO!l f() (OIISISt Nn¢ y I) t-“!(.( It i nea

;{ransl'x?rts {L-transports) along paths L in a vector bundie (£, 7, B) [7] and
ertnuan structures (J,g) in it, such that J is a lincar endomorphism. .
N et-lalong the p&th"y 1 J ~ B there be fixed: bases {eils), i=1
II::;S;’;(;))‘, r € B} tIm TN (s)), s € J, in which J s defined by Lh(:
et 4\ (¥(8)) = 503N, L is defined through the matrices F.(S"y)
tl.:/e(“; }].?"ml g - through the matrix G{y(s)) = flayisy(eils) e5(s))]| ’1‘1‘1(-:1
» condition ¢ = J i - v Jand
the o 9= go(J xJ) for consistency along v between J and g takes
T ; : :
I (NG HNI) = Glr(s)), (4.3)

where T iti i |
phere. means transposition of matrices, and the the condition for consis-
Y between J and 1, due to propositions 3.2 and 3.6, looks like

I(9(s)) = F7'(s;9)Col7) F(s;7), oN)Co(7) = -1, (4.4)

wllelre _C":O(T), is a‘ngnrc‘legeln&era‘te matrix and Iis the unit matrix.
. Let in (.‘E-, ™, B} an L-transport along paths L be given [7]. The following
0 propositions solve the problems for the existence and a full (local : 1
glob;,!) (lesc.ri!)tiou of all consistent with 1, Herniiﬁan structures e
i I:roposnlon 4.1, {Uong the path v : J — B the class of all Hermitian

tctures (along ) which are locally consistent with the L-transport along

paths L is given in the above pointed bases through the equalities

IO)7) = F N s9)Co(n) Flsiv), - (4.5a)

- GOk ) = FT(s7)C()F(siy) (4.5b)

i which the matrix functions Co and ' satisfy the equations

— T el T rrpe e
I—CCI‘:—CoCo:CJC(»QC l. (4.6)7

“ 6Prro,;t;f. The eq1'|a,ht|es (4.5a) and (4.5b), and also the first two from
-6), follow, respectively, from {4.4) and [1), proposition 2.3 (see therein eq
'(2.8)). The last equality from (4.6) is obtained by the substitution of (4 5j
into the con'di.tion for consistency hetween J and g expressed now by (4 35 n

Proposition 4.2, Let there be given an L-transport along patﬂs .L
defined along y:J — B through (1.4) by the matrices. .

F(s;v) = Y(1)Z(5;9) D" ((s)), s e d, (4.7)
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where ¥ and D are nondegenerate matrix {functions and Z is a pseudoortho-
gonal of some type (p,¢), p+ ¢ = dim{r~(y(s))} matrix function, i.e.

2T (s G 0 Z(83%) = Gpg 1= diag(l,...,1,—1,...,=1). 4.8
(8 7)GpaZ(s57) P tag( . ) (4.8)
p—times q—times

Then every Hermitian structure (J,g) globally consistent with L, if any, is

given by the equalities

IO() = DOENZ (SENPAUsHDTH ), (492)

G(¥(9)) = (DTHHN) GpgD7H(9)), (4.9b)

where P is a constant with réspect to s and y matrix, which may depend
on p and ¢ and is explicitly constructed below (see (4.11)), and Z besides
(4.8) satisfies the condition that Z~!(s;y)PZ(s;v) depends only on ¥(s),
but not on s and 7 separately. - . o s
Remark. The necessity of the representation (4.7) for F(s;v) is a con-
sequence of that we want a globally consistent with L metric g to exist (see
(1], proposition 2.6). _ ' o
Proof. The equality (4.9b) is a corollary from proposition 2.6 from [1].
The consistency of L and J is equivalent to (4.4}, due to which substituting

(4.7) into (4.4), we get {4.9b) with :

P=Y T ()CMY (1) Caln)Co() = =L (4.10)

As J and g must form a Hermitian structure, they have to be consistent,
i.e. (4.3) must be true which, as we shall now prove, is a consequence of
the independence of P of ¥. In fact, substituting (4.9) into (4.3} and using
(4.8), we find 7 S -

- PTGMP = Gpq» -

ie. Pisa pseudoorthogonal matrix of type (p, ¢) which, as a result of (4.10),

(4.11a)

satisfies : .
J PP = -1 (4.11Db)

If we consider (4.11) as a system of equations with respect to P, then,
its solution, if any (see below), is independent of any parameters as it is .
a function only of I and Gp,q, i.e. the elements of 'P are independent of 7 -
numbers. This conclusion is a consequence of the observation that (4.11a)
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does not change when it is transposed, i.e. PTG, P is a symmetric, and
'(4.111)), due to (4.11a), is equivalent to (GP,QP)TME PT(." :7—(:" 'P
Le. G, o P is antisymmetric. Hence (4.11a) and (4.11b) conta?ﬁ respec-.t?;?ely’
n(n+1)/2 and n(n —~ 1}/2, n=dim(x""(z)), zeP,or commonly r;i
2 number of independent scalar equations for the 72 components of P So
H P exists, it is constant (along 7). | o

T.he condition for that the matrix Z7(s;7)PZ(s;7) to depend only on
Y(s) is a result from that J must be globally defined, i.e. J(4(s)) r‘nuql.

. depend only on the point (s}, but not on the path ¥:J — A, so fro;

(4.93)_the above pointed condition follows.m N "

Remark. It may be proved that for an even =, i.e. for n = 2% + 1 k=
1,2,..., the equations (4.11) have no solutions with respect to P whic.h’is in
ag‘cq;dan_cg with the fact that in this case in (E,7, B) a,r'conm!e,v structure
cannot be introduced (see [10], ch. IV, §1). For an odd =, L.e. for 1 = 2k,
the equations (4.11) have different solutions with respect to P. For ihstdnc’é’ '
for n = 2 these solutions for p = 2 = 2 — Gp=¢g=land2-p=2= r',
respectively, are: o o h

-:!:_ 0 1.' L0 - “
Pz'o_'i(-l‘ 0)’ Pfﬁzﬂ:(l_o), Pt = - P,

For_p i no= 2k, ¢ = 0, we have P =diag(P1,...,Pk), Pi,....,P. €
{Pro Piol. . _ o :
. In the gener.al case, the answer to the problem for the existence of L-
ransports consistent with a given Hermitian structure {J,9) is negative.
Below we shall analyze the reasons for this. ‘
t Let 1}111 ahﬁbre bundle a Hermitian structure (J,g) be given. We want
0 see whether there exist L-transports alon i  with i
; 7 g paths consistent
possibly, to describe them. : Wlt‘h, end,
) First of all, for the existence of L consistent with g the signature -(a'nd
t 1cmseqlnenl;]y th.e m.un.ber of positive eigenvalues) of ¢ must not depend on
he }}3)omt at-v:rl_l.lch it is (they are) calculated (see [1], proposition 2.4}). .
N yhpropOS}tIOIl 2.5..0f [1], from the consistency between L and g it follows
]a.t t e: 1.11a,tr1>.( function F describing L through (1.4) has the form (4.7).in
which Y is arbitrary, Z satisfies (4.8) and p, ¢ and D are define by

DT(-”’)G(m)D(‘E) = Gp.q_

(4.12)°
for any point 2 from the base of the bundle. |
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The consistency hetween J and L shows that for some 'y the function
F must satisfy (4.4) and, due to (4.7), the matrix function Z is a solution
of the equation

Z- s P2 y) = A(9) i= DTHANIN D)), (4.13)
where P is given by (4.10) for some (p and. in accordance wi_t.h- the consis-
tency between J and g (sce (4.3)), does not depend on 4 (see the proof of

proposition 1.2). . _
'So, the matrix function F defining L has the form (4.7) in which Z is a

solution of the system (see.(4.8) and (4.13)) o
L ZHENCgZ(s57) = G (4.142)
PZ(s:7) - Z{s:1)A(x(s)) = 0. (4. 14D)

- The equalities {4.14) form a system of n(n + 1)/2 + n? scalar_pq.uations
for n? elements of Z{s;7), as a consequence of which, generally, it has no a
solution with respect o Z (sce, in particular, the analysis made in [12] for
the existence of solutions for the equation AX '+ X'B = (" with respect to
X)) . , _
. The above considér@tioﬂ prove the following ' ' .
Proposition 4.3. Let in a fibre bundle there be given a Hermitian
structure (J,¢) and the signature of g be independent of the point at which
it is calculated. Let D, p and ¢ be defined by (4.12). Then if for every
“(resp. a given) path 4 and some Y('ﬂ and (5(7) there exists a (constant)
matrix P satisfying (4.10) and (4.11), for which the system (d4.14) (with
A defined from (4.13)) has a sqlutio_n with respect to Z{s;7), then the L-
transport along paths (resp. the given patli ) defined by the matrices (4.7)
is globally (resp. locally along ) consistent with (J,g). The L—ir_ansports
along paths (resp. along ) obtained in this way form the class of all globally
(resp. locally along v) consistent with (J, g) L-transports alotig paths (vesp.

along 7). '

‘5. CONCLUSION

-In this work we have considered the problem for cousistency (or compat-
ibility) of transports along paths-in (different or coinciding) fibre bundles
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and bundle morphisms between them. Qur approach to this problen is suf-
ficiently general and as its special cases includes all kuown to the author
analogous problems posed in the literature. In particular, one most often
contes Lo the question for consistency of a connection and some oiher math-
ematical structure, like a metric, complex or almost complex structure. It
can equivalently be formulated as a special case of the above problem in the
following way. On one hand, the connection can equivalently be expressed
in terms of a corresponding parallel transport, a kind of transport along
paths [13].-On the other hand, the mentioned mathematical struciures, at
least, in the known to the author analogous problems in the available to him
literature, can equivalently be put in a form of bundle morphisms of the fi-
bre bundle in which the parallel transport acts. So, the consistency between
a connection and a mathematical structure is equivalent to the consistency
of a correspondiug parallel transpori and a bundie morphism. . A typical
example of this kind is the‘cohsisteugy between a synnnetric (Riemannian)
wetric and a linear connection (in the tangent bundle to a manifold), which
i other terms is treated by proposition 3.2 of [1] (see also the comment
after definition 4.1 of the present paper). - o o B o
. In connection” with proposition 2.3 there arise two problems. First, to
describe, if any, all pairs of transports (locally} consistent along a fixed
path with a given-bundle morphism. Second, to describe, if any, all bundle
morphisms (resp. pairs of transports along paths) globally, i.e. along every
path, consistent with a given pair of transports along paths (resp. bundle
morphism). These problems will be investigated elsewhere. :
At the end, we want to note that in the very special case when the
bundle morphism (F, f) is such that there exists the inverse map 7! (and
hence also the map f=1), then all pairs of transports along paths consistent
with (F, f) are (',%),- where ¥ is arbitrary and !/ is given by M, =

F,Y‘(:) o?rfers F.(s)- This result is an evident corollary by eq. (2.1).
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