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1 Introduction 

1. 1 General survey 

" Dedicated to the blessed memory 
of unforgettable dear 

Nikolai Nikofaevich Bogoliubov, 
with deep gratitude 

for constant support and kindness." 

Impressive development of the theory of dynamical systems in the XX-th century (see, e.g. 
monographs and surveys [1]-[17]), well known as a powerful and wide in its applications 
mathematical instrument, has provided prerequisites for integration and disc?veries of 
relations of this part of mathematics with other ones such as differential forms theory 
[18], algebraic geometry [19], [20], number theory [21], [22], automorphic forms theory 
[23]-[25], theory·of functional equations in single and several variables [10Hl2], theory 
of geometric invariants [26], mathematical methods of classical mechanics [3], [27] and 
others. 

This paper is concerned with an interesting example of relations between rev~rsible 
dynamical systems of the Cremona type [28] and the transcendental number theory, more 
precisely, the 7th Hilbert problem [22]. These relations are very important for solving 
the difficult nonlinear problem of the Chew-Low equations of p-wave -rr N-scattering in 
the static model [32] within the dispersion approach in the strong interaction quantum 
theory [33]. · 

We hope to discuss in subsequent papers a very interesting problem of the dynamics 
of rational quadratic Cremona mappings in the context of the general problem of integra
bility, which is very topical [34] in view of a new concept - the complexity of a dynamical 
system, introduced by V.I. Arnold [35], [36]. 

Reversible dynamical systems (RDS) are qualitatively very similar to Hamiltonian 
systems [37]-[52]. In particular, the existence of Kolmogorov-Arnold-Moser tori in re
versible non-Hamiltonian flows [37]-[42], [45]-[48] and non-symplectic mappings [40]-[43], 
[49]-[51] has been proved. However, the reversible KAM theory possesses some features 
which have no analogues for Hamiltonian systems [51]. Reversible dynamical systems are 
of great importance in physics, which is a conseque~ce of the time-reversible invariance 
of many physical laws (see surveys [4 7], (52]). 

1.2 History of the problem 

RDS are exemplified by· the Chew-Low equations [53] for p-waves of -rr N-scattering, which 
are the simplest example of a non-trivial model (32], where fundamental requirements of 
the dispersion approach, such as analyticity, unitary property and crossing-symmetry [33] 
are taken into account simultaneously. 
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As is known [54] (see also [55]), conversion to a nonlinear boundary value prob
lem for matrix elements of the S-matrix and introduction of uniformizing variable w = 
rr~1 arcsinw, where w is the energy of the rr-meson in the laboratory system, allow one 
to rewrite these equations as a system of nonlinear functional (difference) equations. The 
latter define a reversible mapping, that is the composition of two involutions: the standard 
Cremona transformation [28] and the cr.ossing-symmetry mapping. Dynamical systems 
(DS) of this type, distinguished only by the crossing-symmetry matrix A and _defined by 
the quadratic Cremona mappings, have been investigated in papers [54] -[72]. Interest 
in integrating these DS is related, besides the physical one, with a problem of integrat
ing general Cremona mappings which, according to the M. Noether theorem, can be 
constructed from different quadratic Cremona mappings [28]. Moreover, such DS do not 
belong to the Quispel 18-parametric family of integrable mappings [52], [73], and were not 
considered in the survey on integrable maps_ [74]. The problem of integrating these two
dimensional DS with the second-order matrix A was solved long ago in [56], [57], but only 
recently the 3-dimensional DS with the third-order matrix A(l, 1) has been integrated in 
[58]. The latter is interesting due to the fact that it has three invariant algebraic curves, 
which provides the Cremona mapping found in [58] with an equivalence of this DS to an 
area-preserving mapping with a fixed Poincare-resonant hyperbolic point. The use of the 
famous Birkhoff substitution [75] and the Moser theorem [76] for such mappings provides 
the non-algebraic integrability of the system [58]. A general approach to integrating such 
n-dimensional DS was developed in [59]. In [54], [60], [61], [fi5], [72], particular solutions 
for the third-order matrices A(l, 1) and A Chew-Low were obtained. 

This paper is devoted to the problem of integrating a dynamical system with the ma
trix A Chew-Low_ The problem has a thirty-year history. In [55], it has been shown that the 
necessary physical solution can be obtained only from the general solution of the problem. 
In [64], it was proved that the system cannot be transformed into a semiseparable, easily 
integrable, form by any Cremona transformation of a finite order. In [68], [69], a differ
ential equation corresponding to the system has been obtained from the consideration of 
the Abelian group of iterations of the initial difference DS. Enough convincing arguments 
were formulated for holomorphy of the functions defining the differential equation, the 
proof of which turns out to be very difficult. On this basis, in [70] the general solution 
of this DS was obtained in a neighborhood of the parabolic fixed point. It was supposed, 
in accordance with [68], [69], to be holomorphic at the point. In [67], on the basis of 
[71] where a functional equation for the functions defining the differential equation from 
[69] was obtained, it has been proved that these functions are not holomorphic and, con
sequently, the general solution from [70] is irregular at the parabolic fixed point and, 
therefore, is formal. 

The next important step in this direction was made in [62], [63], where the first integral 
of the system was derived in a neighborhood of the parabolic fixed point. However, it 
follows from [66] that the parabolic fixed point is an essential singular point for the 
first integral. In this paper, the problem is solved in a neighborhood of the hyperbolic 
fixed point of the system on the basis of Siegel's theorem ([77], see §28) on holoru"orphic 
linearization of a mapping at a non-resonant fixed point. The applicability of the Siegel 
theorem depends on the known restrictions on "small denominators" considered below: 
the inequality 
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is satisfied for all j E (!, 2, ... , n), m; E Z+, 1ml 2.: 2, (C > 0, v > 0), where (.\1, ... , .\n) E 
en is the set of eigenvalues of the mapping at the fixed non-resonant point. SincP th£' 
cig<'nval1ws of the DS undPr ronsideration are algebraic numbers (which is probably a 
typical case'), the problem of '·small denominators'' for the applicability of Siegel's theorem 
is solvc•d by means oft he Feldman theorem on the ernluation of linear forms of logarithms 
of algebraic numbc0 rs. The latter thC'orem is one of the classical results [78], [22] §-1.!0 
whi,h relics upon t lw solution of the 71 h Hilbert problem by A. I. Gel'fond and T. Schneidc·r 
a.nd the 11cw pm,·erful met hods of A. Baker i1t the t lwory oft ranscC'ndental numbers. Later 
A. Bakc,r [29] (see sect. :3) has proved much more general theorem and has impron·d 
Feldman's estimate [30] . The best estimate was obtain£'d rc'CC'ntly b}· :\. Baker and C. 
\Viistholz in [:ll]. 

2 The general approach to integration of 3-dimen-
sional Cremona reversible DS 

2.1 General formulation of the problem 

Definition 1 Let X be an arbitrary set. A one-to-one mapping'/': X --> X is said to llt' 
reversible if t.hcre C'Xists a11other mapping(:: X--> X for which r- 1 = (,'oTo(; and(;' is 
an involution: G2 = id [42], [14], [52]. 

These condition!; imply that T«J is also an involution a.ad 1' = (Tr::/.:)cG is the composition 
of two involutions. 1Conversely, the composition of a.11y two im·olutions is rt'versihle with 
respect to each of them. 

Consider the following two involutions of the complex plane C: the linear om' 

Ai: C--> C, Ai :w>--> -w, 

a.nd the affine one 
11 : C--> C, 11 : w >--> I - w. 

These involutions do not commute. Their compositions A 1 011 and /1 oA 1 de-fine' a coup!,, 
of two reciprocal reversible dynamical systems on C. 

On the other hand, consider the following two involutions of the space C": the li1war 
one, defined by the Chew- Low crossing symmetry involutive matrix 

z .._. Az, A=~ ( -t 
!J ·I 

with dct A = -1, and th~ nonlinear one 

-8 
7 
4 

16) 
•I 
I 

1: c:i __, C 3 , l(z1, Z2, Z3) = (~, ~, ~) 
-1 -2 -3 

(I) 

(the latter being the standard Cremona tra.nsformation). These involutions do not com
mute' f'ithcr. Their compositi011s Ao! a.nd loA define a coup!£' of two reciprocal r<'\'<'rsihl<' 
dynamical systems on C 3 • 
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Remark 1 The dynamical systems we have met here are discrete rather t ban continuous 
(i.e., they are cascades rather than flows). Recall that a _dynamical system is an action 
of a group on a set [l], [79]. In our case, the group which acts on C or C3 is the additiw 
group of integers Z. However, one can embed the dynamical systems in question in flows 
(see Remark 3 below). 

We look for a meromorphic mapping C -+ C3 which realizes the equivalence of these 
two couples of reversible dynamical systems. In other words, we seek a meromorphic 
mapping S: C -> C3 satisfying the following system of functional equations (FE): 

S(-w) = AS(w), 

S(w + 1) = JoAS(w), 

(2) 

(:3) 

where w E C. This system describes p-wave scattering of 1r-mesons on nucleons within 
the framework of the static model. 

Taking the liberty of speech, we will sometimes call the system of FE (2)-(:3) a dy
namical system (DS). 

One can say that the involutions A and / of C3 arc representations of the involutions 
A1 and / 1 of C, respectively. Meromorphic mappings S : C -+ C 3 satisfying FE (2)-(:3) 
realize these representations. 

·Each meromorphic mapping S : C -> C 3 defines some curve in C 3. The system of 
FE (2)-(3) completely determines this curve up to the group of automorphisms. One can 
easily verify that every transformation of the form 

where 

S(w)-> S(w + .B(w))exp (o(w - 1/2)), 

,B(w + 1) = ,B(w), 
a(w + 1) = -o(w), 

.8(-w) = -.B(w), 
a(-w)= -a(w). 

(4) 

is an automorphism of the solution space for DS (2)-(3) (.B defining an inner automorphism 
of the curve). Obviously, there should exist also an automorphism which depends on 
another arbitrary function in w with period equal to 1. 

Since the strip !Re wl :S 1/2 is a fundamental domain for infinite discrete Cremona 
group (JoAt (a subgroup of the group generated by I and A), if S;(w) (i = 1,2,3) are 
rational functions in the strip then they are rational everywhere except at infinity. On 
the contrary, if S';( w) have an essential singularity in the strip then they have infinitely 
many e~scntially singular points. 

As A 2 = id, the matrix A is of simple structure (i.e., diagonalizable): 

A=BAaB-1 , A"= diag(.\f, .\;, .\~), ,\~=-1, ,\;,3=1, 

lJ;i = 11)il, AµUl = ,\~µUl i 1· = 1 2 3 
J ' ' ' , , 

(5) 

(6) 

where B is the fundamental matrix for A in the basis of eigenvectors µUl of the matrix A 
[80], which arc the following: 

µ(I)= (-4,-],2), µ(2) = (4,-2,1), µ(3) = (1,1,1). 
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According to the general approach [59] introduce the functions z : C -+ C3 , j : C3 -+ 

C 3 , 1r : C 3 _, c, 

Define the mapping <I> : C3 -+ C3
: 

z(w) = B-1 s(w), 

j(z) = ABz, 
3 

1r(z) = ITj;(z). 
.,i=l 

<I> : z >-> z = <I>(z) = <f;(z)/1r(z), 

where ef; : C3 -+ C3 is the mapping 

<f;(z) = 1r(z)B-1 (Ij(z)). 

The DS (2)-(3) may be rewritten as: 

z(-w) 

z(w + 1) 

A"z(w), 
<f;(z( w ))/1r(z( w )). 

(7) 
(8) 

(9) 

(10) 
(11) 

Remark 2 Note that mapping (9) is a birational Cremona transformation in C 3 . Trans
formations of the form (9) with different denominators 1r(z) (but the same numerator 
ef;(z)) induce the same projective Cremona transformation in CP2 {28]: 

z1 : z2 : z3 = </>1 : </>2 : ef;3. 

Remark 3 Note that the FE (11) (and also a FE of general type) can be associated [71] 
with the differential equations generated by the Abelian group of analytical iterations 

dz(w) 
dw 

P(z) 

P(z(w)), 

d<f>(•l(z) I , s ER 
ds s=O 

(12) 

(13) 

where <f>(n) : z(w) >-> z(w + n), <f>(l) = <I>, <f>(O) = id and Pare solutions of the following 
functional equation: 

P(<I>(z)) = v'<I>(z) · P(z). (14) 

It is clear that v'<I>(z) is a 3 X 3 matrix-while P(z) is a 3-vector. For the one-dimensional 
variant of equations (12), (14), see the passage in [10] about P. Erdos' and E. Jabotinsky's 
paper, p. 209-212, and for the two-dimensional variant, [71]. 

According to (5) - (8) and taking into account that A2 = id, we have 

A"=B-1AB, S(w) = j (A"z(w)) ~f j' (z(w)). (15) 
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2.2 Partial automorphic forms 

Let m = (m1, m2, m3) E Z! be a multiindex, m; E Z+, 1ml = m1 + m2 + m3. 

Definition 2 A polynomial P: C3 -> C is said to be invariant if P (<l>(z)) = 0 whenever 
P(z) = 0. 

Theorem I [59], (see also [62] For any invariant irreducible homogeneous polynomial 
P(z) of degree k there exists a multiindex m with 1ml = k such that P(z) satisfies the 
following system of FE: 

P (¢,(z)) = t:P(z)r(z), ·m ·m1 ·m2 •m3 
J =Ji h h , 

P(A"z) = vP(z), V = ±1. 

E = ±l, (16) 

( 17) 

We will denote any solution of these equations by Pm(z) provided that it is an irreducible 
homogeneous polynomial of degree 1ml. 

As the matrix A (1) has the only eigenvalue equal to ~1, we can assume that v = +l 
because for v = -1 any solution P of FE (16)-(17) will be reducible: 

P(z) = zf1+1.P(z), deg P = 1ml - 21- I. 

Following [59], we shall call polynomials Pm(z) partial automorphic forms (PAF) for 
the DS (2)-(3) of weight m = ( m1, m2, m3). 

Definition 3 PAF Pm(z) is said to be an automorphic form (AF) of weight q if 

Pm (<l>(z)) = Pm(z)P(z) 

where J denotes the Jacobian of the mapping <l> (9). 

One can easily verify that the Jacobian J of the mapping <l> (9) is equal to 1r-2(z). 
Indeed, 

J == -det (B- 1]BA") = det (AJ) = 1r-2(z), 

where J = diag (1/R(z), 1/j?(z), 1/jj(z)). 
A mapping <l> has a polynomial AF of weight q if and only if it possesses a PAF of 

weight m = { q, q, q}. It has a rational AF of weight q if there exists a rational function 
of the PAF that·satisfies the equations (16)-(17) with m1 = m2 = m3 = q. 

According to [62] the DS (2)-(3) possesses the only PAF (zi/z3 = x, zif z3 = y): 

P(l,1,o)(z) = Z3Z2 - Zi = z~(y - x2), 

- the solution of (16) with t: ·= -I. Therefore, according to the classification in [59], 
the DS (2)-(3) is not algebraically integrable, i.e. it has no first algebraic"integral, or, in 
other words, AF of weight zero. Similarly, the system of FE under consideration is not 
algebraically equivalent to an area-preserving mapping (APM) because it has no AF of 
weight one. 

Remark 4 The DS in [58] has an AF of weight one (recall that it has three PAF) and 
is equivalent to an APM but it is non-algebraically integrable, i.e., it possesses a first 
non-algebraic integral. 
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2.3 Fundamental points and principal lines of a quadratic Cre
mona mapping 

Let z = z(w + 1), theu according to (15), (11), (8) we have 

j'(z) = I j(z). 

Consider somc special points and lines on the projective plane CP2 of homogeneous 
coordinates z known from the theory of quadratic Cremona transformations. Introduce 
six principal lines (P-lines) .h . ./{ (k = 1,2,:3) of direct mapping <l> specified by (9) and 
inverse om' <1>- 1

: 

,h = {z: Jk(z) = O}. .J; = {z: j~(z) = O} (k = I, 2. :3). 

and six points of pairwise i11tersedio11s of these lines {01,02,0:i} and {O;.o;.O\} (see 
Fig. 1): . 

O; = -hn./,, o; = .J{. n ./(. 
They are calh·d fundamental points (F-points) [28] of direct mapping ( 11) and the ill\"<'rs<' 
one. Here {ilk} is a permutation of {12:l}. 

Under the direct mapping ( 11) and its inversP 

z(w) = Aaef,{A"z) 
1r(A"z) ' 

the images of the F-points O;, 0'. and those of the P-lines ./;, JI are 

<I> : O; ...... .J[, <l> : ./; ...... o;, q,-1 ; o: f-4 ./;, <l>-1 : .1; f-4 0;. 

Thus the F-points and P-lines { O;, .J;} and { o;, .l:} are tlw only elenwnts of t Ji,, 
mapping ( 11) where the one-to-one correspondence is violated. 

Notice that the mappings <I> a11d q,-l realize blowing up am! contract ion (sc<' t lw 
Codaira theorem [19], Ch. 1, §4) and also the concept of a-process of blowi11g up of 
singularit.ir.s in the theory of ordinary differential equatio11s [77], s2. 

The F- and P-elcments have the form 

./; = { z: j;(z) = Jtl') ,\l")z1 = 0}, JI - {~. )01 (~) - //(/), - o} • i - - · i ~ - i -I - • 

( 

JL12) - Jt/2) /ltl) - JL/1) ) 
O; = (!) (2) (1) (2)' (I) (2) (I) (2)' J ' 

/Lk /LI - JL1 /lk /Lk /Lt - JL1 Jlk 
o; = A"O;. ( I~) 

Remark 5 Similarly to (62], [58], the multi index m = (m 1, 111 2 , ma) has th<' nwani11g of 
multiplicities m; of algebraic invariant. curve P,,.(z) = 0 at the F-point.s O; (sec ( l(i). ( 17)). 
and consequently at the points o;, according t.o the symmct,ry of ( 17). 

Let us proceed from homogeneous projective coordinat.<'s z(w) E C'1 to t.hc rnordi11at,·s 

((x1(w),.ri(w), .:::3(w)), .r; = :• (i = 1,2), 
~3 
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Then instead of (10), ( 11) we obtain 

x;(-w) = Af;x;(w) (i = 1,2), z3(__-w) = z3(w), 

<l>;(xz3, z3) def . 
x;(w+l)=,.,( ) = J;(x) (i=l,2), z3(w+l)=<I>3(xz3,z:i), 

'¼'3 XZ3, Z3 

where <l>; are defined by (9) and 

f
. = <I>;(x, 1) = L7-i B"{";1jk(x, l)j,(x, 1) ( . ...t k ...t l I k) 
, ,., ( ) 3 1 , zr r, > -

"'3 x, 1 Li=I s; Jk(x, l)j,(x, 1) 

In the sequel, we set x1 = x, X2 = y. 

2.4 Structure of the general solution 

(20) 

("21) 

The following theorem on the structure of the general solution of the FE (20)--(21) is 

valid. 

Theorem 2 The general solution of FE (20)-(21) has the form: 

2(F(w+.!.)+F(w-.!.)) 2(l+F(w+.!.)-F(w-.!.)) 
x(w)- 2 2 y(w)- 2 2 (22) 

- 1+4F(w+½)F(w-½)' - 1+4F(w+½)F(w-½) ' 

where the meromorphic function F( w) is a solution of the functional equations 

1 + 2F(w)F(w - 1) + F(w - 1) - 14F'2(w)-1F(w - l)F2 (w) 
F( w + I) = __ ....:.._:..__:__1 __ ----'-2F-, (-w-')'---2-F-'( w-_-l_) __ '--4-"-p-2(_w_)....:..__.:.___~' 

F(-w) = -F(w). 

(23) 

(21) 

Proof. Introduce the quadratic Cremona mapping casting the functions x( w), y( w) 

to u1(w),u2(w): 
(y+x)(y-1) 

UJ = 1 U2 = y2 _ x2 y2 _ x2 
(y-x)(y-1) 

(25) 

The inverse mapping is single-valued and has the form: 
UJ - U2 UJ + U2 

x= y= . 
U1 + U2 - 2u1u2, U1 + U2 - 2u1U2. 

(26) 

Using (2-5) and (26) one can obtain a simpler expression for the system (21): 

( ) 
(9u1+u2-2u1u2)(l-ui) 

U1 w + I = 2 2 ' UJ + U2 - U1 
1t2( W + 1) = 1 - Ui, (27) 

where in the right hand side we have set u1 = u1 ( w ), u2 = u2( w ). According to (20) and 

(2,'i) we have: 
u1(w) = u2(-w). 

Substituting (28) into the second eq. of (27) and assuming 

u2(w) = 1/2 - F(w - 1/2), 

(28) 

{29) 

we get (21 ). Eqs. (26), (28) and (29) imply (22). Substituting (28), (29) into the first eq. 
of (27) we obtain equation (23) for F(w). 

This equation has a particular solution F(w) = w corresponding to the solution in 

[GO]. 
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3 Integration of the equation for function F(w) 

3.1 Spectra of hyperbolic fixed points 

Let. F(w-1) = u(w), F(w) = v(w) and consider the mapping T corresponding to equation 

(23) for F(w) ( U = (ii, ii)= (u(w + 1), v(w + 1)), U_= (u, v)) 

T: [; = T(U), u == v, v= 
4 + u + 2uv - 14v2 - 4uv2 

1 - 2u - 2v - 4v2 (30) 

The mapping T is reversible since it can be represented in the form T = Ro W where R 
and vV are involutions: 

R: U' = R(U), u' = -u, 
, 4 - 14u2 - (1 - 2u - 4u2)v 

V - ----~-----'----· 
- 1 + 2u - 1u2 + 2v ' 

TV: U' = W(U), u' = -v, v' = -u. (31) 

On Fig.2 there are shown some special points and curves of the mapping T and the 
involutions Rand W such as: the unique algebraic invariant line v = u + 1 of mapping T, 
the fixed points u = 0, v = 1 and u = 0, v = -2 of involution R, the line v = -u of fixed 
points of involution W (the symmetry line of W), the antisymmetry lines of involutions 
Rand W defined by the conditions R(U) = -U and W(U) = -U, the singularity lines of 
involution Rand mapping T (i.e. lines where involution R or mapping Tare not defined). 
Besides the parabolic fixed point d1 : u = v = oo, the mapping (30) has two symmetrical 
hyperbolic fixed points 

d2: 
1 

U = V = ./'i,' 

R(d2) = d3, R(d3 ) = d2, 

d3: 
1 

U = V = - ./'i,' 

W(d2) = d3, W(d3) = d2. 

(32) 

(33) 

The eigenvalues ,,\1, ,,\2 of the linear part of the mapping (30) at_ the fixed point d2 (32) 
and ,,\3, ,,\4 at d3 are the roots of the fundamental polynomial of algebraic number ,,\; 

P4(,,\) = 7,,\4 
- 96,,\3 + 306,,\2 - 96,,\ + 7, 

6./2 ± )65 -1 -1 
A12= "' (+ for,,\1); A3=A1 , A4=A2 , (34) 

' 2v2 + 1 
>.1 ~ 4.322, >.2 ~ 0.1105, ,,\3 ~ 0.2314, .\4 ~ 9.050. 

Notice that the numbers>.; are called conjugate algebraic numbers (see [81]). The eigen
values >.1, >.2 of the mapping (30) at d2 belong to Siegel's domain (0 < >.2 < 1 < ,,\1). The 
same holds for the eigenvalues A3, A4. 

Theorem 3 The set of eigenvalues >.1, A2 at the fixed point d2 and the set >.3, ,,\4 at the 
fixed point d3 (34) are not resonant, i.e. 

Aj - ,,\;_"1
,,\;'

2 -:JO for j = 1,2 and Jml = m1 +m2 ~ 2,m; E Z+, 

Aj - >.;'1 >.'.;'2 -# 0 · for j = 3, 4 and Jml = m1 + m2 ~ 2, m; E Z+. 
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Proof. We have to prove that algebraic numbers Xi = 1 - >.7' 1
-

1 >-;' 2 and x2 = 
1 - >.7'1 >.;'>-1 are not equal to zero for any integers m1 and m2, 1ml ?: 2. Consider 
the number Xi• As >.1, A2 E Q( .J2, \/'65), a quadratic extension of the rational number 
field [81] (see §17), then Xi belongs to Q( .Ji, \/'65) and has relative degree S:: 4. The 
equality X1 = 0 implies X1 E Q( .Ji). Since >-1,2 = R1 ± R2\/'65, where R1, R2 E Q( .Ji), 
then, obviously, X1 E Q( .Ji) if and only if m2 = m1 - 1. Let m2 = m1 - 1. Then 
XI= 1 - ((9 - 4.J2)/7r2

• It is clear that for 1ml = 2m2 + 1 ?: 2 (m2?: 1) one has 
Xi (j_ Q and, consequently, X1 # 0. Analogously, one can prove that x2 =J 0. It is obvious 
that also the set >.3 , ,\4 is non-resonant at the fixed point d3. <1 

3.2 Algebraic addition concerning the Siegel theorem and the 
7th Hilbert problem 

The problem of linearization of the mapping (30) will be solved on the basis of the following 
Siegel theorem. 

Definition 4 A set (>.1, ... , An) E en is of the multiplicative type (C, v), if the following 
inequality: 

1>-i - Ami?: Clml-v, (1ml = m1 + • • • + mn, Am= >.7' 1 
••• ).;:'n) (35) 

is satisfied for all j E (1, 2, ... , n), m; E Z+, 1ml?: 2 (C > 0, v > 0). 

Theorem 4 (e.L. Siegel for n = l, E. Zehnder's generalization for n > 1 [82] ) 
If the set {A} of eigenvalues of the linear part of a mapping, holomorphic near a fixed 
point, is of the multiplicative type ( C, v) for some C > 0, v > 0, then the mapping is 
biholomorphically equivalent to its linear part in some neighborhood of the fixed point 
(see [77], §28). 

Remark 6 The set ( ,\1, ... , An) E en is also of the multiplicative type ( C1, v) with some 
Ci, if instead of inequality (35) a similar one 

1>-i - >-ml ?: C(lml + 1)-v 

is satisfied under the same conditions. 

Proof. Indeed, from (36) it follows that for 1ml ?: 2 

IAj - Ami> C(2lml)-v = C1lml-v, 

where C1 = 2-vc, and we obtain (35) with C1 instead of C. <1 

(:36) 

Let us give necessary definition from the algebraic number·theory (see [22], Addition 
D, p. 267-268) 

Definition 5 A number a E C is an algebraic number if there exists ~uch a polynomial 
P(z) E Q[z],P(z) 'I. 0, that P(a) = 0, where Q[z] is the set of all polynomials over Q. 
The set of all algebraic numbers A is an algebraically closed number field. For every 
a E A there exists the single polynomial ( the fundamental polynomial of number a) 
P(z) = anzn + ... + a0 , P(z) E Z[z], with the following properties: 1) P(z) is irreducible 
over Q; 2) P( a) = O; 3) an ?: 1; 4) the greatest common divisor ( ao, ai, ... , an) = 1; 5) 
if Q(z) E Q[z] and Q(a) = 0 then P(z)IQ(z). L(a) is the length of algebraic number a, 
L(a) = lanl + ... + laol- <l 
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The following theorem on sets{,\} of the multiplicative type (C,v) is valid (see also 
[59]). . 

Theorem 5 A set (,\ 1, ... , >.,,) E en is of the multiplicative type ( C', v ). if this set is 
multiplicatively non-resonant and 1mmbers Aj E A, where A is an algebraic nll!nber field. 

This theorem is an immediate corollary of the following theorem in [22] (see chapter 
10. §4.10) about the <'valuation of linear forn\s of the logarithms of algebraic numbers. 

Theorem 6 (N.I. Feldman) Suppose n EN; the numbers o 1 ..... o,,, EA: and lna 1. 
.... Inn,,, an~ arbitrary. but fixed and linearly independent o\·er Q values of their log
arithms. Then thC'fe exists such an effective (i.e., there is a recipe of its calculation) 
constant 

v = /1(01, ... ,n,,,:lnn1, .... lno,,,:n) > 0 

that for any ih; k = 0, I .... , m: 

/lo, /11, ... , l"lm E A; l/iol + ... + Iii,,, I > 0. 

clPgQ(n1, ... ,n,,,;{i0 , .•.• ,3,,,) S:: 11 

the following inequality: 

l,Bo + {ii In n1 + ... +Pm Inn,,,!> L-v 

with 
L = max L(1h) 

O'.Sk:Sm 

is satisfied. Here Q( n 1, ... , om; ,80 , ... , flm) is the field of rational functions int lw m1111lwrs 
(a1, ... , nm; /3u, ... , /1m). <J 

Proof of Theorem (5). Let min i>-J I = c1 > 0, l is imaginary 1111it. Sine<' 1c= - ii 2 
l<J<n 

½lz - 2zirkl for lz - 2zirkl S:: ½, k E Z, one has 

i>-i - Ami ?: Ci I I -exp ( t(m; -b;J) hd;) I ?: ? l/(111) - 2zirkl. 

provided that 

where 

l 
ll(m) - 2zdl S:: 2, 

l(m) = I)m, - 5,J) In>.,, k = [1111/(111)] 
2ir • 

i=:;l 

lk/ S::JJlml, P = I [ max I In A; 1] I + I ?: I 
1::;1~1l 

(;li) 

(it obviously suffices to consider only those m E Z';. satisfying this condition). l!Pn· b;
1 

is 
the Kronecker delta. Since thc set {>.} is 11111ltiplica.tively non-resonant. 111 \ are litl('arly 
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independent over Q and we can choose such branch of In that 2m = In( I), 1 E A, and the 
conditions of Feldman's theorem from [22] are satisfied. L_etting 

Bo= o, 3; = m; - b;1 (l::;i::;n), .Bn+l - -k, Dn+I = I, 
L(.Bn+d = !kl+ 1, L(f);) = Im; - b;1I + 1 ::; max(2, m; + 1) 

and observing that 

L = max L(f);)::; 1 + max ((max m;), !kl) ::; p(lml + 1), 
l~t~n+l l~t~n 

we obtain inequality (36). Now, taking into account Remark 6, we conclude that the set 
{A} is of the multiplicative type ( C, v). <1 

Remark 7 One may wonder whether it is possible to determine the multiplicative type 
of the set { ,\} on the base of estimate of rate of growth of the partial fractions set for 
some, relative with.\;, transcendental number, that would be the other formulation of the 
Feldman theorem. Let .\;( i = 1, · · ·, n) are real and positive. Let again c1 = min \. If a 

I<j<n 

multiindex m E Z+ and an index j E ( 1, 2, ... , n) satisfy (37) then for Xi = \-- ,\"' we 
have 

lx1I l.\j - .\"'I 2 i It (m; - b;j)ln,\;! 

c1 ,n-l In,\; I 
2 !In An! ~ (m; - b;j) In ,\n + (mn - /jnj) 

Ct >-n 

l
n-l ]n~ I 

zlln.\nl ~(m;-b;j)ln,\n +lml-1. (:38) 

Then we obtain for n = 2 and O < ,\2 < 1 < ,\1 

lxjl 2 '.::.!.1n,\1(lml-l)lm1-b1!._ In"i;I 
2 .\2 lml-1 lnf,-

c1 I .\1 (I I ) I m1 -- b1j I - n- m -1 µ--------'-
2 .\2 !ml - I ' 

(39) 

, , _ ln(l/>-,l _ ~ . . ·. 
( )

-1 

where fl - i.;;-p,/.1.,) - 1 - In>.
2 

> 0, as far as .\2 < 1 < A1. Notice that the statement 

"ii is a tran,n·rHlcntal number" is a particular case of the 7th Hilbert problem. Then using 
Chchyshcv·, tli,,nrem on the best approximation of the sec:md kind (84] (see theorems 1.l 
and 17), we, hav,·: 

min lx;I 2 - In -qk µ - - 2 - In----C1 Ai I Pk I Ct ,\1 1 
2 A2 qk 2 ,\2 (qk+l + qk) 

( 40) 

or (sec thcor,w 12 in [84]) 

C A1 1 . I ..!.1n- -- , 
mm !Xi > 2 ,\2 (ak+I + 2)'/k ( 41) 
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1\ 
I 
·' 

~ 
I•~ 

( 

where Pk= mi - b11, qk = 1ml - 1, Pk/qk is a convergent to the continued fraction forµ, 
ak is the partial fraction of transcendental number 

1 
µ = ao+-- 1 • 

a1+-a2+ ... 

Then the conditions of the Siegel theorem are satisfied if the following estimate is valid: 

ak+I + 2 ~ Aqj;-1, (42) 

where A E N, A does not depend on k, v 2 1. Note that the inequality (42) is the 
sufficient condition. For v = 1 the spectrum is bounded (this is true only for quadratic 
algebraic numbers [81] if we have in mind only algebraic numbers). It is known (see e.g. 
[79], Vol. 3, pp. 94-95), that the problem of description of the spectrum of { ak} has not 
been solved even for cubic irrationalities µ. Comparing our inequality with Feldman's 
one, where v is an effective constant (i.e. a formula for its value has been obtained), we 
conclude that the inequality ( 42) is satisfied apparently. In more detail this question will 
be discussed elsewhere. 

Now we can make a general proposition about solutions of equations (23)-(24) for the 
function F(w), defining the general solution (22) of the initial FE (21). 

Theorem 7 The function Fs( w) - is a function of a one-parameterical family of solutions 
of the system (23)-(24) - is a holomorphic, in certain finite neighborhoods of the origin 
in C 2, function of variables z1, z2 or z3, z4: 

z;( w) = b( w) exp ( ( w + /3( w) - D In,\;) , 1 ::; i ::; 4, (43) 

where A; are determined by (34) while arbitrary functions b(w) and j,(w) (cf. (4)) have 
the following properties: 

b(-w) = b(w), 
{3(-w) = -fl(w), 

b(w + 1) = b(w), 
j,(w+l)= fl(w). 

The family Fs(w) is defined by the Taylor expansion in z1,z2 

F(w) = '2:,Jkzk, k E zt, fk = fk1,k2, zk = z}' z;2 

k 

with thE: coefficients fk determined by the recurrent relation 

fk { 

lkl-1 
L fk-m [ (-(4fo + 1),\2k-m + (4fo - 1)..\m - ,\2k-2m + 7,\k )fm 

lml=l 

_ 2(,\2k-m _ ,\m) L fm-dl 4fo/ 1 (,\k _ Ai)(,\k _ ,\2) 
lml-1 ] } [ ]-1 

11l=l 
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where ).k = .Xt' .x;2
, Jo = 1/-,/2, fo,1 and !1,0 are arbitrary, and the sum is taken over all 

the permissible values. The coefficients Jk of the Taylor expansion of F in z3 , z4 satisfy 
the same recurrent relation with .X1, .X2 replaced by .\3 , ).4 and they are 

lo= -1/-./2, fo,1 = -A3fo,1, ]1,0 = -.X4fi,o, jk = -A-kjk, rk = A~k',\2k'. 

Each local solution of the family Fs(w) (the germ), defined by (43)-(46), can be ex
tended up to the global one using Fs( w ), Fs( w - 1) and iterations of the equation (2:l) 
and lies on the invariant manifold fs: 

rs: zl'(w + l)zl2 (w + 1) = zI'(w)zl2 (w) = o2(w), (47) 

where 
-2ln.X2 

,'1 = In.Xi - ln.X2' 
2 ln .X1 

'Y2 = In ).1 - In .X2 

Proof. According to Theorems 3 and 5, the set ( .X1, .X2) from (34) of the eigenvalues of 
the mapping T (30) at the hyperbolic fixed point d2 given by (32) is of the multiplicative 
type (C,v). Therefore Theorem 4 guarantees the existence of a biholomorphic mapping 
U = G(z ), U = ( u, v ), z = (z1, z2), G(O) = d2, which transforms a neighborhood of the 
origin in C2 to a neighborhood of the point d2 and reduces the mapping T to the normal 
form at d2 

a-1TG: (z1,z2) I-+ P1z1,A2Z2), 

On the other hand, the biholomorphic mapping WG, where Wis involution {31), trans
forms a neighborhood of the origin in C2 to a neighborhood of the point d3 (32) and 
reduces the mapping T to the normal form at d3 : 

a-1wTWG: (z3,z4) I-+ (A3Z3,A4Z4). 

Indeed, since involution W reverses mapping T, the mappings a-1TG and a-1 WTWG 
are inverse to each other. 

Set (z3, z4 ) = ( and 

G(z) = (91(z),92(z)), WG(() = (-92((),-91(()). 

If some functions z, ( w), 1 ~ i ~ 4, satisfy the FE 

z,(w + 1) = .X,z;(w) (48) 

then the functions F(w) = 92 (z(w)) or F(w) = -91 (((w)) satisfy FE (23). Moreover, 
one will have 91(z(w)) = F(w - 1) or -92 (((w)) = F(w - 1), respectively. 

Now we should determine the relations between z(w) and ((w) which make F(w) 
satisfy FE (24), i.e., make F(w) odd. Let F(w) = 92(z(w)) be close to 1/-,/2. Then we 
have F(-w) = -92 (((1 - w)). The equality F(-w) = -F(w) is therefore ensured by 

((1 - w) = z(w). (49) 

If 
z,(w) = o,(w) exp ((w + a,) ln .X,), 1 ~ i ~ 4, (50) 

14 

then (48) is equivalent to o;(u.• + 1) = O;( w) and ( 49) is equivalent to (( w) = Az(-ir). 
where A= diag(.\1,.\2), i.C'., 

0;+2(-w) = A;b;(w) exp ((a;+ a;+2) In .X;), 

For a;= -1/2 (1 ~ i ~ 4) we have 

83(-w) = oi(w), '84(-10) = 82(w), 

i = 1. 2. 

From (48), (50) it follows the existence of the invariant manifold I\ (cf. (-17)) 

1\ : z7' z;2 = zI' z;2 = ,52
( w ), z;3 z;• = =;J zJ4 == b2 

( ui L 

(51) 

(52) 

where z = z(w+ 1), expoll(>Ilts ,1,,2 are determined by (47) and arc invariant relatively 
on the change .\ 1,.\2 -t A3,A4. Substituting (50), (51) into (52) we have 

8t(w)8J2(w) = 82(10), 87' (-w)8;'2 (-w) = 52 (w). (5:3) 

From (5:l) we• have 

( 
,51 (w) )--,, ( 82(w) )--,2 

_ 
1 

81(-w) 82(-w) - · 
(5•l) 

Since O;(w + l) = 5;(w), then supposing 

8;(w) 
5;(-w) = cxp(/J;(w) In.\;), i = 1, 2., (55) 

we obtain from (54) 
exp[(-/J1(w) + /J2(w)) In .\1 ln .X2] = l. (5G) 

From (54)-(56) it follows that 

/J1(w) = /J2(w) = 2{3(w), (57) 

where fj(w) is odd function with period equal to I (cf. (4,t)). \Ve ha\·p from (55). (57) 

5;(w) = 5(w) exp((i(w) lrd;), 8(-w) = o(w) 

and we obtain (43), (44). 
Finally, let 

F(w) = 92(z(w)) = L fk (z(w))k 
k 

for F(w) close to 1/-./2 and 

F'(w) = -91(((w)) = I:fk(((w))k 
k 

for F( w) cloJ,c to -1/-./2. Substituting these expansions into (2:l), we derive the dPsin·d 
recurrent relations on f k and fk- The arbitrariness in the choicP of .f1 ,o and ./~.1 corresponds 
to the ambiguity in the choice of the normalizing mapping C. <1 
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Remark 8 Since the basis of an algebraic number a, (a root of the fuudamental poly
nomial Pn(a,)) is the set {l,n,n2 , ... ,a,n-I} (81], all the four numbers A; (34) can be 
represented as polynomials of one of them, say .\ 1 , with rational coefficients. Thus, the 
coefficients fk and jk are rational functions of .\ 1 . 

The eigenvalues .\ 1 , .\ 2 arc also the roots of the polynomial 

,\2 _ 24/a .\ + 4.fo - 1. 
4/o + 1 4/0 + 1 

Carrying over the results of Bryuno [8.5] (see theorem 7, chapter 2, example 7) on 
differential equations to mappings and using theorem 9 in chapter 4 from [85], one can 
state that the domain of holomorphy of expansion (45) is defined by that of mapping 7' 
(30). To be more precise, the former is smaller than the latter by a factor of c, 

c = f lnqk+1, 

k=O qk 

where qk is the denominator of the k-th convergent for the continued fraction Pk/qk of the 
transcendental number 1 =In-Xi/ In .\2 (see (84]). 

lo A numerical investigation of the phase curves of this family by various choices of 5( w) 
will be performed elsewhere. 

The following theorem is valid. 

Theorem 8 Every curve of the family Fii( w) on the manifold f Ii intersects other curves 
of this family and the straight line 

cJ>(w) = F(w) - F(w - 1) - 1 = 0 

( which corresponds to the particular solution F( w) = w) at the F-point 0 3 = (5/2, 3/2) 
on the (v,u)-plane (see Fig. 2 and (18), this point is the same as the point 0 3 on Fig. 1 
in the (x,y)-plane) and its subsequent points (7/2,5/2), (9/2,7/2), etc. This implies, in 
particular, that every curve of this family is not algebraic. 

Proof Consider the equations for the functions F( w) and cJ>( w) (for brevity we use 
the notations F = F(w), cJ> = cJ>(w)): 

cj)(2~+1)(2F-3) 

F(w + 1) = (2F-1)~2;+3) + F + 1, 
l - (2F-1)(2F+3) 

{2F+I)(2F-3) 

cJ>( W + l) = -cJ> {2F-l){~:+3) 

l - {2F-1)(2F+3) 

Suppose that at some w• the function F( w*) = 3/2. It is always possible to choose such 
a w*, since a meromorphic function admits every value except two ones at least once ( 
sec the Picard theorem, (86], chapter IV, §12, p. 220). The such except values for the 
function F(w) already are ±l/v'2. 

Then we have: 
5 7 9 · etc. 

F(w* + l) = 2' 2' 2' ... , 
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Fig. 1: The principal lines J; (solid) of direct mapping cJ> and J[ ( dash) of inverse map

ping cJ>- 1 , the fundamental points 0; of mapping <I> and o: of mapping cJ>-1
, the parabolic 

fixed point d1 of mapping cJ> and the hyperbolic fixed points d2, d3 of mapping <I>. 
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Fig. 2: The special points and curves of the mapping T and involutions R and iv 

(subscripts sym are for symmetry points and lines, anti for antisymmetry lines, sing for 

singularity lines, Tinv is the unique algebraic invariant curve of T, d2 and d3 are the fixed 

points of the mapping T, 03 and o; are the fundamental points of T). 
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cf>( w* + 1) = 0, 0, 0, ... , etc. 

<1 

An interesting question, whether the function F( w) is a rational function of variables 
z1 ( w ), z2( w ), remains open for the present. Of more interest is the general statement 
of this question: if the initial mapping is rational, then in which cases a biholomorphic 
change of co-ordinates transforming this mapping into the normal form is also a rational 
function. 
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