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1. Introduction 

The Helmholtz problem for the plane periodical structures is arising in 
investigations of quantum motion of a free particle on periodical system of 
reflecting discs [l]-[4]. In the recent paper [4] this problem is reduced to 
solving the system of the boundary integral equations for the potentials of 
simple and double layers of the Hankel function on the boundary of the 
complex domain consisting of the forth arcs of the discs and the forth pieces 
of the sides of the hexagonal cell. 

In the present paper we consider another approach of reducing the Helm
holtz problem to the boundary integral equations for the simple layer poten
tials of the special Green function of the periodical lattice on the boundary 
of one disc only . 

We consider the formulation of the Helmholtz problem. Let {e,-, j = 
1,2} be a system of the noncollinear basis vectors in plane R2, which defines 
the fundamental domain ft (ft : x = a ei + /? e2, 0 < « < 1 , O < 0 < 1 ) , 
see fig. 1. We define the cell ft of the reflection structure by means of 
arrangement of the disc S of the radius R in the fundamental domain ft: 
ft = ft \ S, see fig. 2. 

Fig.l Fig.2 

The wave function u(x) in the domain ft satisfies the Helmholtz equation: 

Ли + Au = 0 (0.1) 

with Direchlet condition on the boundary dS of the disc S 

' u(x) =0, x€ dS. 
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The wave function is expanded on all the cells of the periodical structure 
with the help of the following conditions: 

u(x + e,) = eip>u(x), j = 1,2, (0.2) 

V«(x + ej) = eif> VM(T) , J = 1,2. (0.3) 

The problem is to find the spectral parameter A and the wave function u(x) 
with fixed values of the parameters pi,p2 . 

In Section 2 we construct the special Green function of the periodical 
lattice. 

In Section 3 the Helmholtz problem is reduced to the boundary integral 
equations for the simple layer potentials of this Green function. 

In Section 4,5 two methods of discretization of arising the boundary in
tegral equations are discussed. The former is based on the piece-wise appro
ximation of the density . The latter uses the Fourier series of the density 
and the explicit analytical form of matrix elements of the secular equation 
is obtained. The reality of the nonlinear spectral parameter of the boundary 
equations is proved. 

2. Green function of the periodical lattice 

Let {e,, j '= 1,2} be the system of the noncollinear basis vectors 
in plane R2, determined early. We define the Green function G(x,x0) = 
G(x,x0,pi,p2,X) as the solution of the Helmholtz equation in the fundamen
tal domain П: 

AG + AG = 6(x - x0), (1) 

where Л does not belong to the spectrum of the homogeneous problem. The 
function G is expanded on all plane R2 by means of the quasi periodical 
conditions : 

G(x + ej) = e-ir'G(x) (2) 

with the parameters {pj, j = 1,2}. Using the continuity of the function G 
and its derivatives, one can link the corresponding values on the oppositive 
sides i j and Lj+2 of the boundary dil of the fundamental domain Я (fig.I): 

G(*)\L]+2 = t-ip>G(x)\Lj, (3) 

2 



^.G(X)\^ = -e-^G(X)\Ll, (4) 

where j£- is the normal derivative of the function G in the point x. 

Let {fj, j = 1,2} be the attendant system of vectors connected with 
{CJ. j = 1,2} by the following relation 

(/„е;) = *,,. (5) 

We introduce the new variables {yj, j = 1,2} defined as 

! h = ( * , / i ) , Sf2 = (*»/«)• (6) 

After this change of the variables the domain ft is transformed to the unit 
square [0, l]x[0,1], and the boundary conditions may be written in the form 

« ( 1 , Ы = e-""G(0,y2), G(yu 1) = e-*»G(in,0), 

9У1«(1,У2) = е-""9иС(0,у2), 

dnG(yul) = е-'"д„а(уг,0). (7) 
In the new variables the Laplacian A has the form 

^m\%^m\%^uuf^2, (8) 
and 6-function is defined by the relation [5] 

£(x - x0) = И|"'*(у - yo), 

where |Л| is the Jacobian of the transformation from у to x. The set of 
functions {e~,',,","2*'г),', —oo < к < oo} forms the basis in the space of one-
dimensional functions {ф(у)} which satisfy the quasiperiodical relation 

ф(у + \) = е-*ф(у). (9) 

We find the Green function in the form 

G(yuVi)= £ Cнe-i{p^+2^!^)^ne-ib*+1^^)*^. (10) 
*,/=-oo 
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Using the orthogonality of functions фы{у)ш-

we have coefficients Ctt being defined as 

CHI = \А\-1фк1(у0)/(Х - ||«* + «ill'), ( '2) 

where 
«t = (pi+2fe»)/i, vi = (pi + 2lic)f2. (13) 

Applying the inverse transformation, we obtain that G[x, x0) is defined by 
the following relation 

00 

(\-\\(pi+2kx)fl + (P2 + 2lx)M\*) 

~ е-'(Р1+2«мг)(1-1о,Л)е-1(«+211)(х-*<,,/г) 

G(x,x„) = |A|-1 Y, п-Ш»+гЬг\Ь+<г* + 21тШРУ ( И ) 

t , l=-O0 

3. Boundary integral equations 

Now we multiply the equation (1) by the solution of the initial problem 
u(x), subtract the equation (0.1) multiplying by G, and integrate over the 
domain Q\S containing the disc S (see fig.2.), and obtain 

/ (ДС« - AuG)dsx = u(x0). (15) 
Ja\s 

From the equation (15) it follows, that 

• W - J L ' K - ^ + J L ^ - ' W " * - <»> 
Here — and g~a re the limit of the normal derivative when point x tends to 
the boundaries of domains П and S, correspondingly, for the first and second 
integrals in equation (16). We show that first integral with respect to dil 
equals zero. Indeed this integral is the sum of fourth integrals 

Jan ,-_, JL, 
(17) 
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I'sing the property of the (!reen function (! and solution u(jr) from (0.2) we 
obtain that 

h.j Ji.j 

In result the equation (16) reduces to the following integral equation with 
respect to the boundary dS only: 

/
, i)u _ dG , ., ,, _. 

(~— G--TT- u)dlT. (18) 
Taking into account that on the boundary 6S of the disc S the solution 
u(.r) = 0. we have 

*{**)=[ ^-C(x,.v0A)dlT. (19) 

Thus, one can find the solution U(J-) in the form of the potential of single layer 
for the Creeii function (!(x,ra) from the previous section. For determining A 
the following integral equation on the boundary OS of the disc S takes place: 

/ . 
<r(x)G( J-. .r0, A)rf/, = 0, J-O € OS. (20) 

were <r(.r) = -^f. 
It. should be noted that only real values of the spectral parameter A cor

respond to the solution of this problem. Multiplying the eq.(20) by <т(х), 
integrating over the boundary US and substituting the explicit representati
on of the Green function (14), we have 

^"J* Jas -»з.< 
exp(-i(pi + 2A-JT)(J- - x 0 . / i ) - i(p2 + 2/тг)(.г - xu.ft))x 

as 

х , г ( . г И ^ / Д , / ( А - | K + i.,||a) = 0. (21) 

Then the following equation takes place 

v Ц г ,схр(-»(Р. + 2for)(.r./i) -г(;»2 +ат)(а- , / а )Нх)«Ц, | а 
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Taking the complex conjugation of the eq.(22). we obtain the same equation 

y - | / ^ е х р ( - г ( р , + 2кж){х. / , ) - Црг + 2<x)(.r. fi)Wx)dlT\i
 = 

tr a-ii«*+r,m 
After subtraction of the eq.(22) from the eq.(2:{) wc have 

- t f V , J J ^ O X p t - , ( / > , + a f c i r K * . / , ) - i(p» + •>U)(.r.fi))fT(x)dlT\\ _ „ 
( " )lt- : IA-IK + .-.IIT ' " 

(24) 
Taking into account that the expression in the square brackets is more than 
zero we have A = A. It means that, the spectral parameter A satisfying 
nonlinear equation (20), is real. 

It should be noted that the equation (20) has the additional solutions 
which are not solutions of initial problem (0.1)-(0.:t). Let u*(x) be the so
lution of the Hehnholtz equation (0.1) inside the disc S with the Dirichlet 
boundary condition: 

«*(*) = 0, x € r)S. 

We multiply the equation (0.1) by the Green function &', subtract the equ
ation (1) multiplying by u'(x) and integrate over the domain S. After this 
we obtain 

[(Au'C AG'ir)dsx = n*(.r„). 

From this equation it follows, that 

«"(*o) = / 
JO: 

(^—6 - — u )dlx. 
as. anx f)nT 

Taking into account that u'(x) = 0, x € &S\ we obtain that A and u"(x) 
satisfy the eq.(20). 

The eigenfunctions vT(x) and eigenvalues A* of the internal Helmholtz 
problem for the disc 5 may be expressed through of the tiessel functions and 
these nodes and found analytically. 
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4. Discretization of t h e boundary integral equations 

In the papers [6, 7] the procedure of discretization of the boundary inte
gral equations and algorithms of the determining eigenvalues of the arising 
nonlinear problems based on the Newton method with the extraction on fo
unded roots were described. For discretization of the the boundary integral 
equations the collocation method with the piece-wise approximation of the 
density <T(X) was applied. The main difficulty of using the collocation method 
for integral equations (20) consists in the fact that the Green function (14) is 
a complex valued function. It means that solutions of the problem Л may go 
out from the real axis to the complex plane as a result of the discretization 
errors of the boundary integral equations. That is why we use the momentum 
method for discretization of the problem. The boundary dS is approximated 
by right ЛГ-polygons. Let {Si} be sides of the inscribed Af-polygon and ov 
be approximation of a(x) on the sides Si. Then the discretized system of 
equations has the form 

Ш С(х,хо,АКЛгЛ1о=0, i = TJf. (25) 
j - • > 

This system may be written in the matrix form: 

A(X)& = 0, (26) 

where a = (<TI,CT2, •• • ,оц)т and elements of the matrix A(X) are corre
sponding double integrals from eq.(25). The equation (26) has a nontrivial 
solution when the determinant of matrix equals zero: 

det[A(X)] = 0. (27) 

As a consequence of the chosen method of the discretization (the moment 
method) the elements of matrix A(X) satisfy the following relations 

«*• = «£• (28) 

This means that this matrix is complex Hermitian. The reality of Л may be 
proved by using the method from Section 3 . 
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Thus, we constructed the approximative equations (26,27) for determi
ning egenvalue A of the problem (0.1) - (0.3). 

5. Explicit form of the secular equation 

In the previous section the discretization of the boundary integral equa
tions based on piecewise-polynomial approximation of the density ff(x) has 
been proposed. The matrix elements were expressed by means of double 
integrals of the Green function. In this section we improve the method of 
reduction of the boundary integral equations to algebraic system using the 
expansion of the density <r(x) in the Fourier series. 

The vectors x (x € dS) belonging to the circle of the radius R with center 
in origin of coordinates may be written in the parametric form 

х(ф) = (Ястф, ftsin^)T, (29) 

where 0 < ф < 2л-. Let the function o(x) be expressed in the Fourier series 

<r(x)= Y, *me-m*. (30) 
m—~oo 

From the eqs.(20),(30) it follows 

°° л* 
V an \ О(х(ф),х0{ф'),Х)е-{тфШф = Ь. (31) 

m=-oo J0 

Substituting the Green function from the eq. (14) in the eq. (31), we obtain 

f > . f r e x P b ^ ( ( u ^ ^ W ) - e ( ^ ) } e - , n ^ = 0 i 

(32) 
where е(ф) = (cos ф, sin ф)Т. The expression ((u* + V(),e(^)) may be trans
formed to the form 

((«t + v,),e(<£)) = \\uk + v,\\cos(4 + i!>k,), (33) 

where 
, . (uk + vt,a%) 

фы = arctan • -, 
(«jt + w/,a2) 
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«i and «2 яге the orthogonal system of unit vectors in the Cartesian system 
of coordinates. Then the e<|.(32) may be written in the form 

E V* exp{/[||l>j.. + I'fjjff ros(o + t'kl)]} 
ГТ„, У Г Г. ; 77Г - l W m = U . (-И) 

f- A - \\uk + r, -' 
HI=-<X. A\/=-x- " 

where 

Лыт = / ex|>{-/(||«* + I'IWHIMO + си) + w0)}liilo. (35) 
Jo 

Using the integral representation of the Hessel functions [8] 

./„,(;) = {'ixi'")'1 I t.ffi(i:cotiti)cos{mu)<lu, 
Jo 

we obtain the analytical expression for the coefficients .4д.;,„ 

Лк1т = (2хГГ*,и-Н\\,,к + р»||)гхр(/н1(/-ы). (36) 

Miiltipiyiug the <ч|.(34) by exp(m<s> ) and integrating over the interval [0.2т], 
we have 

OO OO 

]Г т,„ Y, Лцт7йь/(А - |K + iv||)2 = 0. (37) 
m=r—<-*•• h.l=—oo 

where » is varialing from —oo to oo. It should be noted that the «x-ffici-
ents Лыт fast decrease as k,l,m tend to infinity. Taking a finite number 
of members in (37), we obtain the approximative system of equat ions for 
determining o,„ and A : 

м K.L 

, Y, "•» Yl >U<„.>W(A-|K + ''(||)2 = 0. (38) 
I m=-M k,l=-K,l. 

Let В be the complex matrix with elements b„m: 

6„m= J2 Л«тЛы„/(Л - |K + I'llP). (;W) 
kJ=-K.I. 
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The system (38) has a nont rivial solution when the determinant of the matrix 
U equals zero. Note that the error of reduction in (38) may be majorized by 
the value of the order 

X. X, X. ||IU. + ,.;||>)|J' ('l0) 

Here С is the maximum of module of the J-th derivative of the density <т[ф) 
with respect to <p. It means that the error fast decreases if K. L.Ai tend to 
infinity. 

Thus, for the fixed values of the parameters p\.p-i of the periodical struc
ture we obtained the approximative equation for determining Л and а(ф). 
Note that truncated matrix В is complex llermitian and using the techni
ques developed earlier, one can show that the roots A* of the secular equation 

«fe!||f»(A")||'= 0 

are real. Using the integral representation for u(x) from (19), the founded 
values of the spectral parameter Л, and the density a{4>), one can recalcu
late the values of the wave function u(x) in an arbitrary point of the plane R2. 

6. Conclusion 

We have reduced the Helmholtz problem to the 1 Dundary integral equ
ations for the simple layer potentials of the constructed Green function on 
the boundary of one disc only. Two methods of discretization of boundary 
integral equations have been developed. The first one is more universal. It 
may be used for wide type of domains. But this method needs creation of 
fast algorithms of calculation of the Green function and its derivatives with 
respect to spectral parameter. The second approach allows one to evaluate 
the elements of the discretized matrix analytically, but it may be used for 
discs only. Both the methods of the discretization of the boundary integral 
equations preserve the Hermiticy of the discretized matrices and the reality 
of spectrum of the approximated problems. 

It should be noted, that the proposed approaches lead to the necessity of 
calculations with the completely filled complex matrices. For good approxi
mation of the initial problem it is necessary to increase the dimension of the 
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solved problem. It leads to high requests to operative and virtual memory 
and productivity of computers used for calculations. 

The boundary integral equation method admits to apply the parallel al
gorithms and. as consequence, to use computers with the vector-parallel ar
chitecture, that allows one to make more qualitative calculations. 

We thank the Commission of the European Communities for support in 
the frame of KC-Kussia Collaboration Contract KSPHIT P 9282 ACTCS. 
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