


1 Introduction

In this paper we propose & new algorithm for solving systems of polynomial equations
in the zero-dimensional case {finite number of solutions}. Our work has its origins in the
constructive theory of partial differential equations, going back to the pioneering works
of Riquier [1] and Janet [2] and developed in [3] in 2 modern way. This theory may be
applied as well to polynomial systems taking into account the formal correspondence
between polynomials and linear homogeneous PDE with constant coefficients and one
unknown function. That is, unknown function in the differential case corresponds
to unity in the algebraic case, differentiation - to multiplication by variable and other
operations are left unchanged. E.g., differential expression sz 2w+ 3u corresponds
to polynomial o?y —2z+3.

Our method is based on the construction of involutive basis of polynomial ideal which
is a special form of non-reduced Grobner basis (see {4}). In this paper we give an
improved version of algorithm for constructing involutive bases and prove its correctness
in the zero-dimensional case. Unlike Buchberger’s algorithm [5}, our algorithm uses
prolongations (i.e. multiplications by variables) instead of S-polynomials and it is
arranged so that the degrees of intermediate polynomials do not increase more than
it is necessary to obtain an answer. Another point is that we have no need to do
all possible reductions in the system, but only the so-called ” Janet reductions”. The
algorithm is implemented in the form of REDUCE package INVSYS. The results of
comparison between INVSYS and the standard REDUCE package GROEBNER show
that the computation of involutive bases using our algorithm may be performed faster
(at least, for the total-degree orderings) than the computation of reduced Grébner
bases by means of Buchberger’s algorithm. Furthermore, it turns out that the roots of
zero-dimensional ideals come easily from involutive bases computed in the total-degree
orderings. We show that to obtain the roots one needs only linear algebra algorithms.

2 Involutive Systems

In this section we present the basic concepts and results of the involution approach to
investigating polynomial systems [4]. Throughout, we shall use the notations;

K — arbitrary zero characteristic field;

a, b— elements of K;

Kz, . .-,%a|— polynomial ring over K

£, 9, k, p— polynomials from K[z1,...,2a};

F,G, H, P finite subsets in K{zi,...,%];

w,v,w, 8— terms in polynomials (without coefficients from K);
deg(u)— total degree of u;

cf (f,u}— coefficient of u in f;

Ideal{F)— ideal generated by F.

Let variables 2; be ordered as z; < ... < T, and fix some admissible term ordering”



<. Denote

It(f)— leading term in f w.rt. <g;
le(f) = cf(f, 1(f));

B(F) = {lt(f) | f € F};

deg(F) = maz{deg(it(f)) | f € F}.

Definition 1 {3]. Variable x; is multiplicative for the term wu if its index i is not greater
than the index of the lowest variable in u. Otherwise z; is non-multiplicative for u

For a{ g')lven polynomial g denote by Nonmuli(g) a set of non-multiplicative variables
for It{g).

Definition 2. Class of a term is the index of its lowest variable. Class of a polynomial
is the class of its leading term.

Denote u-v by u x v if all variables in v are multiplicative for u or if deg(v) = 0. Write
also g-u =g xuif it(g) - u = lt{g) x u.

Definition 3. Term u is called a Janet divisor for the term w if there exists a term v
such that w = u x v (symbolically « |7 w).

The following propetties of Janet divisors are obvious.
L. I u(yvand v |;wthen u iy w (tronsitivity).

2. fu|ywandv|ywthenulyvorv|su

3. If ~{u |y v) then ¥, ~(u X w |; v % 5).

Definition 4. Polynomial f reduces to k modulo G in the sense of Janet if there
exist ¢ € G and u such that li(g) - v = It{g) x u, a = cf(f,lt{g) x u) % 0 and
h= f—a-gxu Polynomial f is given in Janet normal form modulo & if for each
term in f there are no Janet divisors in It(G). Polynomial & is a Janet reduced form of
f modulo G (symbolically & = NF;{(f, G)) if there exists a chain of Janet reductions
from f to h and h is given in Janet normal form modulo G,

In contrast to Janet normal form we denote by NF(f,G) a usual normal form of f
modulo G. An algorithm for computing NF; may be obtained from one for computing
NF {5] replacing usual division of terms by Janet division.

Example 1. G ={zy}, f =2’y + o, e >y NF){(f,G) = 2% £ NF(f,G} = 0.

Definition 5. G is autoreduced (in the sense of Janet) if ¥, pec.gny —(it(g) |7 1(g")).
G is completely autoreduced if Voee NFi(g, G\ {g}) = ¢

Proposition 1. If G is autoreduced then for any u there exists no more than one
Janet divisor in I£(G).

Proof. This is immediate from definition 5 and property 2 of Janet divisors. O

Denote by Auforeduce(F) a function that for given F computes & which is autoreduced
and Ideal(F) = I'deal{G). An algorithm for computing Autoreduce may be obtained

from the well-known algorithm ReduceAll [3] replacing usual NF by NF;.
Denote by M(G) a set of finite sums

M(G) = {3} a0 X u; | g: € G}
i

The following properties are obvious.
L Yeaeueo) (F £ R} € M(G).

2. h=NFE){f,6) — (f —h) € M(O).

Theorem 1 [4]. If G is autoreduced and f € M(G) then NF,;(f,G) = 0 for any
sequence of Janet reductions. O

Theorem 2 [4]. (Unigueness of Janet normal form). If G is autoreduced and hy, b
are Janet normal forms of f modulo & then hy = hy. O.

Theorem 3 [4). (Linearity of Janet normel form). I G is autoreduced then

Vihap NFs(a-f+b-h, G)=0a-NF;(f,G) +¥ - NF;{(R,G). O

Definition 6. Prolongation of polynomial ¢ by variable x is a product g-z. ffz €
Nonmault{g) then the prolongation is called non-multiplicative, otherwise multiplicative.

Definition 7 [3, 4]. G is involutive system if it is autoreduced and
VyeG’ Vz:ENonmu!t(g) NFJ(Q‘ - T, G) =0 {1)

Note that involution conditions {1} are non-trivial because any non-multiplicative pro;
longation g -  does not reduce to zero in the sense of Janet by means of g.

Theorem 4 [4]. I G is involutive, then ¥yeraeane) NFs(f,G} = 0. O

Corollary 1 [4]. Any involutive system is & Grobner basis (generally redundaat). O
Definition 8. G is normalized if Ic{g) = 1 for all g € G.

Definition 9. G is invslutive basis of Ideal(G) if it is involutive and normalized.

Theorem 5. (Unigueness of involutive basis). If G, H are involutive bases and
Ideal(G) = Ideal(H) = I then {(G) = lt(H). Furthermore, if G, H are completely
autoreduced then G = H.

Proof. We assume that (@) # l{(H) and force a contradiction. Let there exists
g € G such that li(g) # l(k} for all h € H. Since ¢ € I and because of theorem
4, NFy(g,H) = 0. Hence there exists b’ € H such that (R} |s (g} and, by our
assumption, (R} $£ It(g). On the other hand, &' € I, hence NF;(},G) = 0 and
there exists ¢’ € G such that lt(¢’) [ (). By the transitivity of Janet divisors,
It{g'} |7 W(g). Furthermore it(g') 3 It(g), since lt(g’) |7 L(R'} and W(R') #£ Ut(g). This
contradicts the fact that G is autoreduced. Hence It(G) = B(H).



Let G, H be completely autoreduced. We must prove that G = H. Assume that there
exist g € G, h € H such that it(g) = It(R) but g # h. Consider f = g — h. Since
le(g) = le(h) = 1 and G, H are completely autoreduced, I(f) has no Janet divisor in
lt(G). On the other hand, f € I, hence NF;(f,G) = 0 and It(f) must have Janet
divisor in {#{G). The obtained contradiction proves that G = H. O

One may observe that involutive basis (in the sense of (1)) exists not for any polynomial
ideal. E.g., for ideal generated by a single polynomial f involutive basis exists if and
only if 4(f} is a power of the leading variable. In the next section we prove that
any zero-dimensional ideal possesses an involutive basis and propose an algorithm for
computing it.

3 Algorithin Description

Throughout this section by < is meant any admissible fotal degree term ordering.
Below, the notion of complete polynomial system is introduced and algorithm Complete
for constructing such system is given together with the proof of its correctness. We use
Complete as a subalgorithm in algorithm Frebase intended for computing involutive
bases. Then we prove the correctness of algorithm Jnubase for zero-dimensional ideals.

Definition 10. G is complete if it is autoreduced, normalized and

Ygec VeeNonmutr(gy deg(it(g) - ¥) < deg(G) — NFy{g-z,G) =0 (2
Theorem 6. Let G be complete. Then
Voeo Vu deg(it(g) - u) < deg(G) = NFs(g-u, G) =0 (3)

Proof. Let g be a polynomial from &, u be an arbitrary term such that conditions
deg(lt(g) - u) < deg(G) are satisfied. If % % 1 we may represent g uasv-{gxw)
where v - w = w, all vatiables in v are non-multiplicative and all variables in w are
multiplicative for g. Fix some variable  in v and write g - u = % 2(g X w) where
v1 = v/z. Because of (2),

T-g=mn ><81+Eﬂ»k19k><sm
kl

where g; € G, au € K and g is such that I#{g) x 8y = - It(g). By propositicn
1, g1 is defined uniquely. From the algorithm of Janet normal form it follows that
maz {it(gx) X su} <7 It{g1) X s1 where by maz is meant the maximal term w.r.t. <.
Substituting ¢ -z into the equality g u = vz{g x w) we have

gru=uv (g x ?ﬂ1)+Zakzgk'ﬂk.r
P

where w; = s;-w and, by admissibility of the ordering <z, maz {Wt{ge)-vu} <7 l(g)-u.
It is obvious that deg(t(g1)-v1) < deg(G). Consequently, if v, # 1, we may repeat the

same process for g1 - 1. Then, taking into account that deg(v;) < deg{v) and acting
recursively, we obtain after 2 finite number of steps
gru=gyxul+3 ayg -y
ki
where g; € G, ay € K. l(g}) x w| = lt(g) - u and maz {It(g}) - ufy} <r U(y) - .
Repeating the same process for each item in the right hand side of the last equation
and taking into account the fact that the ordering <7 is noetherian, we obtain after
finite number of steps
g-u= z&ijé‘i X ’lt:‘ij
£,
where §; € G, &; € K. Hence, g-u € M{G) and, by theorem 1, NFy{g-u, G) = 0. D

The following aigorithm for given F computes an equivalent complete system &

Algorithm 1 (G = Complete(F)).
Input: F
Output: G - complete system such thet [deal(G) = Ideal{F)
G = Autoreduce(F);
while exist g € G, z € Nonmult(g)
such that deg(lt(g) - z)) < deg(G) and h= NFy{g-z, G)# 0 do
G = Autoreduce(G U {h});

To prove the correctness of algorithm 1 we need the following technical lernmma.

Lemma 1. Let 5 be 2n arbitrary finite set. Any infinite sequence {S:} of subsets
S5; € 9, satisfying the condition Vi 45:(S;\ S5i+1)NSk = B, has equal neighbour elements, -
i.e. there exists m such that S, = Sneq.

Proof. Obvious. O
Proof of the correctness of algorithm 1. Assume that algorithm 1 does not terminate.

Let G; be G computed at the i-th step of algorithm 1. By transitivity of Janet division,
ifsome g € G; reduces, then I#(g) does not occur in I8(Gy) forall k > 4. Furthermore,

~deg(Gi) < deg(F) for all i = 1,2,3,... Taking into account that the total-degree
“‘ordering is sequential {each term has only finitely many predecessors), we conclude

that I£(G;) satisfies the conditions of lemma 1. Hence, there exists the number m
such that {(Gn) = #{Gms1). Let us show that G, is complete. If it is not 50,
then there exist ¢ € G, x € Nonmult(g) such that deg(lt(g - z)) < deg(G,n) and
h= NFs(g v, Gn) #0. Since U£(h) has no Janet divisors in 1#(G,,), it generates an
element in [t{G,.1) which differs from each element of It(G,,). But this contradicts
the fact that I£(Gn) = t(Gms1). Hence G, is complete and algorithm 1 terminates
after computing G,,. O

Now we present algorithm Jnvbase which uses Complete as a subalgorithm and com-
putes an involutive basis of Ideal(F) for given system F.



Algorithm 2 (G = Invbase(F)).
Input: F
Output: G - involutive basis of Ideal(F)
G := Complete(FY);
while exist g € &, x € Nonmult(g)
such that deg(li{g) - z)) > deg(G) and A= NF;(g -z, G} # 0 do
G := Complete(G U {h});

We shall prove that algorithm 2 is correct in the zero-dimensional case.“We use the
following lemma. .

Lemma 2. Let G; be a system G computed at the i-th step of algorithm 2. If there
exists the number g such that deg(G;) < ¢ for all 4 = 1,2,3,..., then algorithm 2
terminates.

Proof. Completely analogous to the proof of the correctness of algorithm 1. G

Theorem 7. Let F have finite number of solutions, i.e. dimension of I deal(F) is zero.
Then involutive basis of Ideal(F) exists and may be computed by a finite number of
steps of algorithm 2.

Proof. Assume that algorithm 2 does not terminate and force a contradiction. Let G;
be a system G computed at the i-th step of algorithm 2. From the algorithmn of Janet
normal form it follows that for all ¢ each f from the initial system F may be expressed
as f =3;4;-p; where g; € Gi, p; € Kz, ..., 2] and deg(it{g;)-It{p;)} < deg(it{f)).
From theorems 3,6 and lemma 2 it follows that for each p € Ideal(F) there exists ¢
such that NFy(p, Gi) = 0. According to [5], if dimension of Ideal(F) is zero, then for
each k =1,..,n there exists p; € Ideal(F) such that l#(p) = =%, dp > 1. Let py
be such elements of Ideal(F) with minimal d;. For each k = 1,2,...,n denote by U,
o finite set of terms of the form :cﬁ;‘...:ci* satisfying the conditions /; < d;. By lemma
2, there exists the number m such that NF;(p; - u, Gr) = 0 for each % and for each
2 € Upyy. It is easy to observe that any term of the class & which is not contained
in U} has Janet divisor in l{(G). Hence, for all ¢ > m, deg(G;) has an upper bound
dy + ...+ dy —n+1 and, by lemma 2, algorithm 2 terminates. It means that the
last while-condition fails, hence, as the last G is complete, it is nothing else but an
involutive basis. O

Corollary 2. Let G be an involutive basis of zero-dimensional ideal. Then for each
k=1,..,n there exists g € G such that lt(g) = zi*. Furthermore, each term u such
that deg{u) > deg(G) has a Janet divisor in #{G). O

Example 2. Letz >y > zand F = {28 +3% +2-3, ¥ + 22 +2-3, 2+ % +y -3 }.

v T

Dimesion of Ideal(F) is zero. Applying algorithm 2, we obtain the following involutive .

basis G of Ideal{F) in the degree reverse lexicographical ordering

G={ %P -3z% —rp?s~ 2222 + oy +

Ty 43z +35° — ey + 40 + 2 -3,

vl

z2y2® + 2°y° — 3%y — zyz + 22% + 2% + 3xy — 3z,
zy2® = Bayt — y'z — z2% + Y2 — 2 + oy + 3y + 3z — 3y,
PP+ 222~ 32— — 2 43,

22 + 2%y — 2y — 32 — z2 + 32,

sy + oy’ - 3oy —yz+ 22+ + 3y - 3,

JET A N . T Ly O

zy® +22° + 2% - 3z,

Pty -yt —3x—2+3,

¥z +rty +yF — 3y,

2y 2 -3, .
P+2+z-3,

A+t +y-3 L

Remark 1. As for positive-dimensional ideals, there exist "sufficiently regular” sys-
tems for which algorithm 2 terminates with desirable result and "irregular” ones for
which it does not terminate. It turns out (see [3]) that the irregular systems becomes
regular after the most linear changes of variables. However, the preliminary change of
variables may be considered as a practical computational method only for systems of
low degrees. Another possibility to generalize our approach to the positive-dimensional
case is to use more sophisticated concept of multiplicative and non-multiplicative vari-
ables, as in {2]. This work is now in progress.

4 Separation of Vafiables

In this section we propose a method of separating variables in zero-dimensional total-
degree involutive bases. We prove that ounly simple linear algebra is sufficient for this
purpose {compare with [6]). Our method is based on the following theorem.

Theorem 8. Let G be completely autoreduced involutive basis of zero-dimensional
ideal in the total-degree ordering. Let Gy be a subset of G containing all its elements
of the class 1. Then @ is not empty and is none other than a system of N + 1 linear
equations over K(z;) w.r.t. the terms of the form z*»...z%* considered as unknowns,
where N is the total number of such terms in the elements of Gy. These equations are
livearly independent over K {z;).

Proof. Let g; (£ = 1,.., N} be all elements of G; with leading terms It(g;) = w; %
z¥, u;'# 1, class of each u; is greater than 1. By corollary 2, G; contains one more
element of class 1, namely g1, such that #{gy.) = a:tf”" . Let us show that the set
{u:} contains all the terms of classes > 1 which have no Janet divisors in (G \ Gy).
Indeed, if u is such a term and u # w; for all { =1, ..., N, then the terms u.2]*, where
deg(u) + m = deg(G), have no Janet divisors in #(G) that contradicts corollary 2.



Since G is completely autoreduced, all the terms contained in the elements of {; have
the form u; x z§ or #]. Hence, G is a system of N + 1 linear algebraic equations
w.r.t. N unknowns u. From proposition 1 it follows that these eguations are linearly

independent over K(z;). O

For a given total-degree zero-dimensional involutive basis &, considering &) as a
linear system mentioned above and writing the compatibility condition for this system,
we immediately obtain an equation in a single variable z;. In most cases, reducing
G1 {as a linear system w.r.t. ;) to the triangular form is sufficient to obtain the
equivalent triangular form of G. The exceptions may occur when some equations of
Gy are identically equal to zero by force of the compatibility condition. In this case
it is necessary to consider the elements of G of the classes < 2 over K {z1,79) and to
repeat the process recursively. As a result, we should obtain an equivalent triangular
form of @, Le. lexicographical Grésbner basis.

Example 3. Involutive basis G in example 2 contains 9 polynomials of class 1 which
form a linear aigebraic system over Q(z) wr.t. 2%, 2%y, 72, 22, 2y, o%, 2, y. The
compatibilty condition gives

22— 2722 4 31727 - 182" — 20672% — 502Y7 + 27921 + 81562 4
6455™ — 16742 —~ 20359212 — 30442'" -+ 4645210 + 336442° + 6288:° — 638827 —
360362° — 592525 + 495721 + 231872 4 406327 — 4342z — 5352 = 0.

Solving the linear system w.r.t. the terms z,y and eliminating other terms, we ohtain
two equations of the form z4+p;{2) =0, y+p(2) =0, deg(lt(p1))} = deg(lt{p,)) = 26,

which give a reduced lexicographical Grébuer basis together with equation in z.

5 Examples

An improved version of algorithm 2 is implemented in the form of REDUCE package
INV3YS. We present the results of comparison of INVSYS with standard REDUCE
package GROEBNER {7, 8] for several examples of zero-dimensional ideals taken from
the paper [8]. Note that examples (II) and (I1I) distinguish from each other in only
one term and this leads to drastic distinction in computing time.

Example (I}
2zozy + 21232 + T12ex] + 21003 + D129 + 213y + TaTy = 0,

2.9, .
Z3T5T3 + TITTG - ToTaws + T4 %03 + TeZa + Ty b o3 = 0;.

2 . .
217575 + aladey + mywieg + Ty%aks + 2aZs +2a + 1 =G,

Example (II}

T1T T2+ I3+ Tyt =0,

1Tz + ToZg + TaTy + T4%Ts + 257, = 0,
T1T9T3 + ToT3%s + TaLyxs + ZaTsX) + TsZ %9 = 0,
. B1T2Z3%q + ToZaTaTg + T3T4Z5TL + T4TT1Ta + TsX1Tazs = 0,
T1Ze®3TaTs — 1 =10,
Example (III)
Ty+ra+zz+ay+as=0,
1%y + TaZg + Ty + TaTs + Tsoy =0,
T1T2T3 + BeZgTq + TaTaTs + L4257 + T5214p = 0,
LoTyTa + TpT3TaTs + T3TLsT) + T4T5218g + TgTiTeT3 = 0,
T1LQT3THTs — 1=0.
Example (IV)
Ty +Tat+ T3+ 24+ 25 + 26 =0,
T1%p + TaT3 + TaTy + T4T5 + TsTs + Texy = 0,
TyFT3 -+ ToZ3Ty + T3TyTs -+ F4T5Te + TsTeTy + TeT122 = 0,
T1X9T3T4 + ToX3TylTs + i3x4zsw5 + T2 + TsTe1Te + TeT1Toxsz = 0,
T1X3T3T4Ts + ToTaL4TsLe + T3T4TeTeTy +
T4T5TeT1 T2 + T5TZ1ToTy + TeL1T2T3Ty = 0,
T1TTaT4TsTg — 1 = 0.

All computations using INVSYS and GROEBNER have been performed for the degree
reverse lexicographical term ordering on an 25 MHz MS-DOS based AT/386 computer
with 8 Mb RAM. The results of comparison for different variable orderings are given
in the table below. We use the notations: -

o T - the time for computing involutive basis using INVSYS
e T - the time for computing reduced Grébner hasis using GROEBNER
_ # Nj - the number of elements in involutive basis

s Nj - the number of elements in reduced Grébner basis

EXAMPLE, variable ordering Ti(sec.) | Tofsec.) | Ny | Na
(I) z; > 20 > 23 ’ 16 33] 151 15
(II) Ty > Ty > T3 > %4> Ty 11 81 23] 20
(I 2y > 39> 25 > T3 > 24 9 71 23] 20
(1) z; > 22 > &3 > Z4 > T 149 3411 31 25
(IIT) 4 > 29 > 25 > 73 > T4 1948 3050 ] 32| 24
(IH) Ty > Ty > T5 > 29> T3 87 1190 | 321 23
(IVYz, > 20> 16 > 23 > 24 > 75 7657 | >140000 | 46 | -
(IV) T > Ty >T3>Tg> 09> 2y 3795 77400 | 46 | 45




The results of comparison enable to hope that the method of involutive bases is a
sufficiently powerful tool for solving zero-dimensional polynomial systems,
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