


1 . Introduction

In fecent years one can observe the keen interest to computer algebraic aspects of com-
binatorial algebra (1]. Under the latter one usually understands analysis of algebraic
objects given by generators and defining relations of the polynomial form. In the com-
' mutative case quite a number of universal computer algebra methods and tools have
been designed to deal with multivariate polynomial systems, first of all, those based
on Gribner bases techniques 2], o - .
‘Though the concept of a Grdbner basis has been generalized in different extent to non-
commutative algebras [3] (see also review paper [1] and references therein) the area of
its practical use is still quite restrictive. As it shown in [4], the use of non-commutative
Grébner bases method proves out in a class of algebras, called in [4] algebras of solvable
type, which can be considered as intermediate between commutative algebras and
‘general non-commutative ones [5]. '

Unfortunately, analysis of Lie algebras cannot generally be reduced to algebras of the
solvable type, except finitely dimensional Lie algebras whose enveloping algebras are
just-of that type.- On the other side, the problem of construction of finitely presented
Lie algebras, whick given by a finite set of generators ‘and defining relations, is of great
practical importance in the context of investigating the algebraic structure of non-linear
partial differential equations in the framework of Wahlquist-Estabrook prolongation
method [6]. Different computational aspects of this particular problem and a number of
effective algorithmic procedures have been implemented in Reduce considered in [7],(8]. -

In present paper we describe an iterative algorithm for construction of basis elements
of a finitely presented Lie algebra and computation of its commutator table. This al-
gorithm can be considered as the further development of algorithmic ideas of paper [9].
In addition to the given set of generators and relators we introduce a grading of (non-
associative) words by their weights. As a first step of the algorithm the initial data are
transformed to the special form called genetic code of a Lie algebra to be computed.
Then the algorithm provides an iterative procedure for computation of all the basis )
elements of a given weight in terms of those of less weights modulo the Jacobi identities
and relators. As an illustration, the defining relations are produced and the prolonga-
tion algebras are constructed for the Korteveg-de Vries equation and for the system of
equations describing one-dimensiona! Langmuir turbulence. The proposed algorithm
has been implemented in the Rlisp language of computer algebra system Reduce [10].



2 Bases of Free Lie Algebras
. '2.1 Definition of a Free Lie Algebra

~

Let K be a field, X = {z;,7,,... 1 Tn}-be a:, finite alphabet and ¢ be an empty word.
The elements of X are called free generators). ) ‘

Following to [11] put Lo = e, [',(X) = X and define F{X)(n>1) inductively as the :

set of all words (monomials) of the form
7 (u)(v), vel,, vel,, st+r=n.

If, sa&, s =1, we write simply y(ir),_or' even u if also r =1.
Put - : .
| - T(X)=U2, T (X)

dgd turn D{z) into 2 (non-associative) groupoid subject to the operation
Couev = (u)(o)

Definition. An element v € T,(X) is said to have degree 3, Le. deglv) =s.
Definition. F(X) is said to be a free algebra on X if it is a K-algebra of ['(X).
It means that p € F(z) is a finite sum ) ' : K
P= ou, o, €K, _
i : uer - ' -
and 'the?niultiplica.tion in F(Xx ) extends the _;hul_f,ipliqation'ixi F(X ) as follows
o '(«Eauu)(Z.va) =E auﬂvu';u-. ’ -
T el vel . uvel . Co ‘
Remark. F(X)isa gra.deﬁ algebra \%fith the homogeneous ,_e_!enién'ts of degree nrbeing
those which are linear combinations f words of length n. _
This gra.'ding_ can be sharpenéd by introducing a monoid homomorphism
- V_V : (T(X): Rl e) _"" (N: +1'0) ’ i .
where T(X) being the semigroup of words in the alphabet X with unity e, induced. by
the groupoid homommorphism ¢ : I{X) — T(X) with the identity map ¢ X — X,
Definition. If W is g grading on I'(X), we refer to the value w; = W(z;} as a weight
of 2.~ - S .
We assume that a polynomial is graded by its monomial of the maximal weight.
Let I be the two-sided ideal of F(X) generated by the elements of the form (with w-v
denoted as [u,v]) ’ .

o, o
7 { ET(:]ﬂ,w)=[[u,'u],'w]+[[v,w],u}+[[w,u],,,_,] "v-vwe (X) ,

‘Definition. The quotient algebra

L(X) = F(X)/I
is called the free Lie algebra on X'.

2.2 Basis Family and Hall Basis |
Deﬁnit;ion {11] A linearly ordered (w.r.t. some drc.ler <)) set R = R(X) C ‘I‘(X) C
L(X) is called a basis family of L(X) if _
1. XCR
2. w=[u,0] € Riff
(2) wveR

(b} u<v Y% skew-symmetry _ -
(¢} if v=[w,v] thenu>v % Jacobi ide_nt;t_y‘ﬂ

8. w=[uv>u

The further specification of the above basis fami

ly is based on the choice of the mono-
i iding the condition 3. -
:atﬁri:;z?;dzisider one of possible or.d?rs,‘ and the correspon.ding ba.?is ;:a]lidta
Hall basis [13]. For the compactness of witing we shall often omit the Lie brackets
assuming their right-normed arrangement, for instance
- Ty = [z, [z s, z]])
(.’By).'szy = ([, 9], 2, [z, 9]l

" Let 3 > 23 > ... %, > ¢ end u;,v; € [(X)

Definition (Lexicographical order). ] |
U .o Uy pen U2V G T (wy =y, F ST Atier > via)

" Definition (Graded Lexicographical Order).

- U= Ul ... Uy Pgler U = V{V2... 0 z‘ff_
degl{u) > deg(v) V (deg(u) = deg(v) A 4> v)

B Remark. This order-provides, obviously, the condition 3 {w = uv > v} in the basis

* family definition. The corresponding speciﬁcatiég of the basis family cfazlledha fiﬁll )
basis [13]. Below we use a slightly more general concept of 2 Hall basis® when the
words are graded rather by weight than by length. : .

‘IFor riore details on free Lie algebras see the recent monograph [12].
2We call it Hall basis as well.




2.3 Example -
: P . . - The asymptotic behavior

Let L(z,y, z) be a free Lie algebra with three free generators - : ‘ N, m {m — fized)
. - : . L. '~ m 00, n— fiz
n

rT<y<z :

: . . . . . revedls a very fast increase of N, with m. Though the presence of non-trivial defining

Then the Hall basis of L(z,y,2) is E ; relations (Section 2) dumps the growth of basis elements, their computation even for

i : ] - ’ o relatively small m, n can not be usually done in practice without the use of a computer

Degree _ Basis Elements ' o for algebraic manipulation.
b ' rly<e< o . . ' ) L
5 Tl <zi<yr< — 2.4 Commutators of Basis Elements and Jacobi Identities .
3 <zy<zlz< yey <yrz <y°z < zxy <zrz<ayz< . ; Let R(X) be a basis of a free Lie algebra L(X) and u,v € R(z),u < v, w=[u,7].
<Y< < yrty < yriz <y Iy < Y1z < 1z < 22 y = ‘ : Definition. w is sald to be a proper pair ifw € R(X). Otherwise, if v = [v}, %] and -
4 % 2%z < Yoy < oz < 5z < 2 oy < Pz < 2 yz < u < ¥, then w TS said to be.‘an. wnproper pair. . . -
o To express an improper pair in terms of the basis elements, i.e. to determine the
< {zy)oz < (zylyz < (a2)yz < S structure constants of L{X), one needs to use the Jacobi identities. :
----- : - . It turns out that it is sufficient to consider only those identities whlch include at least

one of free generators.
Theorem 1. Let I be a free K -algebra with the condition

. -

The number of eIements of  Hall basts of degree'm for n free genera.tors (n = card(X))

is glven by the following expression ( Witt’s form.ula) (13] s _ VueL: [uu]=
Ny = — z ‘ul(d)nm/d ' _ ‘— \ and let Ja, b € L such that - o .

- ™ dim _ : _ ‘ Vu,v € L: J{a,u,v) = J(bu,v) =0. 032
where d runs through all divisors of n and p{d) is the Moeblus function, defined for Then J (p(a, b) u, v) 0 where ﬁ(a b} is the 'arbitra-ry- (non~associative) polyﬁomial in
deN b.Y u(1) =1, andfor d = pl pi .. i with the primes p; as ‘ a,b.

(d 0, - if % € {1 l} . 3‘ >1, . . Proof. Beca.use b, [u,v] & L, from (1) it follows J (a b, u,v]) = 0. Hencc_e, the straight-
® )= k : forward computation with use of bilinearity and skew—symmetry gives .
o (- 1) Vie{l,...,l}:, , _
The below table contains the numbers N, for dtﬂt‘erent n (n, ' =1,. 47) ", : ) ([, 8], fue, 2]} = [a, [b, [u,v]]] -5, [a, fu, )]} .
. . : : : , = e (b o+ [0l - B (e ul o + [ e)]
o w3 a5 T 7] = | = [l Tyl ol + {1 ul fa,ol) + fi 0l 8,00 o o, b, 21
- - - - [ e : ‘ o : —{lb, o, ], v] — (fos ), (B, 2]} — (B, o, 9] — [z, [B, [, o]
ot jijojotolo 0 0 ‘ o o= (e b)) - (b e, ul)), v +mm@m—whm1
2 J2|1]278(86 | 9o | 18| . T = (o0 o] + [ [l ol]
3.13[3] 818 - -
T 11755 5 48 | 116 | 812 . It means than J([a,b],4,v) = 0 and, by induction, the statement of the theorem is
i 204 | 670 | 2340 valid for any polynomial p(a, b} O.
0] 40 | 125 [ 624 | 2580 | 11160 - _ Corollary. If in a free algebra L{X)
6 6115] 70 {3151 1554 [ 7735 | 19544 ‘ >
7|7 | 21| 112 | 588 3360 | 50990 | 117613 Ve e X Vv el Hauv) =0,

‘then Vu,v,w € L: J(u,v,w) =0, ie. L isa free Lie algebra.



3 Defining Relations
3.1 Formulation of the Problem -~ .

Let L{X) be a free Lie algebra over K, X ={z,...,7,}, and let P = {p1,...,pm} be
a finite set of (Lie) polynomials jn Xiie p=p(X) e I(X), i=(1,... ym}
Definition. If L is a Lie algebra generated by set X which ohey the polynomial
equations (defining relations) - C o -

p.-(X)_; 0 (i= {1,,'.m}),

Below we study the foilowifi‘g fundarmental problem:

‘ then L is called 2 ﬁnit'ely generated and ﬁnitely deﬁned or finitely presented,

" ‘Problem. Given finite sets generators X and relators P find a Lie algebra L such that

X € L under the conditions pi(X) = 0, p; & P.
In other words, we search for solutions of polynomial equations in the class of Lie

- algebras. S :
Such a problern ariges, for example, as the most, principal part of the integrability anal-

¥sis of nonlinear partial differential equations by the Wah!quist—Estabrooanethpd {6].
Different computer algebra aspects of the problem w.r.t. this concrete application have
been intensively studied in (7, 8, 9]. We consider the problem in its general form, though

illustrate the approach to its solution at the examples from that particular application
feld. : , - _ . ,

3.2 Exaniple 1. Deﬁnfng relations for the _Kdrte\_reg-de VVries' 7

prolongation algebra "«

In the framework of the'Wah_Iquisthstabrook method a given ronlinear partial differ-
ential equation, for instance, the evolution onc of the form : PR

W), w=afhe)

- is considered as the corripatibz‘lz’_ty condition

oF 8¢ . . . |
o e G FI=0, L (?}

for a system of linear differential equations of the form .

{ Vo= F(u; Uz Ugs, .. ),
g.t = G(’U., Upy Upz,y .. ')g}'

‘where F are called by pseudo-potentials,

The explicit representation for F Gis sought in the form which leads to the defining
relations in X;, ¥Y;. )

As the first example let us consider the Korteweg-de V}'i% (KdV) equation
Up = Upgzy — 3“’”-:‘
Pefl), o
G = G{u, ¥z, Use).

and assume

Substitution of (3) into (2) gives

oF 06 _ 86 - 8G ap o
(u“z —'3uu=)6_u _Aut'ga-uzz'az uxa:xaun +[Gs ]

Setting the coefiicient at Ugss in (4) equal to 2810, We obtain

8F  aG

oy _ &y,
3?1! au:ﬁ'

and', therefore, L
' . é = un%uF~+ Gilu,uz).
Then (4) is rewritten in the form ' o | | _
SRR V< S L S TR TR

—,auuz?é{- _ﬁzuzz'é‘u'a‘—uz'w—juzzauz +u:¢=[au: l [ 1y ]

Selection of the coefficient at u,. in (5} yields

32ﬁ' 4G, or ﬁ-] =0

Uy = w— + {7
. ~ . auz auz 8“ . o
Hence . 5 o -
' : Fo8G | 4 oa _ 6
! \- —3uuz%¢f'" Uz aul +[G1?F] =0, . ( )
sud - - .‘“ 123213' ~ OF .

e U Ga(u).
_ G = ~3% 5 -_i-uziau,lj"] +¢ z(tf) |
Substitution of this expression into (6) gives
O a2 2lE - u b A G EI =0 ()

. \ et
St T rlee T
Collecting the coefficlents at +2, we come to the equality
| &5
=0,
oud
.



and, heﬁce,

F=X+ uXy £ w*Xs. ’ (8)
After that, equa.tmg in (7) the coefficient at u2 16 zero, we obtain
RE
(g F1 =0
or [Xg,XI] + u[ X, Xz} 0. The latter equality is eqmva.lent to
1%, X6] = [%e, X5] <o @
Then, the next coefficient, i.e. one at u,, in (7) leads to the equation 7
p— G2 ‘
3u(X2 + 2’-‘.£X3) -—_t [[Xz, X1] X1] + ‘u-[[Xg, X}] Xz] =

wh.lch y'xelds the foﬂomng exprwslon for Gg

Gy = -3 2Xz 2u3X3 +u[[X2,X1],X1] +: -u [{Xz,xﬂ Xz} + X, ' (10) -

~ Further, setting 4, =0in (7), we find
) . [GZ:
Takmg (8-9) fato’ account we find
"’“ [xz,Xll —’U[[[Xm XI] Xx] Xﬂ —uz[I[Xz’Xﬂ 2, %) -
: 51{ 2[[[Xa0 K}, Ko, %) - 5 3[[{X2,X1],X'2LX2] — X R -
R, K4] — (R0, 2] =0 o

Collecting the coefficients at u*,0 < k < 7
4 and using the J
symmetry, we obtain the deﬁmng relations - e aCObl ldentltles imd shovr-

(X1, Xa), Xa), Xa} =

3
—§{X1,X2]+ {[[Xth 1, X, X2]+{X3,X4]'"

[[[Xnkz]:)zﬂ;xﬂ+[X2,X4] ,—. 0, . )

| R, X = (R0, Re] = (Ko, Ko =0
with # and & repres:é\ﬁted as -

F= }hﬁ -_}'-MX'Q +'u2)2'3

5 2 o army boan .

G= Xi+[Xs Xi], Xi] +3 P Xz, %), Kol — gu2ff2 '

3 A ~ A ~ -~ ‘ ~
—2u'Xa — uﬁXa + 'u;[Xg,Xﬂ + Uz ( Xy + 2uX3).

Then

Before constructing the Lie algebra solutions, it makes sense to simplify the defining
relations {11) as follows.

Theorem 2. Let L be a Lie algebra. If 2, u,'u e L and [z,4] = [z} = 0, then
[z, P(u,v)] = 0 where P is any Lie polynomial in w, v

Proof. Under the conditions of the theorem J(z, u,#) = 0 implies, obviously, [z, [u,v]] =
0. Hence, by induction [z, P(u, v)=0 O

Corollary. If an-element z € L of a Lie algebra L commutes WLth all the generators,
then z belongs to the center of L (z e Z(L)). '
Using an computer, one can show ‘that the polynomial

1

[[{le X2]s Xl}: X2] + [Xl) X2]
commutes with {Xl, X2, X3, X4} By this reason we can put -

(1% X, X, Ko [XuXa]

v P [Xs, X1l = [Xs»Xz] [X31X4] 0.

It justifies the settmg X3 = 0 as generally accepted in the Kdv a.na,lysns Therefore,
we come to defining relations of the form ‘

[{(%, o), Xa], Xo] = 0,

S ‘wmmmmwmw |
[[[X11X2} XI] Xl} + [X21 X-l] - 0 7 V ‘ (12)
[X1,X4] =0 . S ey

3.3 Genetlc Code

. To use an algorithm of the next subsectmn, the 1mt1a1 data, ie. the set of generators

and relators, must be

e graded by the welght has been chosen in advance, 85 described in Sect. 2 1-2 2,
that induces the corresponding graded lexlcographxcal ofdering;

. supphed with all the basis elements and the commutator relations as they a.re'
resulted by verification of the Jacobi identities for all the triples of summary
weight not exceeding the maximal one among the generators and relators,

Deﬁmtlon "n such a way the graded, arranged and extended set of generators and
relators is said to be a genetic code (GC) of a Lie algebra to be constructed.
Example 1. The genetic code for the prolongation algebra of KdV deﬁned by the
relations (12) can be represented in the table form



/ Weight | No.of basis [ Genetic Code A
" elemnent .

1 1 X

X
[X1, Xo)
XL 1, X
[%2, [ X1, Xa]
X, '
[Xls[Xlr{XhX2m ’
(X2, (X1, (X1, Xol]] = (X, Xo]
) %0, [Xe, 16, Xa]l] = (X0, X
4 | e, e, 12, X)) = 0 :
[X13X4] =0 .
[Xﬂl X4] = _'[Xln [Xl: [Xh Xz]}] '

«w
~ O v o] W o

In the last ,columz.:l, in addition to the initial set of the graded generatbrs and relators
there are also their Aalgebrai,c consequences modulo Jacobi identities of weight 4.

Given GC, it is possible to proceed the furth ent wi
_ : er supplement with the algebraic cons
quences of hlghe; we;ghts. Below an algorithmic prescription for doing that is given.e-

4 Algorithm Description
74.1‘ - Basic Structures | ‘

Let R be a basis set of monomi ls cti i
s : nomials for.a. Lie algf-:b;a. L unde? construction. :The grading
o - R=uR=y(x'us),. - =’ '

where X and § are sets of ge basi i roper pai
il  set o ge‘nerators a{ad the_ bas‘ls‘element‘.s being the proper pairs,
Using the order h: ( i \ auxiliary lineasly ¢ | set 73
b g the order has been chogeq we Introduce anla.u.mhary yuearly ordereq set R, suchu '
o - fi: R—R.

isr a bijective map. Hence, o . -

B= UIRI = U;(X" Ug't) ;

and ‘

1 X, if
@)= { PR

(ri" Tj) € Sr 2f

Set R can be considered as a numbering of R.

‘10

Definition. A proper pair is said to be a bound one if it is éxpressed as a linear com-

_ bination of basis elements by virtue of the Jacobi identities and the defining relations

and a free one, otherwise. .
One should note that a Jacobi identity verification for a higher weight triple may
produce an extra relation for the lower weight Lie monomials which have been eatlier
considered as the basis elements. We call such & relation a reciprocal phrase, because
it must be takemn into account in phe further computational steps which are forced by
that phrase to start again with lower weight level to reconstruct all the next levels. In
the below algorithm such reciprocal phrases are accumulated in the special set P.

Let B =UB is a set of the bound pairs. It means that
beB iff b= oin, €K, €R
! i ' .

Denote by A the map h : . B — Span({R,K) and introduce an auxiliary set H
accumulating all the intermediate proper Lie pairs. In the further analysis those ones
which are bound are moved from H to B. Then an algorithm for computation E® in
terms of R* (k < r) can be written as follows. ' :

4.2 Main Aigorithm

Input: Uk{ﬂ.Rk! Uk<ans Uk(nB,;; U;;.(,J.I(Bk_);
Output: R®, S*, B", h(B“), P4
H*=0, 5"=0, B"=0, MB")=0, P"=0;
for each z;€ X such that w(z)<ndo
li=n—w(z); . o
for each z,€ X'do = % words of length two
if & <, then H":={(z:,z,)}UH"
else if % > £, then H™:= {{(z,,z)}UH™;

1

end; . . .
for each 1= (rig,ry) €8 do
if . 5".7; = F]_q.- or’ 57; = ‘ng then
' if % <7, then H™:={(m,n)}UH"
else H":= {{r,,z:)}UH"

% triples with two the same generators

else -
if &< flg or (ﬂqi <EH< fgq and Tig € S)

or (& > faq and rig, 1y € 5) ) '
then Jacobi(zy,riy,72); % J computes JH, JB, JhB, JP
Hr = H*UJH;, B":=B"UJB; k(B"):=h{B")UJhB;
replace JB in k{(B") by JhB; ’
Pri=PrUJP); e -

end; ) :

for each r,€ B do

11



if % <« 7"'1q or (flq <E < ?“'24 and ,T'lq € S)
or (% > fy and 4,1, € 5)
then Jacobi{z),ryy,1s,); '
. H:=H"UJH; B":=B"UJB; h(B"):=h{B")UJhB;
~replace JB in R(B") by JhB; ‘ ‘
FPt:=P*UJP); -
end; .
end; o
Sh = H*\ B §"= f(S™); - . ‘
for each r,€S" replace r; in A(B*) by #,.

On should note that Theorem 1 is essentially used in the body of the algorithm. Indeed,
in the main loop only generators are selected together with the Lie pairs have been
obtained in order to construct new triples for the Jacobi identity verification. Three
internal loops of the main one create the pa.irs/ of generators, the triples with two
coinciding generators, the triples of the generator and free proper pairs, and the triples
of the generator and bound proper pair, respectively. Unlike the two first internal loops
where no necessity t6 verify the Jacobi identities, the last two ones contain subalgorjthm
- Jacobi, presented below, which does such a verification. In so doing, generally, new
elements for the sets H, B, h(B) and P are produced by subalgorithm Jacobi and
collected in sets JH, JB, JhB and JP. o : :

4.3 Subél_gorif;hm Jacobi

Input: v,v,we R,
- Output: JH, JB, JhB, JP S _
% These are sets of all the proper pairs, the bound pairs
% and the reciprocal phrases, respectively, arising at -
. % the Jacobi identity verification for 4, v,w"
JH:=0; : * o
Arrange(u, vw); ' - % the order is to be % < ¥ < @
1 = Simplify((u, v), w); o : )
P2 = Simplify((v,w), u);-
P3 := Simplify((u, w), v);
Pi=p+p2—p3 L
JH := JHUProperPairs(p;)UProperPairs(p,)}U ProperPairs(p;);
. % collection of the proper pairs ‘ '
lip := LeadingImproperPair(p);
% selection of the leading improper pair of P
if lip#0then JB := {lip}; JhB := Solve(p, lip);

12

This subalgbri_thm includes the following modules

‘Simplify ({u,),w) is & recursive procedure which

% solving equation p = 0 w.r.t. lip
else (lpp :=LeadingProperPair{p);
. %, selection of the leading proper pair of p
if Ipp# 0 then JB:= {ipp}; JhB := Solve(p,ipp);
% solving equation p = 0 w.r.t. lpp .
else JP := {p}. o ‘ . -

Arrange (u,v,w) does arrangement of the triple_: {u,v,w)} in ascending order of their
numbers € < ¥ < . - . :

i

» Applies the bijective map f to the irfternal pair (u,v) if (t{, v) € § and the
map h otherwise, i.e. when (u,v) € B. :

e In the latter case one obtains a linear combination of the pairs which are
transformed, if necessary, to those with the less first element than the second

one. A , _ _
o The first step being applied to each pair has obtained at the second_ ste;?,
"and the process continues recursively wntil the complete simplification is
- achieved. ‘ : :
ProperPairs (p) collects all the proper pairs of Lie polynomial p.
i.eadiﬁglmproperPair (p) selects the leading improper pair of (p).
LeadingPrbperPair (p) selects the leagiiﬁg proper pair of (p). -

Solve {p, k) resolves the equaﬁon p = 0 to express term k of polynomial p through
. other its térms. . ] . -

The described algorithm is an im;')rov‘ed version of that of paper [9]. The main im-
‘provernent is based on the use of Théorem 1. It allows to decrease sharply the namber
. of evaluated Jacobi identities at large number N of basis elemerllts. When (N — )
at fixed number of generators n it means the following reduction of the number of
identities under verification

()= (%)

If one applies the above algorithm to compute the structure of next weight lcvel' for
the KdV prolongation algebra then one obtains as follows.

13



4.4 Example 1 (continuai;.ion)

Basis elements and their commutators of weight 5

No. | Basis Elements and'AIgeb;aic Consequences

8 1, PG, X0, X0, X))

9 X X, (X, (X0, X)) _ .
(X3 Xo, [ X0, (X3, X)) = —[ X, [Xq, [, [ X0, Xa])]) + (X2, [X1, X3))

(X0, 2, [, X, Xall] = —[Xs, (X0, X)) .

[[XlaX2LX4I = "[Xla [Xls [Xll [X11X2]]”

A

The further cbmputations up to the elements of weight 20 allow one to guess the

following recurrence formulae determining an infinitely dimensional Lie algebra [14]
* and then to verify that it is indeed a solution of the problem ( 12) checking up a finite
number of the Jacobi identities. oL _ '
Basis of Lie algebra: X;, ad Xi(X2) = Y, (Yo, Yoeur] = 2, X, (R} .
Lie algebra:
Pt =Y, XX =0, (X, 2 = Youe., [¥,2) =0 ,
[}6: Y2k+1] =2y, [YUrY%] =Y , [Ym Y;l =0 (?’H'P =2m) ,
(Yo Yol = (1) Zn + (- 1fYom (n+p=2m+1), au, Z) = —Zppn ,
-m‘s Xd =~Yiys , [Yépi Zq'] ?'_}/QQ+2P—,1 3 [Zw Zk] =0 ) [X_‘hzk] = yi-’kjl-3_ r
(65, {mly, {n)e, Gk S A . ' '

There are 6'dliff'e‘rent types of basm elements
V X;!X4;%JEn!nk+1’.Zq"

By this reason, it is sufficient to verify 38 Jacobi identities for all these types of (indexed)
basis elements, - . . . .

Note, that here ‘we obtain a number of the reciprocal phrases, which arise in each row

of even weight, starting with the 10th row. Moreover, each time one must return back
Jjust in 4 rows. For instance, the first reciprocal phrase, arising in the row of weight 10,
has the form e o :

[Xﬁs [XI’ {Xlr [XI) [Xls XZ]]}]] = [Xlx [Xli [Xls XZ]” -

Having the leading word {monomial) of this phfase of weight 6, we are obiiged to come
back to the row of weight 8 and start the computations once more, taking the above
expression into account . ' - : :

If we are lucky in introducing additional defining relations which cut the further increase
of basis elements, then we can find a finite-dimensional Eie algebra as a solution of our
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proble;m The simplest is to assume that some basis element is a finear combination of
the previous ones. For instance, if to introduce the refation

i=0

AB
Y7=ZOAYU

then the Jacobi identities verification shows that
T = Qg = 0y = Qg = 0:‘ o, 03,05 € C.

It leads 1;(') the following 12-dimensional Lie algebra: _ .
X1, Yol Y=Y, 1%, 5] =Y =Y, [X, ¥ = ¥,
X )Y =Y [Xl Y-I] _}’21 [Xleé] YS: [XJ.:}’S] 4, A
%Xi, Y;% = Yg: [X]_:Yé] = ﬂ.}’s + by;i I CYh [Xh ZO] = Yi:\ [Xls Zl] = 1/3;
[XI,Z2] '_“),S:l [X].:X&i]‘: 0; co ' { ] Z :
- - =Y, Yo, %] = %,
¥ ’Y] = ZO) [1/0)}/2] - },ll E}’Oy },3] Zl: [YEH 1,4] 3 ‘: .
%}%’Y;] = },53 m: ZO] = 0’ [}/01 Zl} = 0’ [Yi:')s Z?] =\01 [Y(-l) X4] = —ﬁ; -
= =0, [¥i,Yil = —Z + Y,
Y:Y.z"_zl'i'Y-Z: [},1:}’2]— Zl+1,2: [K.,Y3] AOI [ 1y ¥4 o
EYLY:% =101 [Y-l))-/l-i] = —"GZQ +1,5 - bZl. ._.CZO:_[Yi.! ZO] = _ZUl [}’].s Zl] = _Zh
[Y1,Zz]=—zz, [}fll“X‘I]:"nlr . ) )
El@!n] = Z2 “Y;h [Yz,Y;l} =‘Os [y’ﬂ,Y-ﬁ] = aZ2 _Y-S - bZ], +CZo,. {}’2,}’5] = 0, _
[Y2:ZO] = —Kl [1/21 ZII = _},39 [Y-ﬂj Z?] = —Y;.S) [}/2: Xd] = —1/51__ -
{Ya,Yi] = —aZa + Y5 — bZy — cZo, (3,4} = 0, [V, Ye] = ~(a? +8)2, + a¥s
—(ab+¢)21 — acZy + cYa, (Y3, 20} = =2y, [Ya, %)) = =25, -
(Y3, Zo] = —aZ; — b2, — cZo, [¥31X4] = —¥5, . - ‘
[V, Ys] = (0 + b)Zs - a¥e + (ab + ¢}, — bYs + 670 — Y3, [¥a, 4] =0,
NarZ = %, [ 2 = Yo, Yo Dol m ~aYo— D= Xy,
Yo Xi) = ~a¥s—b¥a— c¥i, © . oot
‘ : — (a%- )2, + (ab+ QY3 ,
Y5, Yo = —(a® + 2ab + )2, + (& + )Y — (a®b+ ac + b + ¢ _
[ -5" 6] —(6(02 + C)Zo + U:CYz, _[},5, ZQ]= -Zza [}’5, Zl} = —(IZg - bZl - CZU, .
(¥s, 22} = —(a® + b)Z2 — (ab + ¢)Zy — acZo, (Y5, Xy] = —a¥s — bY; — ¥ .
- 3 = — oY, (Yo, 2] = —(a® + B)Y3
o) = %%, Yo, Z1] = —a¥s — BYs = ¥, [¥r, 7] = ~(a? + |
e ot W= (a4 Yo (it e act

[Z0,21) =0, [Z0,25] = 0, [20,);4} =Y;,
21, 22) = 0, [Z1, X4 =Y, :
[Za, X4] = —aYs = bY; —c¥;,

which is a patticular solution of (12).

-~
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"5 Example 2. Prolongation Algebra for Partial

Differential Equations Describing One-Dimen-
sional Langmuir Turbulence

5.1' Defining Relations.

Investlgatmn of Langmuir turbulence in plasma excited by strong electromagnetic fields
is a very difficult physical problem. It is a topical one in many different applications

connected with the necessity of the plasma heating by high ‘energetic radiation and, .

first of all, for the laser thermonuclear synthesis.

"The process is described by the following system of nonlinear partial differential equa-

tions, being the smpl&et one for the problem, namely, without the source and dLSSlpar-
tion [15].

\$#E  &n &n . PP
| 55 =E) W aE T e
'I'ransforma.tiqﬁ to the polar coordinates E = pe™ leads -

1
= _EP(P:J: had P:.-(Pz,

1 1
¢ = Epm - 5903 —n,

Nt = Tigs = 4ppos + 42 -

Here functlons E= E(a: t) and n(x t) dascnbe the electric. ﬁeld and the plasma den31ty
r%pectwely ’

We use the Whalqulst—Esta.brook method under the hypothesm :

:Eln?: + G(n: ®, £ 0z, P:;)'-

G
Then the compatibility’ condition (2) yields

-

Eyny + (32 Sm(P + &3 COS‘P)P +&40% + [31;1'6]“ + 375,

hq!
il

E10, + = (:1':2 cosp — #3sin <p),o,, + 4&1pp, — —(a:z sing + £5 cos (p)p(pz

oy
i

~Z4p%0, + 5({&"2,-’65} cos ¢ — [£3, &s] sinp)o + (Z[wz, 3] + 2[81, ﬁs])p '
+[£‘1,:%5]n + Zg. -
It leads to the following defining rel'a,tions— having the form
(&1, %a] = (&1, &3] = (21, 84] = (B2, 84] = [£3, 24) = (&5, 54] = [f15,26] = O,

[£1, [5:;;@6]] = [£1, (21, 25| = [£1, (@2, 5] = [21, [, 55]] = 0,

(54, 1, 26]] = B2, [£1,26]] = (B3, (B0, 36]] = 0,
(&2, (B2, 84]] = (s, (En, 82] = 0,

{5, 35, 24]] — [0, [Fer £1]] = O,

[5-\72, [5?3: 535]] + [ﬁ3’ [‘%211‘:5]] =0,

By B gl - s s =0, o
284, 26) + [Bs, (B2, 8] + 4, [3185]] =0,
s, &6} + [, [£2, 25} = 0,

2(2, B} + (85, 35, E5]] =0,
(i£1, %], [£1, )] =0,

([£1, &6, [£2, E5]] + 282 = 0,
[{-’51,%] [5”3: I5]] +28; =0

for six generators {231 <4 < 6).

5.2 Prolongatmn Algebra

To mvesmgate the above deﬁmng relations we a.pphed our implementation of the algo-
rithm of Sect.3.4 in Reduce and dxscovered that

,Ig=ﬂ:3-—0

’ and the corresponding prolonga.tlon Lie algebra is a ﬁmtely d1rnens1onal one oE dimen-

sion nine, wi th the following structure of the basis elements
- - "

e = I, 82—14, 63-—1:5,&3 = T,

€ = [51’1:5]: € = [xll£6]1 er [ 376],

' 8= [55: [E1,26ll, e = (2, [504,36]1
nd their table of non-zero commutators )
fer,esl = €5, [lened =es lenedd = e,
. les 5] = ~1/2er, {eg,es] =eg, [€a,es] —_—1/269,
[ea,e5) = €5, les eq] = —1/2er, [es, €1} = €0

The computation with our implementation in Reduce took about two hours on’'an 23
Mhz MS-DOS based AT/386 computer.

6 Conclusion

One should note that another methed of algebraic mampulatlon over the finitely pre-
sented Lie algebras, described in (8} and also implemented in Reduce, prov1des much
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better timing for the example of Sect.5. One of the reasons of a relative slowness of the
algorithm described above is, typically, a very rapid growth of  number of the recip-
rocal phrases with increase of the monomial length. By this reason the computational
process is forced to restart repea.tedly

Now a new version of the algorithm is under development {16] which allows to avoid

much ‘of that trouble and to construct the basis elements as welt as their commutators

using the Lie differentiations of the defining relations together with their mutual reduc-

tions. It looks like quite similar to an algorithmic scheme of the involutive approach,

proposed in [17] for the commutative algebra. An implementation of the new version

. isto be donein C, and the run of 2 prehmlnary C code have already shown its much
higher efficiency.
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