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1 Introduction 

In this paper we prOpose a new algorithm for solving systems of polynomial equations 
in the zero-dimensional case (finite number of solutions). Our work has its origins in the 

constructive theory of partial differential equations, going back to the pioneering works 

' · of Riquier [1] and Janet [2] and developed in [3] in a modern way. This theory may be 
applied as well to polynomial systems taking into account the formal correspondence 
between polynomials and linear homogeneous PDE with constant coefficients and one 
unknown function. That is, unknown function in the differential case corresponds 
to unity in the algebraic case, differentiation - to multiplication by variable and other 
operations are left unchanged. E.g., differential expression Uzxy -2uz+3u corresponds 

to polynomial x2y- 2z + 3. 

Our method is based on the construction of involutive basis of polynomial ideal which 
is a special form of non-reduced GrObner basis (see [4}). In this paper we give an 

improved version of algorithm for constructing involutive bases and prove its correctness 
in the zero-dimensional case. Unlike Buchberger's algorithm [5], our algorithm uses 
prolongations (i.e. multiplications by variables) instead of S-polynomials and it is 

arranged so that the degrees of intermediate polynomials do not increase more than 
it is necessary to obtain an answer. Another point is that we have no need to do 

all possible reductions in the system, but only the so-called" Janet reductions". The 
algorithm is implemented in the form of REDUCE package INVSYS. The results of 
comparison between INVSYS and the standard REDUCE package GROEBNER show 
that the computation of involutive bases using our algorithm may be performed faster 

(at least, for the total-degree orderings) than the computation of reduced Grebner 
bases by means of Buchberger's algorithm. FUrthermore, it turns out that the roots of 

zero-dimensional ideals come easily from involutive bases computed in the total-degree 
orderings. We show that to obtain the roots one needs only linear algebra algorithms. 

2 Involutive Systems 

In this section we present the basic concepts and results of the involution approach to 
investigating polynomial systems [4]. Throughout, we shall use the notations; 

K- arbitrary zero characteristic field; 
a, b- elements of K; 
K[x1 , •.• , Xn]- polynomial ring over K; 
j,g,h,p- polynomials from K[x,, ... ,x.]; 
F,G,H,P- finite subsets in K[xb ... ,xn]; 
u, v, w, s- terms in polynomials (without co€:ffi.cients from K); 
deg(u)- total degree of u; 
cf(J,u)- coefficient of u in j; 
I deal( F)- ideal generated by F. 

Let variables Xi be ordered as x1 < . . . < Xn and fix some admissible term ordering 
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<T· Denote 
lt(f)- leading term in f w.r.t. <r; 
lc(f) = cf(f, lt(f)); 
lt(F) = {lt(f) I f E F); 
deg(F) = max{deg(lt(f)) If E F). 

Definition 1 [3]. Variable xi is multiplicative for the term u if its index i is not greater 
than the index of the lowest variable in u. Otherwise xi is non-multiplicative for u 

For a given polynomial g denote by Nonmult(g) a set of non-multiplicative variables 
for lt(g). 

Definition 2. Class of a term is the index of its lowest variable. Class of a polynomial 
is the class of its leading term. 

Denote u·v by u x v if all variables in v are multiplicative for u or if deg(v) = 0. \Vrite 
also g·u = g xu if lt(g) ·u = lt(g) xu. 

Definition 3. Term u is called a Janet divisor for the term w if there exists a term v 
such that w = u x v (symbolically u IJ w). 

The following properties of Janet divisors are obvious. 
1. If u IJ v and v IJ w then u IJ w (transitivity). 
2. If u IJ w and v ]; w then u I; v or v ]; u. 
3. If ~(u IJ v) then 'lw,, ~(u x w ]; v x s). 

Definition 4. Polynomial f reduces to h modulo G in the sense of Janet if there 
exist g E G and u such that lt(g) · u = lt(g) x u, a = cf(f, lt(g) x u) ,P 0 and 
h = f- a · g X u. Polynomial f is given in Janet normal form modulo G if for each 
term in f there are no Janet divisors in lt(G). Polynomial his a Janet reduced form of 
f modulo G (symbolically h = N F;(f, G)) if there exists a chain of Janet reductions 
from f to hand his given in Janet normal form modulo G. 

In contrast to Janet normal form we denote by N F(f, G) a usual normal form of f 
modulo-G. An algorithm for computing N FJ may be obtained from one for computing 
N F [5] replacing usual division of terms by Janet division. 

Example 1. G = {xy), f = x2y + xy2
, x > y. NF;(f,G) = x2y ,P NF(f,G) = 0. 

Definition 5. G is autoreduced (in the sense of Janet) if lfg.g'EG,g~g' ~(lt(g) IJ lt(g')). 
G is completely autoreduced if 'lgEG N F;(g, G \ {9}) = 9 

Proposition 1. If G is autoreduced then for any u there exists no more than one 
Janet divisor in lt(G). 

Proof. This is immediate from definition 5 and property 2 of Janet divisors. D 

Denote by Autoreduce(F) a function that for given F computes G which is autoreduced 
and Ideal( F)= Ideal( G). An algorithm for computing Autoreduce may be obtained 
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from the well-known algorithm ReduceAll [5] replacing usual NF by NF1 . 

Denote by M( G) a set of finite sums 

M(G) = {2=a;;g; XU;; 19< E G). 
ij 

The following properties are obvious. 

I. 'lt.hEM(G) {f ±h) E M(G). 
2. h = NF;(f,G)- (f- h) E M(G). 

Theorem 1 [4]. If G is autoreduced and f E M(G) then NF;(f,G) = 0 for any 
sequence of Janet reductions. D 

Theorem 2 [4]. (Uniqueness of Janet normal form). If G is autoreduced and h., h, 
are Janet normal forms off modulo G then h1 = h2. D. 

Theorem 3 [4]. {Linearity of Janet normal fo'T'iii.). If G is autoreduced then 

'lf,h,a,b NFJ(a · f + b · h, G)= a· NF;(f,G) + b · NFJ{h,G). 0 

Definition 6. Prolongation of polynomial g by variable x is a product g · x. If x E 
N onmult(g) then the prolongation is called non-multiplicative) otherwise multiplicative. 

Definition 7 [3, 4]. G is involutive system if it is autored.uced and 

'I gee 'l,eN=mult(g) NF;(g · x, G)= 0 (1) 

Note that involution conditions (1) are non-trivial because any non-multiplicative pre;­
longation g · x does not reduce to zero in the sense of Janet by means of g. 

Theorem 4 [4]. If G is involutive, then '~t<Ideot(G) NF;(f,G) = 0. 0 

Corollary 1 [4]. Any involutive system is a Grabner basis (generally redundant). 0 

Definition 8. G is normalized if lc(g) = 1 for aUg E G. 

Definition 9. G is involutive basis of I deal( G) if it is involutive and normalized. 

Theorem 5. (Uniqueness of involutive ba.sis). If G, H are involutive bases and 
Ideal( G) =Ideal( H) =I then lt(G) =It( H). Furthermore, if G, Hare completely 
autoreduced then G = H. 

Proof. We assume that lt(G) ,P lt(H) and force a contradiction. Let there exists 
g E G such that lt(g) # lt(h) for all h E H. Since g E I and because of theorem 
4, N FJ(9, H) = 0. Hence there exists h! E H such that lt(h!) IJ lt(g) and, by our 
assumption, lt{h!) ,P lt(g). On the other hand, h! E I, hence NF;(h',G) = 0 and 
there exists g' E G such that lt(g') ]; lt(h'). By the transitivity of Janet divisors, 
lt(g') IJ lt(g). Furthermore lt(g') ,P lt(g), since lt(g') IJ lt(h') and lt(h!) # lt(g). This 
contradicts the fact that G is autoreduced. Hence lt(G) = lt(H). 
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Let G, H be completely autoreduced. We must prove that G =H. Assume that there 
exist g E G, h E H such that lt(g) = lt(h) but g # h. Consider f = g- h. Since 
lc(g) = lc(h) = 1 and G, Hare completely autoreduced, lt(f) has no Janet divisor in 
lt( G). On the other hand, f E I, hence N FJ(j, G) = 0 and It(!) must have Janet 
divisor in It( G). The obtained contradiction proves that G = H. 0 

One may observe that involutive basis (inthe sense of (1)) exists not for any polynomial 
ideal. E.g., for ideal generated by a single polynomial f involutive basis exists if and 
only if lt(f) is a power of the leading variable. In the next section we prove that 
any zero-dimensional ideal possesses an involutive basis and propose an algorithm for 
computing it. 

3 Algorithm Description 
Throughout this section by <r is meant any admissible total degree term ordering. 
Below, the notion of complete polynomial system is introduced and algorithm Complete 
for constructing such system is given together with the proof of its correctness. We use 
Complete as a subalgorithm in algorithm Invbase intended for computing involutive 
bases. Then we prove the correctness of algorithm lnvbase for zero-dimensional ideals. 

Definition 10. G is complete if it is autoreduced, normalized and 

'19eG 'lxeN=mmt(g) deg(lt(g) · x) S deg(G)- NFJ(9 · x, G)= 0 

Theorem 6. Let G be complete. Then 

'19EG '1, deg(lt(g) · u) S deg(G)- NFJ(9 · u, G)= 0 

(2) 

(3) 

Proof. Let g be a polynomial from G, u be an arbitrary term such that conditions 
deg(lt(g) · u) :S deg(G) are satisfied. If u ¥ 1 we may represent· g · u as v · (g x w) 
where v · w = u, all Variables in v are non-multiplicative and all variables in w are 
multiplicative for g. Fix some variable x in v and write g · u = v1x(g x w) where 
VI = vfx. Because of (2), 

x • g = 91 x s1 + L akl9k x Skl 

'·' 
where g, E G, a,, E K and 9I is such that lt(gi) x si = x · lt(g). By proposition 
1, 91 is defined uniquely. From the algorithm of Janet normal form it follows that 
max {lt(g,) x s.,) <T lt(gi) x BI where by max is meant the maximal term w.r.t. <T. 
Substituting g · x into the equality g · u = vix(g x w) we have 

g · u = Vt • (91 x w1) + L akl9k • Ukl 
k,l 

where WI= si·w and, by admissibility of the ordering <T, max {lt(g,)·u.,} <T lt(g)·u. 
It is obvious that deg(lt(gi) ·VI) S deg(G). Consequently, if VI # 1, we may repeat the 
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same process for g1 · r 1 . Then, taking into account that deg(v1) < deg(v) and acting 
recursively, we obtain after a finite. number of steps 

I f ~I I I g · u = g1 X w1 + L.., akl9k · ukl 
k,l 

where g; E G, a~, E K, lt(g;) x w; = lt(g) · u and max {lt(i.) · u~1 ) <T lt(g) · u. 
Repeating the same process for each item in the right hand side of the last equation 
and taking into account the fact that the ordering <r is noetherian, we obtain after 
finite number of steps 

g·u= LaiJ9i x wii 
i,j 

where gi E G, aii E K. Hence: g · u E 1\l(G) and, by theorem 1, N FJ(9 · u, G) = 0. 0 

The following algorithm for given F computes an equivalent complete system G 

Algorithm 1 (G =Complete( F)). 
Input: F 
Output: G- complete system such that Ideal( G)= Ideal( F) 
G := Autoreduce(F); 
while exist g E G, x E Nanmult(g) 

such that deg(lt(g) · x)) S deg(G) and h = N FJ(g · x, G) # 0 do 
G := Autoreduce(G U {h} ); 

To prove the correctness of algorithm 1 we need the following technical lemma. 

Lemma 1. LetS be an arbitrary finite set. Any infinite sequence {SJ of subsets 
Si ~ S, satisfying the condition Vi,k>i(Si \Si+l)nSk = 0, has equal neighbour elements, 
i.e. there exists m such that Sm = Sm+l· 

Proof. Obvious. 0 

Proof of the correctness of algorithm 1. Assume that algorithm 1 does not terminate. 
Let Gibe G computed at the i-th step of algorithm 1. By transitivity of Janet division, 
if some g E Gi reduces, then lt(g) do·es not occur in lt(Gk) for all k > i. Furthermore, 

.,., deg(G,) S deg(F) for all i = 1, 2, 3, .... Taking into account that the total:degree 
: .. 'ordering is sequential (each cerro has only finitely many predecessors), we conclude 

that lt( Gi) satisfies the conditions of lemma 1. Hence 1 there exists the number m 
such that lt(Gm) = lt(Gm+1 ). Let us show that Gm is complete. If it is not so, 
then there exist g E Gm, x E Nanmult(g) such that deg(lt(g · x)) S deg(Gm) and 
h = N FJ(9 · x, Gm) # 0. Since It( h) has no Janet divisors in lt(Gm), it gencrMes an 
eiement in lt(Gm+l) which differs from each element of lt(Gm). But this contradicts 
the fact that lt(Gm) = lt(Gm+t). Hence Gm is complete and algorithm 1 terminates 
after computing Gm. 0 

Now we present algorithm Invbase which uses Complete as a subalgorithm and com­
putes an involutive basis of ldeal(F} for given system F. 
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Algorithm 2 (G = lnvbase(F)). 
Input: F 
Output: G- involutive basis of Ideal( F) 
G := Camplete(F); 
while exist 9 E G, x E Nanmult(9) 

such that de9(lt(9) · x)) > de9(G) and h = N FJ(9 · x, G) i' 0 do 
G := Ccrmplete(G U {h}); 

We shall prove that algorithm 2 is correct in the zero-dimensional case. ~We use the 
following lemma. 

Lemma 2. Let G, be a system G computed at the i-th step of algorithm 2. If there 
exists the number q such that de9(G,) < q for all i = 1,2,3, ... , then algorithm 2 
terminates. 

Proof Completely analogous to the proof of the correctness of algorithm 1. D 

Theorem 7. Let F have finite number of solutions, ie. dimension of I deal(F) is zero. 
Then involutive basis of Ideal( F) exists and may be computed by a finite number of 
steps of algorithm 2. 

Proof. Assume that algorithm 2 does not terminate and force a contradiction. Let Gi 
be a system G computed at the i-th step of algorithm 2. From the algorithm of Janet 
normal form it follows that for all i each f from the initial system F may be expressed 
as f = E; 9;-P; where 9; E G,, P; E K[x,, ... ,x.] and de9(lt(9;) ·lt(p;)) S, de9(lt{f)). 
From theorems 3,6 and lemma 2 it follows that for each p E Ideal( F) there exists i 
such that N FJ{p, G,) = 0. According to [5], if dimension of ldeal(F) is zero, then for 
each k = 1, ... , n there exists p, E ldeal(F) such that lt(p,) = x%', d, 2: 1. Let p, 
be such elements of Ideal(F) with minimal d,. For each k = 1, 2, ... , n denote by U, 
a finite set of terms of the form x!:' ... x~k satisfying the conditions li < di. By lemma 
2, there exists the number m such that NF,(p, · u, Gm) = 0 for each k and for each 
u E Uk+I . It is easy to observe that any term of the class k which is not contained 
in U, has Janet divisor in lt(Gm)· Hence, for all i > m, de9(G,) has an upper bound 
dn + ... + d, - n + 1 and, by lemma 2, algorithm 2 terminates. It means that the 
last while-condition fails, hence, as the last G is complete, it is nothing else but an 
involutive basis. 0 @ 

Corollary 2. Let G be an involutive basis of zero-dimensional ideal. Then for each 
k = 1, ... , n there exists g E: G such that lt(g) = x%~<. Furthermore, each term u such 
that ·de9(u) 2: de9(G) has a Janet divisor in It{ G). 0 

Example 2. Let x > y > z and F = {x3 +y2 +z-3, y3 +z2 +x-3, z'+x'+y-3 }. 
Dimesion of I deal(F) is zero. Applying algorithm 2, we obtain the following involutive 
basis G of Ideal( F) in the degree reverse lexicographical ordering .:;, 

G = { x2y2z3- 3x2y2- xy2z- x2z2 + xyz2 + 
x2y + 3xy2 + 3x2

- 3xy + y2 + z- 3, 
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} 

x2yz3 + x2y2 - 3x2y- xyz + xz2 + x2 + 3xy- 3x, 
xy2z3 - 3xy2 - y2z- xz2 +yz2 - x2 +xy+~y2 +3x- 3y, 
x'y' + x'z'- 3x2 - y'- z +3, 

x 2z3 + x2y- xy2 - 3x2 - xz + 3x, 

xyz3 + xy2 - 3xy - yz + z2 + x + 3y - 3, 
y2z3 + x2y2- 3y2- z2- x + 3, 

xy3 + xz2 + x2 
- 3x, 

xz3 +xy --y2 - 3x- z + 3, 
yz3 + x2y+ y2

- 3y, 

i' +u' + z -3, 
y3 +z2 +x-3, 

z3 +x2 +y-3 }. 

Remark 1. As for positive-dimensional ideals, there exist "sufficiently regular" sys­
tems for which algorithm 2 terminates with desirable result and "irregular" ones for 
whii:h it does not terminate. It turns out (see [3]) that the irregular systems becomes 
regular after the most linear changes of variables. However, the preliminary change of 
variables may be considered as a practical computational method only for systems of 
low degrees. Another possibility to generalize our approach to the positive-dimensional 
case is to use more sophisticated concept of multiplicative and non-multiplicative vari­
ables, as in [2]. This work is now in progress. 

4 Separation of Variables 

In this section we propose a method of separating variables in zero-dimensional. total­
degree involutive bases. We prove that only simple linear algebra is sufficient for this 
purpose {compare with [6]). Our method is based on the following theorem. 

Theorem 8. Let G be completely autoreduced involutive basis of zero-dimensional 
ideal in the total-degree ordering. Let G, be a subset of G containing all its elements 
of the class 1. Then G1 is not empty and is none other than a system of N + 1 linear 
equations over K(x1) w.r.t. the terms of the form x~ ... xr considered as unknowns, 
where N is the total number of such terms in the elements of G1 • These equations are 
linearly independent over K(x,). 

Proof. Let 9< (i = 1, ... , N) be all elements of G, with leading terms lt(9;) = U; X 

xi•, ui · #- 1, class of each t£i is greater -than 1. By corollary 2, G1 contains one more 
element of class 1, namely 9N+l, such that lt(9N+l) = x\N+'. Let us show that the set 
{u;} contains all the terms of classes> 1 which have no Janet divisors in lt(G \ G,). 
Indeed, if u is such a term and u # t£i for all i = 1, ... , N, then the terms u ·xi, where 
de9(u) + m 2: de9(G), have no Janet divisors in lt(G) that contradicts corollary 2. 

7 



Since G is completely autored.uced, all the terms contained in the elements of Gr have 
the form Ui x xt or xi . Hence) G1 is a system of N + 1 linear algebraic equations 
w.r.t. N unknowns ui. From proposition 1 it follows that these equations are linearly 
independent over K(x,). D 

For a given total-degree zero-dimen~ional involutive basis G, considering G1 as a 
linear system mentioned above and writing the compatibility condition for this system: 
we immediately obtain an equation in a single variable x1 . In most cases, reducing 
G1 {as a linear system w.r.t. t4) to the triangular form is sufficient to obtain the 
equivalent triangular form of G. The exceptions may occur when some equations of 
Gr are identically equal to zero by force of the compatibility condition. In this case 
it is necessary to consider the elements of G of the classes :$; 2 over K(x1, x2 ) and to 
repeat the process recursively. As a result, we should obtain an equivalent triangular 
form of G, i.e. lexicographical GrObner basis. 

Example 3. Iilvolutive ba..c;is G in example 2 contains 9 polynomials of class 1 which 
form a linear algebraic system over Q(z) w.r.t. x 2y2, x 2y, xy2, x 2, xy, y2, x, y~ The 
compatibilty condition gives 

z27
- 27z24 + 317z21

- 18z19
- 2067z18

- 50z17 + 279z16 + 8156z15 + 
645z14

- 1674z13
- 20359z12

- 3044z11 + 4645z10 + 33644z9 + 6288z8 - 6388z'-
36936z6

- 5925z5 + 4957z4 + 23187z3 + 4063z2
- 4342z- 5352 = 0. 

Solving the linear system w.r.t. the terms x,y and eliminating other terms, we obtain 
two equations of the form x + p1(z) = 0, y +p2(z) = 0, deg(lt(pt)) = deg(lt(p2 )) = 26, 
which give a reduced lexicographical GrObner basis together with equation in z. 

5 Examples 

An improved ve:-sion of algorithm 2 is implemented in the form of REDUCE package 
INVSYS. \Ve present the results of comparison of INVSYS with standard REDUCE 
package GROEBNER. [7, 8] for severai examples of zero-dimensional ideals taken from 
the paper [6!. Note that examples (II) and (Ill) distinguish from each other in only 
one term and this leads to drastic distinction in computing time. 

Example (!) 

xix2X3 + X1X~X3 + X1X2X~ + X1X2X3 + X1X2 -i- XtX3 + X2X3 = 0, 
xix~X3 + XtX~x5 -i- xix2X3-;- X1X2X3 + X2X3 + X1 + x 3 = Qi 

xix~x5 + xix~X3 + X1X~X3 + X1X2X3 + X1X3 + X3 + 1 = 0. 

Example (II) 

X1 -i- X2 + X3 + X4 +X.) = 0, 
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X1X2 + X2X3 + X3X4 + X4X5 + XsXI = 0, 
X1X2X3 + X2X3X4 + X3X4X5 + X4X5X1 + X5X1X2 = 0, 
X1X2X3X4 + X2X3X4X5 + X3X4X5X1 + X4X5X1X2 + XsXtX2X3 = 0, 
X1X2X3X4X5 - 1 = 0. 

Example (III) 

Xt + X2 + X3 + X4 + X5 = 0, 
X1X2 + X2X3 + X3X4 + X4X5 + X5X1 = 0, 
X1X2X3 + X2X3X4 + X3X4X5 + X4X5X1 + XsXIX2 = 0, 
~X3X4 + X2X3X4X5 + X3X4X5X1 + X4X5X1X2 .+ X5X1X2X3 = 0, 
X1X2X3X4Xs- 1 = Q. 

Example (IV) 

Xt + X2 + X3 + X4 + X5 + X6 = 0, 
X1X2 + X2X3 + X3X4 + X4X5 + XsX6 + X6XI = 0, 
X1X2X3 + X2X3X4 + X3X4X5 + X4X5X6 + XsX6XI + XsXtX2 = 0, 
X1X2X3X4 + X2X3X4X5 + X3X4X5X6 + X4X5X6XI + XsXsX1X2 + X6XtX2X3 = 0, 
X1X2X3X4X5 + X2X3X4X5X6 + X3X4X5XsX1 + 
X4X5X6X1X2+XsXsXtX2X3+XsXIX2X3X4 = 0, 
X1X2X3X4X5X6- 1 = Q, 

All computations using INVSYS and GROEBNER have been performed for the degree 
reverse lexicographical term ordering on an 25 MHz MS-DOS based AT/386 computer 
with 8Mb RAM. The results of comparison for different variable orderings are "given 
in the table below. We use the notations: 

• T1 - the time for computing involutive basis using INVSYS 

• T2 - the time for computing reduced GrObner basis using GROEBNER 

• N 1 - the number of elements in involutive basis 

• N2 - the number of elements in reduced GrObner basis 

EXAMPLE, variable ordering T1 (sec.) T2(sec.) N, N, 
(!) x, > x, > x, 16 33 15 15 
(II) x1 > x2 > x3 > x, > x5 11 8 23 20 
(II) x 1 > x, > x5 > x, > x4 9 7 23 20 
(III) x1 > x, > x3 > x, > xs 149 341 31 25 
(III) x1 > x2 > x5 > x3 > x4 1948 3050 32 24 
(III) X4 >XI > Xs > X2 > X3 87 1190 32 23 
(IV) XI > X2 > Xs > X3 > X4 > Xs 7657 >140000 46 -
(IV) Xs > X4 > X3 > X6 > X2 > X1 3795 77400 46 45 
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The results of comparison enable to hope that the method of involutive bases is a 
sufficiently powerful tool for solving zero-dimensional po~ynomial systems. 
Aknowledgements. We are grateful to V.P.Gerdt and T.Mora for useful discussions. 
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llpHHHMaeTCSI flO,Afl':fCKH HH npenpHHTbi, C006JJ..teHHSI 06be,AHHeHHOf0 
HHCTHryra g,a;epHbiX HcCJie.AoeaHHH 11 «KparKHe cooGmeHHSl OJ.1.SIJ.1.». 

YcTaHOBJteHa CJie,nyKHllHSI CTOHMOCTb flOJJ.OHCKH Ha 12 MeCstU,eB HH H3,AaHHSI 
OJ1.SB1, BKJIIO"'aSI nepec&IJIKY, no or.AeJtbHbiM reMHTH'·IeCKHM Kc.lTeropHSIM: 

11HIIeKC TeMaTHKa 

1. 3KcnepHMCHTUJibHaSI ¢>H3HKa Bb!COKHX :;meprHH 

2. TeopentqecKaSI <t>usHKa shiCOKHX 3HeprHH 

3. 3KcnepHMeHTUJtbHHSI He~fTpOHHHSl 4Ht3XK(:l 

4. TeopeTHlfecKaSI ¢m3HKa HH3Knx 3HeprHH 

5. MaTeMaTHKa 

6. 5I;~epHUSI cneKTpOCKOnHSI U pa~HOXHMHSI 

7. <lJ H3HK3 TSDKeJiblX HOHOB 

8. KpnorennKa 

9. YcKopHTCJIH 

10. ABTOMUTH3ai.~HSI o6pa60TKH 3KCnePHMeHTUJtbHbiX ~UHHbiX 
11. Bbii.JHCJlHTeJlbHaSI MUTeMaTHKa H TCXHHKa 

12. XHMH51 

13. TexunKa <jlnsnqecKOro 3KcnepnMeHTa 

l...(eHC:l OOAOHCKH 

Ha fO):t 

915 p. 

2470 P· 

365 P· 

735 P· 

460 p. 
275 p. 

185 p. 

185 p. 

460 P: 
560 p. 

560 p. 

90 p. 

720 p. 
14. J1cCJJeiiOBUHII51 TBep/lbiX TeJI H JKHIIKO~Teli 51/lepHbiMH MeTO/IaMH 460 p. 
15. 3KcnepnMeHTanbHa51 <jJH3HKa 51/lepHbiX peUKijHH 

npH HH3KHX 3HCPfli.SIX 

16 . .JJ:03HMeTp1151 H <jJH3HKU 3ali1HTbl 
17. TeopHSI KOH,r(CHCHpOBi.lHHOrO COCTOSIHHSI 

18. J.1cnOJ1b30BaHHC peayJibTHTOB 

H MCTO,r(OB 4JYHJlUMeHTHJibHbiX cf>H3H\ICCKHX HCCJie~OBHHHii 
B CMe)KH.blX 06JtaCTSIX HHYKH H TeXHHKH 

19. Bno<jJH3HKa 

<<KpaTKne coo611\eHn• Ol15ll1>> (6 BhinYCKOB) 

Tio,AnHcKa MO)KeT 6wr& o¢>opMJteHa c mo6oro MCCSIUa rotta. 

460 p. 

90 p. 

365 p. 

90 p. 
185 p. 

560 p. 

no seeM sonpocaM o¢opMJICHHSI no.AnucKH CJieAyeT o6paw.aThCSI s H3Aa­
TeJibCKTni1 OT!IeJI 0115ll1 no anpecy: 141980, r . .JJ:y6na, MocKoscKoli o6JiaCTH 


