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1 Introduction 

In recent ye8.rs one can observe the keen interest tO ~omputer algebraic aspects of com­
binatorial algebra [1]. Under the latter one usually understands analySis of algebraic 
objects given by generators and defining relations·of the polynomial form. In the com­
mutative case quite a number of universal comPuter algebra methods and tools have 
been designed to deal with multivariate polynomial systems, first of all, those based 
on Grebner bases techniques [2]. 
Though the concept of a GrObner· basis hl¥> been generalized in different extent to non­
commutative algebras [3] (see also review paper [1] and references therein) the area of 
its practical use is still quite restrictiVe. As it shown in [4], the use ·af non-commutative 
Grebner bases method proves out in a class of algebras, called in [4] algebras of solvable 
type, which can. be con:s.idered as iritermediate between commutative algebras and 
general non-commutative ones [5]. 
Unfortunately, analysis of Lie algebras cannot" generally be r~uced to algebras of thC 
solvable type, except finitely dimensional Lie algebras whose enveloPing algebras are 
just ·of that type .. On the other side, the problem of construction of finitely presented 
Lie algebras, which given by a finite set of generators "and defining relations, is of great 
practical importance in the context of investigating the al.gebraic structUre of non-linear 
partial differential equations in the fr8.mework of Wahlquist-Estabrook prolOngation 
method [6]. Different computational aspects of thls particular problem and a number of 
effective algorithmic procedures have been implemented in Reduce considered in [7], [8]. 

In present p8.per we describe an iterative algorithm for construction of basis elements 
of a finitely presented Lie algebra and computation of its commutator table. This al­
gorithm can be considered as the further development of algorithmic ideas of paper [9].· 
In addition to the given set of generatOrs and relators we introduce a grading of {non­
associative) words by their weights. As a first step of the aigorithm the initial data are 
transformed to the special form called genetic code of a_ Lie algebra to be computed. 
Then . the algorithm provides an iterative procedure for computation Of all the bas_is 
elements of a given weight in terms of those of less weights modulo the Jacobi identities 
and relators. As an illustration, the defining relations are produced and the prolonga­
tion algebras are constructed for the Korteveg-de Vries equation and for the system of 
equations describing one-dimensional Langmuir turbulence. The proposed algorithm 
has been implemented in the Rlisp language of computer algebra system Reduce [10]. 
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2 Baaes of Free Lie Algebras 

· 2.1 Definition of a Free Lie Algebra 

Let K be a field, X = { x, x2, ... , x.}. be a finite alphabet and e be an empty word. 
The elements of X are called free generators). 

Following to [11] put fo = e, r,(X) =X and define r.(X) (n > 1) inductively as .the 
set of all words (monomials) of the form 

(u)(v), u E f, v E r., s + r = n. 

If, say, s = 1, we write simply~(~), _or· even uv if a~o r:::::: 1. 
Put 

_ r(x) = u~,r.(x) 

and tnrn f(x) into a (non-associative) itoupoid subject to the operation 

u · v = (u)(v) . 

Definition. An element v E r,(X) is said to have degrees, Le. deg(v) = s. 
Definition. F(X) is said to be a free algebra on X ifit is a K-algebra of r(X). · 
It means that p E F( x) is a finite snrn 

P=-L>:tuU, QuE K; 
· uer 

and the multiplication in F(X) extends the multiplication in r(X) as follows . . . . 

Jz:».u)(L::a.v) .;I: a,JJ.u-v . . . \:er ver u,t~Er' . 

Remark. F(X) is a graded algebr" with the homogeneous .~lemenis of degree n being 
those which are linear combiilations Of words of length n. 

This grading_ can: ~~ sharpened by iniro<;iucing a monoid homomorphism 

W:(T(X),·,e)"-(N,+,O), 

where T( X) being the semigroup of words in the alphabet X with unity e, induced by 
the groupoid homomorphism¢: f(X) - T(X) with the identity map¢~ X- X. 
Definition. If W is a grading on f(X), we refer to the value .w, = W(x,) as a weight 
of xi:- , · _ ~ . _ 

VVe assume th8.t a·polyno'mial is graded by. its monomial of the Inaximal weight. 

Let I be the two-sided ideal of F(X) generated by the elements of the for,;, (with u · v 
denoted as [u, vj) · · . 

2 

{ 
[u,u], . 

. J(u,v,w) = [[u,vj,wj + [[v,wj,uj + [[w,uj,vj 
u,v,w E f(X) . 

Definition. The quotient algebra 

L(X) = F'(X)/I 

is called the free Lie algebra on X 1
• 

2.2 Basis Family and Hall Basis 

Definition [11] A linearly ordered (w.r.t. some order ::;)) set R = R(X) £;; r(X) £;; 
L(X) is called a basis family of L(X) if 

l.X£;R 

2. w = [u,vj E Riff 

(a) u,v E R 
(b) u < v % skew-symmetry 
(c) if v = [v., v,j then u 2:: v1 .% Jacobi identity 

3. w = [u,vj > u 

The further specification of the above basis family is based on the choice of the mono­
mial order providing the condition 3. 
In this paper we Consider one of possible orders, and the corresponding basis called a 
Hall basis [13]. For the compactness of writing we shall often omit the Lie brackets 
assuming their right-normed arrang_ement, for .instance 

x2yx = [x, [x, [y, xJJJ 

(xy)x2y = [[x, yj, [x, [x, yJ]] 

Let x, > X2 > .. . x. > e and 'U;,Vj E r(X) 
Definition (Lexicographical order). 

'U!~· .. U.r>le%VlV:z .... Vr iff 3i;_ (uj=V;, j::5i AtliH>ViH) 

Definition (Graded Lexicographical Order). 

U = 'U1U2 ••• U, >gle:c V = VflJ2 • • .Vr ijj 

deg(u) > deg(v) V (deg(u) = deg(v) II u >•~ v) 

Remark. This order provides, obviously, the condition 3 {w = uv > u) in the basis 
family definition. The corresponding specification of the basis family called a Hall 
basis [13]. Below we use a slightly more general concept of a Hall basis2 when the 
words are graded rather by weight than by length. 

1For niore details on free Lie_ algebras see the recent monograph [12]. 
2We call it Hall basis as well. 
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2.3 Example 

Let L(x,y, z) be a free Lie algebra with three free generators 

x<y<z 

Then the Hall basis of L(x,y,z) is 

Degree Basis Elements 
1 x< .. y<z< 
2 . <xy<xz<yz< 

• •• 

3 <~<~<-<~<~<-~=<•< 

<~<~<~<~<~<~<~<~< 
4 <: zx

2
z < zyxy < zyxz < zy2 z < z2xy < z2xz < ~2yZ < 

< (xy)xz < (xy)yz < (xz)yz < 
..... 

~ ········································· 

The number of elements of a Hall basis of degree·m for n free generators ( n = card( X)) 
is given by the following expression (Witt's formula) [13] 

. Nm,;, .!_ "Jl-(d)nmf~ 
mL.. 

- dim . 

where d runs through all divisors of~ a~d l"(liJ is the Moebius function, defined for 
dEN J:?y 1'(1) ::= 1_, B.nd'for d = pf1p22 •• • p;1 with the primes Pi. a.s 

J~-(d) = { !· • ;~ 3i e {i, ... ;_z}: ~· > 1, 
· ( 1) 'v'•E{1, ... ,1}.s,-1 _. 

The belo;, table contains the numbers Nm for different n (n, m = 1, · .. ,, 7) 

m. 1 2 3 4 5. 6 7 
n 

. 

1 1 -0 0 . 0 0 0 ·o 
2 2 1 2 3 .6 9 18 

. 3. 3 3 8 18 4~ 116 312 
4 4 6 20 60 204 670 2340 
5 5 10 40 125 624 2580 11160 
6 6 15 70 315 1554 7735 19544 
7 7 21 112 588 3360 39990 117648 
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T~e asymptotic behavior 

m• 
Nm ~- (m-oo, n- fixed) 

n 

reveals a:·very fast inc~ease of Nm with m. Though the presence of non-trivial defining 
relatiOns (Section 2) dumps the growth of basis elements, their computation even for 
relatively sni~ll m, n can not be usually done in practice withOut the use of a computer 
for 3.lgebraic manipulation. 

2.4 Commutators of Basis Elements and Jacobi Identities 

Let R(X) be a basis of a free Lie algebra L(X) and u, v E R(x), u < v, w = [u, v]. 

Definition. w is said to be a proper pair if w E R(X). Otherwise, if v = [v1 , v2J and 
u < v1 , then w is said to b~.an improper pa.ir. · 

To express an improper pair in terms of the basis elements, i.e. to determine the 
structure 'constants of-L(X), one needs to use the Jacobi identities. 
It turn's out that it is sufficient to consider only those identities which include at least 
one of free generators. 
Theorem 1. Let i be a free K-algebra with the condition 

'v'u E i: [u, u] = 0 , 

and let 3a, b E L such that 

'v'u,v E L: J(a,u,v) = J(b,u,v) = 0. (1) 

Then J(p(a, b), u, v) = 0 where p(a, b) is the arbitrary: (non-associative) polynomial in 
a, b. 
Proof. Because b, [u, v] E L, frotli (1) it follows J(a, b, [u, v]) = 0. Hence, the straight­
forward computation with use of bilinearity and skew:.symmeti:y gives 

[[a, b], [u, v]] = [a, [b, [u, vlll- [b, [a, [u, vlll 
[a, ([[b, u], v] + [u, [b, v]]))- [b, ([[a,u],v] + [u, [a, v]])] 
[[a, [b, u]], v] + [[b, u], [a, v]] +[[a, u], [b, v]] + [u, [a, [b, vlll 
-[[b, [a, u]], v] -[[a, u], [b, v]]- [[b, u], [a, v]] - [u, [b, [a, vlll 

= [([a, [b, u]]- [b, [a,u]J), v] + [u, ([a, [b, v]] - [b, [a, v]])] 
[[[a, b], u], v] + [u, [[a, b], v]] 

It means than J([a,b],u,v) = 0 and, by induction, the statement of the theorem is 
valid for any poljnomial p(a, b) D. 

Corollary. If in a free algebra L( X) 

\/xi EX A Vu,v E L: J(xi!u,v) = 0, 

then Vu,v,w E L: J(u,v,w} = 0, i.e. Lis a free Lie algebra. 
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3 Defining Relations 

3.1 Formulation of the Problem 

Let L(X) be a. free Lie algebra over K, X= {x., ... ,xn}, and let P ={Pt. ... ,pm} be 
a finite set of (Lie) polynomials in X, i.e. p, = p;(X) e L(X), i =',{!, ... , m} 

Definition, If L is a. Lie algebra generated by set X which obey the polynomial 
equations (defining relations) 

p,(X) = 0 (i = {!,.: :m}), 

then L is called a finitely generated and finitely defined or finitelJJ presented. 
Below we study the following fundamental problem: 

· ·Problem. Given finite sets generators X and tela tors P find a Lie algebra L such that 
X k L under the conditions p,(X) = 0, p, e P. 

In other words, we search for sollitio~s of polYnomial ~quations in the claSs of Lie 
algebras. · · 

Such a problem arises, for example, as the most principal part of the integrability anal­
ysis of nonlinear partial differential equations by the Wahlquist-Estabrook method [6). 
Different computer algebra aspects of the problem W.r.t. this concrete application-have 
been intellsively studied in (7, 8, 9J. We consider the problem in its general form, though 
illustrate the approach to its solution at the examples frOm that particular-application 
field. 

3,2 Example 1. Defining relations for the Korteveg-de Vries 
prolongation algebra · 

lri the framework of the ·Wahlquist-Estabrook method a given nonlinear partial differ: 
entZal equation, for instance, the evqlution one of t_he form 

Ut=¢(u,U~,u~.:~:,: .. ), u=-u(t,x) 

is conside~ed as th_e compatibili!y coTtdition 

8F _ac+[G,F)~o. 
8t 8x ... (2) 

for a sYstem. of linear differential equations of the form 

{ fi: ~ -tcu, u.:~:, u~.:~:, .. . )~, 
Yt = G(u, u,J;, U.:~::z;, ••• )y 

.where ff are called by pse.udo-potentials. 

The explicit representation for P, G is sought in the form which leads to the defining 
relations in xi, Yj. 
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As the first example let us consider the Korteweg-de Vries (KdV) ~quation 

ut = Uxx:c - 3uitx 

and assume 

{ 
fr = F(,;,), 
G = G(u,u:~:,Uzz). 

Substitution of (3) into (2) gives 

afr ac ac · ac - -
(uxx:z:--3uuzo)-

8 
-u%-

8 
-Uxz8u -U:~:z:c 8-+[G,F]=O. U.U x 'Uz:c 

Setting the coefficient at u~~ hi ( 4) equal to zero, we obtain 

afr _ ac _
0 8u 8u:r;:r;- ' 

and, therefore, 
- afr -

G = Uxz 8u + G,(u, u.). 

Then ( 4) is reviritten in the form 

afr & F ac, aa, afr . . . 
-3uu.:~: Bu -u~u~:r; 8u2 -~ 8u -~.:~:.:~: 8u.:~: +u.:~::e(8u ,FJ + (G1,FJ = 0. 

Selection of the coefficient at u •• in (5) yields 

Hence, 

' 

and 

& F ac, aP •
1 ,:u• 8u' - 8u, + [8u ,F = 0. 

afr ac, . -
3uu. 8u ·- u, 8u + [G., F) = 0, 

- I ,&F ' 8F - . 
G, = -2u• 8u' + u.[ 8u' F] +G,(u). 

Substitution of thiS expression into (6) gives 

(3) 

(4) 

(5) 

(6) 

· afr 1 3 &F 3 , &fr - ac, ·. 8F - -- - -
- 3uu, 8u + 2u.8u3 - 2u.[8u2 ,F) -u, 8u +u,[[Bu ,F),F) + [G2,F) = 0. (7) 

Collecting the coefficients at u~, we come to the equality 

&fr 
8u3 = 0, 
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and, hence, 
.... .. .. . 2 .. 
F =Xr +uX, +u X3• 

After that, equating in (7) the coefficient at 'U; tO zero, we obtai~ 

8'fr . 
[8u2 ,F] = 0, 

or [X3,Xr] +u[X3,X,] = 0. The latter equality is equivalent to 

[X,, X3] = [X,, Xs] ,;, 0. 

Then, the next coefficient, i.e. one at u~, in (7) leads to the €quation 
I . . ·&a, . . . -. . . . . . 

-3u(X, + 2uXs)- 8u + [[X2,X1j,X1]+ u[[X2, X1j,X2] = 0, 

which .yields the following expression for a, 
a,~ -~u'x,- 2u3X3 + u[[X2,Xr],X1] +:~u'[[x,,x,],x,] +X,. 

FUrther, setting u. = 0 in (7), we find 

[a,,frJ = o. 
Taking (8-9) into 'account, we "find 

3 2 ... .. ... . ... ... .. -; .. .. ... ... 
2u [X,, X,] -u[[[X,,X,j,Xr],X1] -u ([[X2,X,j,X1],X2]-

1, ..•.. 1,-· ... '· 
2u [[[X,, X,], X,], X,]-

2
u [[[X2,X1],X2j,X2]--: [X4,X1]-

.. -"' 2 .. "' u[X4, X,] - u [X,, XsJ'= 0. 

(8) 

(9) 

(10) 

Collecting the coefficients at u•, 0 :::; k :::; _4 and using the Jacobi identities and skew­
symmetry, we obtain. the defining relations 

[[[x,, x,J, x,J, x,] = o, . 
3 • • 3 - • • • • • . 

- 2[Xr, X,]+ 
2
[[[x, X,], X1], X2]+ [X3, X4] = 0, 

[[[X1,X,],x,],X1J + [x,,x,] ':" o, 
[X, x,J = [x,·, x,J = [x,, x,] = o 

- . " with F and G represented as 
... .. .. 2 .. 
F= X1 +uX,+u Xs 

a= • --·- 1, •.. 3,-x, +u[[X,,X,],Xr] +2u [[X,, X,], X,]- 2u X, 

3 .. 2 ... .. ... .. ... 
-2u X3 - u.X3 +u.[X2,X1] +u •• (X2 +2uX3). 
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(11) 

Before constructing the Lie algebra solutions, it makes sense to Simplify the defining 

relations ( 11) as follows. 
Theorem 2. Let L be a Lie algebra. If z, u, v E L and [z, u] = [z, v] = 0, then 
[z,P(u,v)] = 0 w~ere Pis any Lie polynomial in u,v. 
Proof. Under the conditions of the theorem J(z, u, v) = O,implies, obviously, [z, [u, v]] = 

0. Hence, by induction [z, P(u,v)] = 0 0 · 
Corollary. If an ·element z E L ·Of a Lie algebra L commutes with all the generators, 
then z belongs to the center of L (z E Z(L)). 
Using an computer, one can Show that the polynomial 

[[[x"x,], x,J, x;] +[X,, x,] 

commutes with {XI! X2;X3, .X4}· By this- reason we can put 

mx, x,J, x,J, x,J + [x,, x,J = o. 

Then 
[X3 , x,J = [X3 , x,] = [X3, x,] = o. 

It justifies the setting X.3 = .0 as generally accepted in the KdV analysis. Therefore, 
we come to defi~ng relations of the form 

3.3 Genetic Code 

[[[X"X2],X2],X2] = o, 
[[[x,,x,],x,],X,J- [x,x,] = o, 
mx,, x,}, x,J, xrJ + [x,, x,J = o, (12) 

[x, x,] := o. (13} 

To use an algorithm of the next subsection, the initial data, .i.e. the set of generators 
and relators, ~ust be . 

• graded by the weight has beeil chosen in advance; as described in Sect.2.1-2.2, 
thai induces the. corresponding graded lexicogr3.phic8.1 ofdering; · 

• supplied with au the basis elements and the commutator relations as theY are· 
resulted by verification of the Jacobi identities for all the triples of summary 
weight not exceeding the maximal one among the generators and relators. 

Definition.· In such a way the graded, arranged and extended set of generators and 
relators is said to be a genetic code (GG) of a Lie algebra to be constructed . 
Example 1. The genetic code for the prolongation algebra of KdV defined by the 
relations (12) can be represe[lted in the table form 
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I Weight No.ofbasis Genetic Code 
· element 

1 1 x, 
2 . x, 

2 3 [x,x,J 
4 · [X,jX, X,JI . 

·g 5 [X2, [X, X2JI 
6 x, 
7 [X, [X, [X, X,JII 

4 

[X,, (X,[X, X,JII = (X1, X2J 
[X,[X,, [X, X,JII = [X,, X,j 
[X,, [X,, [X, X,JII = 0 
[X1,X4j = 0 
[X,, X,j =-[X, [X, [X, X,JII 

In the last _column, in addition to the initial set of the graded generators and relators 
there are also their algebraic consequences modulo Jacobi identities of Weight 4. 
Given GC, it is possible to ~roceed the further suppleni~nt with the algebraic conse­
quences of higher weights. Below an algorithmic prescription for doing that is given. 

4 Algorithm Description 

4.1 Basic Structures 

Let R be a .basis set of ffionomials for a Lie algebra Lunder construction. The grading 
gives · 

R = u,R'. = u,(x' uS') .• 
' where_ X and S are sets of generators and the basis elements being the proper pairs, 

respectively. 

Using the Order h8.s been chOsen we i11troduce an auxili8.ry lineai-Iy ordered ~et R, such 
that · 

f:R~k 
is a bijective map. Hence, 

R. = u,R' = u,(X' us'), 
and 

r'{f) = { x EX, if ~ E ~' 
{r1,r;) E S, •f rES, 

Set R can be considered as a numbering of R. 
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Definition. A proper pair is said to be a boun·d one if it is expr~ as a linear com­
bination of basis elements by virtue of the Jacobi identities and the defining relations 
and a free one, otherwise. 
One should note that ·a Jacobi identity verification for a Wgher weight triple may 
produce an extra relation for ·the lower weight Lie nlonomiaiS which-have been earlier 
considered as the basis elements. We call such a relation a reciprocal phrase, because 
it must be taken· into account in J:he further compUtational steps which are forced by 
that phrase to start again with lower weight level to reconstruct all the next levels. In 
the below algorithm such reciprocal phrases are accumulated in the special set P. 
Let B = U1B1 is a set of the bound pairS. It means that 

b E B iff b = I; a;r,, <>; E K, r, E R 

Denote by h the map h : . B ~ Span(R, K) and introduce an auxiliacy set H 
accumulating all the intermediate proper Lie palrs. In the further analysis those ones 
which are bound are moved from_H to B. Then an algorithm for computation fl'l in 
terms of R' ( k < n) can be written' as follows: 

4.2 Main Algorithm 

Input: Uk<nR\ uk<nfik, uk<nBk, uk<n~(B~); 
Output: R!', 8", B", h(B"), P"; 

s• = 0, s• = 0, B" = 0, h(B") = 0, pn = 0; 

for each x1 E X such that w(x1) < n do 
l~n-w~J; . 
for each x, E X 1 do % words of len'gth two 

if x~ < x, then H• := {(:>;;, x,)} U H" · 
else if ;;, > x, then H" := {(x,, x1)} U H"; 

end; . . 
for each r, = (r1,, r2,) E S1 do %triples with two the same generators 

if xi = 'rlq .or . xi = f2q then . . 

end; 

else 

if :;;, < f, then H" := {(x1, r,)} U H" 
else H" := {(r,,x,)}UH" 

if Xi < f1q or (flq < Xi < f2q and r1q E S) 
or (Xi > f2q and r1q, r2q E S) 
then Jacobi(x,,r1,,r,,); % J computes JH, JB, JhB, JP 
H" := H" UJH; B" := B" U JB; h(B") := h(B") U JhB; 
replace JB in h{B") by JhB; 
P" := P" U JP); 

for each Tq E Bt do 
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if Xi < f 1q or (flq < xi < f2q and riq E S) 
or (Xi :> f2q and T!q, r2q E S) 
then Jacobi(x1, r1q 1 T2q)i 

H":=H"UJH; H":=H"UJB; h(H"):=h(H")UJhB; 
, replace JB in h(H") by JhB; 

P" := P" U JP); 
end; 

end· 
8" ,;_ H" \ H"; fin= f(S"); 
for each r, E 8" replace r, in h(H") by f,. 

On should note that Theorem 1 is essentially used in the body of the algorithm, Indeed, 
in the main loop only generators are sel~t€:d together with the Lie pairs haVe been 
obtained in order to construct new triples for the Jacobi identity verification. Thr"ee 
internal looPs ·Of the mB.in One create the pairs Of generators; the triples with two 
cOincjding generators, the triples of the generate/ and free proper pairs, aD.d the triples 
of the generat9r and bonnd proper pair, respectively. UnlJke the two first internal loops 
where no necessity t6 verify the Jacobi identities, the last two ones contain subalgoqthrn 
J: acobi, presented below, which does such a verificatiOn. In so doing, gener~lly, new 
elements for the sets H, B, h(B) and P are produced by subalgorithm Jacobi and 
collected in sets JH, JB, JhB and JP. 

4.3 Subalgorithm Jacobi 

Input : u, v, w E R, 

Output: JH, JB, JhB, JP . 

% These are sets of all the proper pairs, th~ .. bound pairs 
%. and the reciprocal phrases, respectively, arising at 
%the Ja.cobi identity verification for ti, v, w-

JH·:=0; 

Arrangecu, v,"w); 
p1 := Simplify((u,v),w),; 
'P2 := Shnplify((v, w), u); · 

Pa := Slmplify((u,w),v); 

p := p, + 'P2 - p,; 

% the order is to be U :<; ii < W 

J H := J HUProperPairs{p,)UProperPairs{Pa)U ProperPairs{p3); 

% Collection of the p:i:oper piirs 
lip := LeadingimproperPair{p); 

% selectioD. Or the leading improper pair of p 

if lip# 0 then JB := {lip}; JhB := Solve{p, lip); 
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'· 

%solving equation p = 0 w.r.t. lip 

else. (lpp :=LeadingProperPair{p); 
% selection of the leading proper pair of p 

if lpp # 0 then JB := {lpp}; JhB := Solve(p,lpp); 

%solving equation P = 0 w.r.t. lpP 
else JP := {p}, 

This subalg"ori_thm includes the following modules 

~ 

Arr<lnge (u, v,w) does arrangement of the triple (u, v, w) in ascending order of their 
numbers U < V < W. · 

'Simplify ((u, v), w) is ·a recursive procedure which 

• Applies the bijective map f to thein\ernal pair (u,v) if (u,v) E Sand the 
map h otherwise_, i.e. when ( u, v). E B. 

• In the latter case One o.bt3:ins a linea!-' combination of the pairs whi_ch are 
transforme~, if necessary, to those with the less· first element than the second 
one. 

• The first step being applied to each pair has obtained at the second step, 
and. the process Continues recursively until the complete. simplification i.s 
achieved. · 

ProperPairs {p) collects all the proper pairs of Lie .Polynomial p. 

LeadingimproperPair {p)·selects the leading improper pair of {p). 

LeadingProperPair {p) selects the leading proper pair of {p). . . 

Solve {p, k) r~lves the equation p = 0 to express term k of polynomial p through 
other its terms. 

The described algorithm is an improved version. of that of paper [9]. The main im­
"provement'is based on the use·ofThOOrem 1. It allows to decrease sharply the nUmber 
. of evaluated Jacobi identities at large number N of basis elements. When (N ~ oo) 
at fixed number of generators n it means the follOwing reduction of the number of 
identities y.nder verification · 

(n=n·(n· 
If one applies the ·abo~ algorithm to comPute the structure of next weight level for 
the KdV prolongation algebfa then· one obtains as follows. 

13 



4.4 Example 1 (continuation) 

Basis elements and their commutators of weight 5 

No. Basis Elements and· Algebraic ConseqU:ences 
8 [X., [X1, [X1, [X1, X,]]]] ·. 

9 [X,, [X., [X1, [X1, X,]]]] 

[[X!, X,], [X., [X., X,IJJ = -[X2, [X1, [X1, [X1, X21JIJ + [X1, [X1, X2
1J 

[[X1, X,], [X,, [X, X,IJJ = -[X2, [X., X,]] . 
[[X,, X,], X,]= -[X,, [X1, [X1, [X1,X21J]J 

\ . 

The further computations up to ~he elements of weight ~0 allow one to guess· the 
following rec~rrence formulae determilling an irifinitely dimensiOnal Lie algebra [14J 
and then to verify that it is indeed a solution of the problem (12) checking. up a finite 
number of the Jacobi identities. . · 

BasisofLie algebra: x, ad •x,(X2 ) = Y,, [Yo,Y, •• ,J = z., X
3

, {k}ll''. 
Lie algebra: 

[X, Y,] = y,., , , [X,~,]= 0 , [X, Z•] = Y,k+1 , [Yo, Z,) = 0 , 
[Yo, r; • .,] = z. , [Yo, Y,.] = Y,._,, [Y., Yp] = 0 (n + p =2m) , 
[Y,., Yp] = (-1l"Zm + (-l)PY,m (n + p =2m+ 1) , [Y; • .,,z,] = -z, •• , . 
.[Y., x,] = -'Y..s , [Y;p, z,] = .-Y,,+,p-1 , [z,, z.] = o , [X,, z.] = Y2k+s , 
~.~w.~.~.~ . .. 

There are 6 diff~rent types of b~is elements 

X1, X4; Yo, Yin, Yik+t,"Zq. 

By this reason, it is sufficient to verify 38 Jacobi identities for all these types of (indexed) 
basis elements. . ' 

. Note, that here we ob:tain a number of the reciprocal phrases, which arise in each row 
of even weight, starting with the lOth row. Moreover, each time one must return back 
just in 4 rows. For instance, the·first reciprocal phrase, arising in the row of weight 10, 
has tlie form · 

[X,, [X,, [X, [X, [X,, X~)IJJJ = [X,, [X,, [X,, X,JJJ • 

Having the leading word (monomial) of this phrase of weight 6, we are obliged to come 
back to the row of weight 6 arid start the computations once more, tiking the above 
expression into account . 

If we are lucky in introdudng additional defining relations which cut the further increase 
of"basis elements, then we can find a finite~dimensional Lie algebra as a solution of our 

14 

problem. The simplest is to assume that some basis element is a .linear combination- of 
the previous ones. For instance, if to iD.troduce the relation 

6 

Y, = L:<><Yi, 
i=O. 

then the J~obi identities verification shows that 

·ao = ~2 = ~4 =as~ 0,_ ·a1,a3,as E C. 

It leads to the following 12-dimensional Lie algebra: 

[X., Y0J = Y,, [X,, Y,J = Yi, [X., Y,J = Y,, [X,, Y,J= Y,, [X., Y4] = Y,, 
[X., Yo] =Yo, [X,, Y;] = aY, +bY,+ cY,, [X., Zo] = Y,, [X., Z,j =Yo,· 
[X.,Z,] = Y,, [X,,X,]= 0, 

[Yo, Y,J = Zo, {Yo, Y,] = Y,, [Yo, Y,] = Z., [Yo, Y4] = Y,, [Yo, Ys] = Z,, 
[Yo, Yo] =Yo, [Yo, Zo] = o, [Yo, Z,] = o, [Yo, z,] =0, [Yo, x,] = -}3, 

[Y,, Y,] = -z, + Y,, [Y, Y,] = -Z, + Y;, [Y,, Y;] = 0, [Y,, Y4] = -z, + Y,, 
[Y1, Ys] = o, [Y,, Yo] = -az, +Yo- bZt.- cZ0 , [Y,, Z0] = -Z0, [Y,, Z1] = -Z1, 
[Y,,Z2]=-Z,, [Y,,X,]=-Y4, . . 

[Y,, Y;] = z, - }4, [Y,, Y4] = 0, [Y,, Ys] = az;- Y, - bZ, + cZo, [Y,, Yo] = 0, 
[Y,,Z0] = -Y,, [Y,,Z,] = -Y,, [Y,,Z,J =-Yo, [Y,,X,] ;=-Yo, 

· [Y;,Y4] = -_az, +Yo~ bZ, ~ cZo, [Y,, Ys] = 01 [Y,, Yo] = -(a2 + b)Z2 + aY6 

-'(ab + c)Z1- acZ0 + cY2 , [Y3,Z0] = -z., [Y,, Z1] = ~z,, 
[Y;, Z2] = -az, - bZ1 - cZ0 , [Y;, X,] = - Y,, -

[Y4, Yo] = (a2 + b)Z, _: aY6 + (ab + c)Z,- bY:.+ ·acz0 - cY,, [Y4, Yo] = 0, 
. [Y4,Zo] = -Y;, [Y4,Z1) =-Yo, [Y..,Z2]= -aY; -bY; -cY,, 

[Y4, X,] ,;, -aYs- bY;- cY,; · 

[Ys, Yo] =-(a'+ 2ab + c)Z, +(a'+ b)Y,- (a2b + ac + b2)Z, + (ab + c)Y4 
-c(a2 +c)Zo + acY,, [Ys,Zo]= -z,, [Y,, Z,] = -az, .:_ bz,·- cZo, 

JY,, z,) = -(a2 + b)Zo- (ab + c)Z,- acZo, [Ys, X,] = -aY,- bY:.- cY,, 

[Yo, Zo) = -Ys, [Yo, Z,] =.-aYs- bY;- cY,, [Y,, Z,] = -(a2 + b)Ys 
-(ab+ c)Y;- acY,, [Yo, X,]= -(a2 + b)Y6 - {ab+c)Y;- acY,, 

[Zo, z,] = 0, [Zo, Z,] = 0, [Z,,X,] = Y;, 

[Z,, Z,] = 0, [Z,, X,] = Y,, 
[Z,, X,) = -aYs -.bY,- cY,, 

which is a particular solution of (12). 
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5 Example 2. Prolongation Algebra for Partial· 
Differential Equations Describing One-Dimen­
sional Langmuir Turbulence 

5.1 Defining Relations. 

InvestigatiOn of L&.ngmuir- turbulence in plasma excited by ~trong el~ctromagnetic fields 
is a very diffiCult physical problem. It is a topical One in many different applications 
connected with the necessity of the plasma heating by high energetic radiation and, 
first of all, for the laser thermonuclea~ synthesis. 

The process is described by the following system of nonlinear partial differential equa­
tions, being the simplest one for the problem, namely, without the source and dissipa­
tion (15]. 

.8E 1a'E 
'8t +:tax' = nE, 

a'n _ a'n -' 2 IJ
2[E[2 

8t2 • 8x2 - 8x2 • 

Transformation to the polar coordinates E = pe"~ leads 

1 
Pt = -7,/XP:r:z- P::!Pz' 

,__1 1, 
'Yt - 2PPrz - 2<pz - n, 

11tt - n= = 4PP:r::t: + 4p!.-

Here functions E = E(x, t) and n(x, t) describe the electric field and the plasma density, 
respectively. ' · 

We use the Wh,alquist-Estabrook method under the hypothesis 

{ 
fr = x1n,+F(n,o/,pj, · 
G = x1n,+G(n,¢,p,¢.,p,). 

Then the compatibility condition (2) yields 

' F = x,n,+(x,sin<P+xaCos<P)p+x,p2 +(x.,x,jn+xs, 

G = x,n, + ~(x, COS<P- x,sin<P)P, + 4X,pp,- ~(x, sin<P + ;;, COS<P)p<p, 

: 2 +!([' '] [' ']. ) +(1[. '] 2·[- '])/' -x4p cpz 2 x2,xs coscp- X3,xs smcp p 4 x2,x3 + x1,xs p 

+[£., x5]n + x6 • 

It leads to the following defining reiations having the form 

[£1,£,] = [x,,x,J = [x,x,] = [x,,x,] = [xa,x,] = [x,,x,J = [x,,x6] = o, 
[£1, [x,; ;;,]] = [x., [x.,x,]] = [£, [x,, £,]] = [x.,[xa,xsll = o, 

[x,, [:i:.,x,]] ;= [x,, [x.,x,]] = [x,, [x,,x,]] = o, 

[x,, [x,, x3]] = [x3, [~,. ;;,]] = o,' 
[x,, [x,, x1]]- [x,, [x,, ;;,]] = o, 
[x,, [x3, ;;,]] + [x3, [x,,x,JJ = o, 
[x,, [x,,x,]]- [x,, [x,,x,]] =·o, 
2[x,, x,] + [i,, [x;, £,]] + 4[£5, [:t,;:t;]] = o, 
2[£,, ;;,] + [x,, [x,, £,]] = o, 
.2[x,,x,] + [x,, [x,,x,]] = o, 
[[x,, ;;,], [:;;,, ;;,]] = o, 

[[x., ;;,], [x,, ;;,]] + z;;, = o, 
[[x,x5], [x3 , £5]] + 2£3 = o 

for six generators {X,}(l SiS 6). 

· 5.2 Prolongation Algebra 
. . 

To inyestigate the above defining relations we applied our implementation of the algo-

rithm of Sect.3.4 in Reduce and discovered that 

X2=X3=0 

and the Correspollding prokmgat~on Lie algebra is a finitely dimensional one of di.men­

siOn nine, with the following structure: of the basis e!enie~ts 
/ 

e1 = X1, e2 ·= X4, e3 =· Xs, e4 = _Xs, 

e~ = [:i:l!Xs], es =[X:~, is], e1 = (X4,Xs], 

e, = [x,, [x., ;;,]], eg = [x,, [x,, x,]] 

and their table of non-zero commutators 

[ell e3] = es, [e1, e4] =_ es, [e2,_e4] = e1, 

(e3 ,e5] = -1/2e7, [e3,e6] = e8 , [e3 ,e8],;, -1/2e9, 

[e4,es] = e8 , [e.,e6] = -1/2e7 , [e4,e7] = e,. 
The computation with our implementation in Reduce took about twO hours on· an 25 
Mhz MS-DOS based AT /386 computer. . 

6 Conclusion 
One should note that another method of algebra:ic manipulation over the finitely pre­
sented Lie algebras, described in [81 and also implerne"O,ted in Reduce, provides much 
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better timing for the exaniple of Sect.5. One of the reasons of a relative slowness of the 
algorithm described above is, typically, a very rapid growth of a number of the recip­
rocal phrases with increase of the If:iOnomiallength. By 'this reason the computational 
process is forced to restart repeatedly. 
Now a new version of the algorithm is under develOpment [16] which allo~s to avoid 
much ·of that trouble and to construct the basis elements as well as their commutators 
using the Lie differentiations of the.defining relations together with their mutual reduc­
tions. It looks like quite sinlilar to an algorithmic scheme. of the involutive approach, 
proposed in [17] for the commutative algebra. A~ imPlementation Of the new version 
is to be done iri C, and t~e run of a preliminary C code hav~ already shown its much 
Wgher efficiency. 
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