


INTRODUCTION

Perturbatrons, dependmg on the spectral parameter (usually energy of system) arise in-a"’

lot. of ‘physical problems (see papers-[1—16] and Refs. ‘therein), In particular, such are-

the interaction potent1als between clusters formed:by quantum: partlcles [T=6]e i i i
72 The perturbatlons of this type appear typlcally [1~4];[11—16] as a'result of leldlng e
“the Hilbert space- H of physical system in:two subspaces, H-=.H; & Ha.: The first one, =
_say.Hj, is interpreted as a space of “external” (for example, hadromc) ‘degrees of freedom. - "+
. The second one, Hj, is:associated with an“internal” (for: example, quark) structure ‘of
“the system The Hamrltoman H of the system looks as a matrlx, RRAA T

,vw1th A1, Az, the channel Hamlltomans (self—adjornt operators) and Bn, B21 = Bn, the -
o couplmg operators Reducing the:spectral problem HU zU U = {ul,ug} to the,-
e channel a only one gets the spectral problem S - i

‘-—Ban ﬂ“z) Bﬂas,

depends on the spectral parameter Z as the resolvent (Ag = z) =1 of the Hamlltonran Ag
In'more complicated cases V,(z ).caniinclude also linear terms:in. respect with z; 'Other :
,types of dependency of the potentials'V, (z).on the spectral parameter z: glve ‘in a general -
way, the spectral- problems (1.2) with a complex spectrum...
“The ‘present- paper. is a continuation ‘of :the author’s- works [17—19] devoted to EN
‘study of  the pOSSlblllty to * ‘remove” ‘the” energy depcndence from -perturbations of the -
“type (1:3).. Namely, in’[17—19] we construct-sucli new potentlals W, that spectrum of
the Hamlltoman Ho = A, + Ws.is a part of the'spectrum of.the problem-(1.2). ‘At the "~ -«
same tlme, the respective, elgenvectors of H*become:also those for (1:2). Hamlltomans
H are. found as solutrons of the ‘non- lmear operator equatlons : '

H»-A +V(H)

first appeared in: the paper [9] by M A Braun in. connectlon w1th consrderatlon of the
- quasrpotentlal equatlon The operator-value function' V,(Y.) of the operator va.rlable Y,.
Yor Hy 'S Hayeis, defined by us.in such ‘a’ way (see. Sec: 3). ‘that elgenvectors 1,1; of Y i
’Y'l,b =2z, become automatrcally those.for V, (Y) and V(Y = Va(2)¥: L
=7 In Ref. [17], the:case is. considered;in’ details when one of the. operators Aa is” the e
Schrodlnger operator in- Lg(R") ‘and another one has a, discrete spectrum only. The, re-
“ports (18], [19] announce the results” concernmg the equations (1.4) and’ propertres of =
“their. solutions Ha,m a_rather_more’ general situation when the Hamiltonian: H may
- be, ‘rewritten in terms of a’two:channel’ variant-of the. Friedrichs model inivestigated by - "
iO A La.dyzhenskaya and L.D:Faddeev in'Refs. :[20], [21]. In: Ref. '[16] the method [17— =" .
“19] is used to. construct an eﬂ'ectrve cluster Hamlltonlan for atoms adsorbed by the metal. o
~'surface., : o

2 In the present paper; we specrfy the assertlons from [18] [19] and glve proofs for them e
< Also;, we pay attention to an 1mportant circumstance dlsclosrng a nature of solutions of * > 7~
‘the basic equations (. 4). Thing is that the potentials W, = Vi (H,) may be- presented in:
\ﬁ‘the form Wc. —1 agan where the operators an sat:sfy the equat:ons (3 ]3) (see Sec 3)
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R Let A1 and A2 be self adjomt operators actlng, respectlvely, in external

Bt E‘<actly the same. equatlons arise in the method of constructlon of 1nvar1ant subSPaceS‘f :

for self-adjoint operators developed by V.A.Malyshev and R.A.Minlos in Refs. [22] [23]::

T follows from the results of [22],-[23] that operators Ha, a =1, 2, determine in fact,

parts of.the two-channel Hamlltoman H actmg in correspondlng 1nvar1ant subspaces (see B

_Theorem 2 and. comments toit).”: :
. i Recently, the author came to know about the workz) Spectral propertles of a class of -
*’rational operator-value functions” by V.M.Adamjan and H.Langer, studying the’ operator- i

“~value funétions written in our notation as F,(z) = 2 — Aa & Bag(Ag —2)7! Bs,. ' In

- particular Adamjan ‘and Langer show in this work that a subset of eigenvectors of F, can :
 be chosen to form a Rlesz basis in-H,,. There is a cértain 1ntersect10n of thelr results and o

~'ours from Refs. [17—19]. However. the methods are dlfferent f, i
“The paper is organized as follows. i = 75 = B LN I~ E L
~In Sec..2 we describe'the Hamxltonxan H as:a two—channel variant of the Frledrlchs :

-'model [20],": [21):"'We ‘suppose: that both operators A,y a'="1,2; ‘may have.continuous " *

. ":y'spectrum When properties .of objects connected with this spectrum (wave operators "

.- Tand scatterlng matrices);are considered in following sections, the coupling operators’ Bag
“oin (1.1) are assumed (o'be 1ntegral ones w1th kernels Bc,ﬁ( ,/,t), the Holder functr.ons in .-

both “variables X, . T

- “In Sec. 3 the equatlons (1 4) are stud1ed Asin Refs [22] [23] we suppose that spectra, 3
B .cr(Al) ‘and cr(A;) of -the operators. A1 and A; are’ separated dist{o(41),0(A2)} >:0."

T Existence of solutions of Eqgs. (1:4) is-established only_ in’ the case:when: the H]lbert- B

Schmidt norm || Baj||z of the coupllng operators satlsﬁes the condltlon R

'ffwxﬁ2<2mawph)(Ag}

In'Sec. 4 the elgenfunctlons systems of the operators H 5 are studled and’ theorems*

?."’of the1r ‘orthogonality and’ completeness are proved.. We show’ here in partlcular that. 2
spectrum of the Hamiltonian H ‘is:distributed: between the solutions Hl = 'Al 4 B1aQai L

: A+ Bnglg, le-; —Qn, of the basic equatlons (1.4)'in “such a way that Hy . w0
*- . and’Hy have not “common” eigenfunctions U = {u,,u;} of H: sn'nultaneously, component [N
ey can. not be’ elgenfunctlon for Hl, and component g, for Hplo il :

~and: Hg

o < In Sec.:5 we introduce new inner products in thc Hllbert spaces 'Ha,’
: the Hamiltonians H; self—adjomt -

- = In Sec. 6 we give a:non- statlonary formulatlon of. the scatterlng problem for a system
descrlbed by the Hamlltomans Hy constructed We show that this formulation is correct'ﬂ :

~and scattermg operator is exactly the'same as in 1mt1al spectral problem

“At:last; in Sec...7 we-discuss_the questlons concernmg a'use of two-body energy-:v-'f ;

Pty

dependent potentxals in few-body problems

: 2 INITIAL SPECTRAL PROBLEM A
; f 'L‘f TWO CHANNEL HAMILTONIAN

'Hl, and in-
- ternal”, Hy; Hilbert spaces. Westudy ! the spectral ‘problem (1. 2) with' perturbatlon V (z)
.. given by (1. 3) We's suppose that Bag € B('Ha,'Hg) where B('H H ) is the Banach space '

of bounded hnear operators actlng from Ha to 'Hg i k o A -
\g — tAElo‘ E

‘::1 2 maklngdr»i D

Lo L /

P eI e T L

) ‘general perturbatlonss) V (z) = —-R ( ) ontammg hnear terms,

::fﬂi(2 1)- f‘«f' o, ( )

‘ w1th Na, self adjomt bounded operator in Ma such that N >(6— 1)1 where 6 > 0 and
=I5 is the identity operator in M, Thing is that theequation’(1. 2) with V,(z) = =R, (2):-
" can’ be easily rewritten in:the form-(1.2), (1.3). . To-do this, one has only fo make the .
;replacements e = U = (R Na)uss Ag— AL = (fa+ Na)™ Y2A,(Fs + Na)=Y/? and -
= Bap = Blg = (L + N )=12B a1 +Ng) 1/2 Therefore we shall consrder further only»-

fthe initial spectral problem(1.2),(1.3).. "= S

o2 “We shall assume that operators Ag,a =15 2 may have contmuous spectra as To deal g
g Iw1th these spectra we accept below some presupposxtlons in respect with Ay rcstrlctlng ‘-

- -“us to the case of a two-channel variant of the Friedrichs model [20], [21]: Note that these

presupposxtlons are not’ necessary for‘a part of | statements (Lemma 1 Theorems l— 3
g ‘and 5) which stay- correct-also in general case. : - :

N z + Bc.g(Ag - Nﬁz —LZ) lBﬁa ‘k :"-F“,i

»The presupposmons are following, - Dol T :
~ '~“At first, " we’ assume-that Hamiltonian H is deﬁned in that representatlon where ’
-~ operators Aa,a = 1,2, ‘are. dlagonal - We suppose-that ‘continuous spectra oS of ithe =
.- operators Aa,d = 1 2 are absolutely contmuous and conslst of a finite number of ﬁnlte E
" (and may be’ one or two, mﬁnxte) mtervals (@ 00); o0 < u.m/ b(") <itoo;ji=
\1 2550 néy N < o0, At second, we suppose’ that; discrete: spectra ol of. the operators
Aa, a -.1 2,.do not intersect with asy a"iﬂa =0, and Consist. o£a finite number of -
'i_;ppornts W1t}r ﬁnlte multrphcrty ln thls case the space 'H may be present as the dlrect
n 1ntegral [25] : : :

&

pThe space ’H consrsts of the measurable functrons fow
“"the values f4(A) from correspondmg H]lbert spaces ga( ) By (
o product in: 'Ha,, s o : o

h1ch are deﬁned on a'a and have
) we denote the inner

0 where ( y5) stands fox“ inner. product in: ga( ). By [ | we denote norm of vectors and
: ‘foperators in'G,(}) and; by |f - |, the- norm in H,. Operator A acts in 'H ‘as; the
ot 1ndependent varlable multlpllcatlon operator ] ‘ PR

i AN =2 faT/\) | & oy
S IEs domam D(A ) consrsts of those functxons fa € "{a whxch satlsfy the condxtlon
: i /\2 |f )i2<oo For the"‘

E""Ci(z 3) a —-1 2.

: ,-\

ke of srmphcrty we assume that ga(,\) does not depend"

'jon A€ o'a, ie ga /\) g= for each /\ 6 og Hence, f @ga d/\ = Lg( a,g=) ‘— By' o

>

;—4;:,‘3)Remember that if Ny:> 0 then Eq. (2! 1) grves a’ general form of R functxon on ’Ha, ie. any analytlc at :.
- Imz #£0 B(’Ha ’Hu)—value functron thh posxtxve 1magmary part for z o Imz > 0 (see paper [24] and
: ','Refs therem) . : . A S T T
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(d/\) we denote a spectral measure [25] of the operator Aa, A
dlagonal representatron consldered the spectral projector E' acts on f € 'H ‘as
L :.j (B =)

for any Borelran set AC s Here, XA 1s a characterlstlc functron of A XA(/\) ‘,— 1 1f
BPS € A, and: XA(/\) =0ifAgA :

f_p(24)

T

v ffa;, as operator F(/\ p) gﬂ( ) ga(/\) w1th || F' |]B< oo, where ff T

/.—.

: (’\ l‘) (/\ l‘)l (1+l/\l)

‘l/\ /\ll'v

(A', 4 =~ FOL ) + F(Y,

I/\ NP = w7

Zzﬁ)l- ;

- ":;Banach space Mg.,(aa) of functrons f deﬁned on- Oa ‘wrth the norm ..

N
TR

- (i + IAI) If(A)I + Asup

AEaa s

' ‘:"“The value f( ) of the functron' f E Mo.,(aa) is an’ operator in ga(/\) : L
Let Bag bea an 1ntegral operator wrth a l\ernel Bag(/\ p) from the space Bgf, 9 >

‘1

" each A€ o1 E 0';; and Bap(/\ ,u) = 0 1f /\ belongs to the boundary of g or ,u belongs to
the boundary: of 05 e R '
With- this presupposrtlons the. Hamrltonran H may “be consrdered as'a ! two- channel,‘

' Variant of the Friedrichs model [20], [21]:. Investigation of H repeats’almost: literally.the .‘
" analysis. from Ref." -[21]..- Therefore we describe- here only ﬁnal results whrch are qulte A

e ana.logous to":[20], (21}, These results are following. - ,
= . The: operator His self—adjomt on’the set’ D(H) :fD(A]) 6) D(Ag)

in-the mvar]ant subspace correspondrng to contmuous spectrum The operator He'is »
: _,unltary ‘equivalent to"the operator Hy = A(O) GB\A(O) ith A(O) a =1,2; the restrrctron
" of the operator:A, on HE Namely, there exrst wave operators U(+) and U( ), U(*)

(£, F\
uzi)”"uzi) = 5= im, eth "H"‘ w1th the followmg propertres HU(*) :

Uz '"22." T tmFoo

U@ =

e 5) u‘*>(A X) ‘ ',Iz.’s("x e‘if)’—;f‘uA;. 2 x?;’;o);*v;(‘xfﬂ; io)iif,f?](&;x‘),-

Let B,,ﬁ bea. class of functrons F deﬁned on aa X O’p, a B = 1 2 for each )\ E aa,,u E : : .

-'Wrth the norm ” ||g thrs cla.ss w11lc0nst1tute a ‘Banach space EWe 1ntroduce also the ¢

: 1 < :
202, S
L 7 <. ‘We assume that Bap(A, 1) is‘a compact operator, Bas(A, ) : g[,( ) Ga(A)) for

o Contlnuous"n
spectrum of H'is srtuated on the set ac(H) = of U 05, Let H®:be: thé part of H-acting -

‘ -1, U(*)U(*)" ‘ "I = P Here, P is an orthogonal projector on subspace o
= correspondlng to the drscrete spectrum ad(H) of the operator H. B R
The kernel’ ut(,f.)(/\ /\') ‘of thex operator u((,ﬁ),a =1, 2 represents an: ergenfunctlon of i
0 ,the continucus spectrum of the problem (1 ‘)) for :.’= /\ ;l: 10 )\' E oo and satlsﬁes the |
1ntegral equatlon S L L T T ey

f/\Ezd/\ Inthe T L ' i = T : T : e
TR i'where I‘ is 1dent1ty operator in g /\ €'Tq. vFor each concrete slgn (plus or mlnus) and

oo for each M. € otiN ¢o

T the class of the dlstrlbutrons i e

: e ‘\vhere <_0' < 9

A is the problem (1 2) elgenfunctron correspondmg to A' & 0'[,

Consrderlng the equatlon for T(z) ( )
" the same way as in [20], [21] that for-all z:€ C\o o(H), each l\ernel Tga(p, Az),a

: j'.belongs ‘to’ the class B,,, . w1th arbrtrary 0’,7 such that 5 <0< 0; % < 7 oA In;
respect wrth varlable 7, the kernel of Tga( )i is contmuous in the Bo, —norm rlght up toﬂg
the upper- and lower borders of the set aC(H) \ O'd(H) F ' '

S

- and by 25, 2; € R the respectlve ergenvalues of the operator H d1screte Spectrum os(H).
The component ulf), a. = 1 2 of the vector U 1s a solutlon of Eq (1 2) at z = z, If
:j“z,Ea[, then (Bpau(’))( ) =0. : : S S

3- BASIC EQUATION V:v‘i':._v;;;\ S

.{,‘The paper is devoted to construction of such operator H

«(H) the functron uc. (A /\’) is an umque solutlon of eq (2 5) in . -

e
X’Tﬂﬁ b EM“’

~< 7 < 7 At the same trme ' '.“‘f o ,

The functrons u},a), ,oz ﬂ = 1 2 can be explxcrtly expressed in terms of kernelsnf the

S Taapy Ay A 120
‘)(/\ /\:)‘_ 5[191[0 (/\ ,\’) _E‘_.l“______l)

B;;,,

2 )AblvBaﬂ] Bﬁm ,B 7& o

LAT(), A = 4@ Ag,oneshowsin
B =1, 2,

(Z —_ A[j) [z —..Apll-l- Bga(A V‘ -
B- B(

- U )"U(+) for a system descrrbed by the Hamlltoman H ls_;',j_

Scatterlng operator S=
/\), a, ﬂ = 1,.,, are grven by expresslons O

Lumtary in HC [It’s kernels Sﬁa(/l,

j'sﬁa(u, ),—6(# A) [6aal°~°m:raa<u X A+zo>1

By UJ, _] = 1 2 . We denote ergenvectors U _‘{ulj),u(;)} U E D( || U ||—»1 iv

_‘

that it’s each elgenfunctlon
) Tl’llS operator will be: =

/\

U = zua, together w1th ergenvalue z, satrsﬁes Eq.-




4’ | S e ' e T k ‘*Eq (1 4) means that the constructron of the operator H comes to the searchmg for the R
found as a solutlon of the non- l1near operator equatlon (l 4) To obtam thrs equatron we : DR S ; A NP

‘ . t '
need the followrng operator-value functlon V (Y) Of the operator vanable Y SIREE IR | - zpe;;" or.
.‘ ‘. VQ(Y) = Baﬂ /‘Eﬁ(d/‘)Bﬁa(Y _1/")_‘;, ‘ o T ) ~i » "-'“.1,\’, . SR . o x
- ey ,B'l'"‘:. . - e . };_; : Smce H = A + Bc,pan, we have ;f

Y ’Ha, — ’H We suppose here that (Y - p[)’l € L (o'g,B(Ha,’Ha)) if p € o5.. « i (3 3)
* This means that o has not.to be included into the spectrum of the operator:Y. Integral - Sl i
QD)= [ B dBaaT(w) for T € Lu(op, B(Hey 1), [Tl = Eg—sup [T < c0,
~ s 1 T ” 5\ . sl
s, constructed in the same way as mtegrals of scalar functlons over spectral measure’ (see il
" Ref. [25], p.130). Namely as_a limit. value, in respect t6 the operator norm in'B(Hs, Ha )y
v of respect1ve finite integral sums for piecewise-constant operator-valie functions: approx- . - - . P
. “’imating T"in. Loo(0p, B(Hay Ha))- We show the existence of thls mtegral at least m the s fj
: “case when the H1lbert Schmrdt norm ||B¢,5”2 is ﬁmte : ’ PR [
LEMMA 1: ’Let T €. L (Ug,B(Ha,H )) and ]I Bap ||2< oo. Then the: mtegral Q(T) ezzsts S
g bezng a bounded operator, Q(T) ’H = Hp, |[ Q(T) ][ <[| T ”ao 1. Bga ”2 L e
. X

In thls paper ‘we . restrlct ourselves to: the study of Eq w(3 3) solvabrllty onj,m the case‘:“,
when spectra al and 03 are separated s R o , :

T}{EOREM 1: ‘“Let Mpc,(6) be a set of bounded operators )\ X:, H e ’Hg,’ satzsfymg‘,i'«i S
the mequalzty "X“ < 6 wzth 6 > 0 Ifthzs é and the. norm ]|B(,5||2 satzst the condmon"ik ;

umquely solvable m Maﬁ(é)

L

PROOF We prove the Lemma 1n the dragonal 1ep1esentat10n (2 2) (2.3) By (2 4) we .
have g : LT

(Qf) #) zf Bl A T(;t)f)(/\)d)\

” ) for any f € ’H It means that

wrth X the operator from B(Ha,Hp).~ E T ‘ [
v Flrstly, consider conditions when the furction: F maps the set M (6) mto 1tself \Ve v

: uppose here that B a0, and X are, such that

ll(Qf (#)I’ jjdx le. (kA I;Z:dAI(T( ) ‘)(A)I ‘
Fol .

\Ga“vf el

: and consequently, |]BapA || < do Thxs means that spectrum of the operatolr As+ BagX i
does not intersect. with the set g5. Hence, the resolvent (A + BaﬁX p) exrsts and 1sj RER
‘bounded for any 3 G Up Thus by Lemma 1 wé. have S e :

: Hence, lntegratmg over ;t € ag we come to the relatlon
SR ‘ , i

, : ;fll Qf |l2<l| ch. ||z:l‘T Il

=5 whlch completes the proof _ : 5
: “Let us suppose that (H pl) 1 "L
' Q then automat1cally T R O

u,f n’

N

5

= v;,,:/;-ip‘;<a,;>‘s‘a;<;‘ﬁ-;,f).,—,l ;

o z.'("fﬁ)@

W - 7, 1 ) - c :
-1
! n <7z ||(A = ‘IIIIBaallzIIXI

[Il(A

, <3 1) / R = aa(z = An) ‘Bﬁawa =, (: )w i :
It follows from (3 1) that H, satlsﬁes the relation H T,ba = (A + V (H ))T.ba and we can
spread this relation over all the linear combmatlons of H, eigenfuiictions: Supposing:that.:
‘the eigenfunctions system of H, is dense in.H, -we spread-this equation over D(A )-“As

La result we come to the des1red baszc equatzon (1 4) for H (see also Refs [9] [17—19])




f CE ﬁ l 5;

(3 12) n(A £ BaaQaa : p)"‘n —‘1 + lul , ,"«-:'.l”'zn atany 4 €op b ke
W1th some Cag > 0 C wp ~ 1/(d0 - ”Bagan”) Of course. thrs estrmate is essentlal only in :

- the case when oy is unbounded. ‘It follows immediately from Eq. (3 3) that 1f n1 and/or P

,/~? ny are finite then Qpafa € D(Hp) D(Ag)ior any fa €: Heai o : : e

o In th1s case we can rewrrte the equatlon (3.3)'in, symmetrrc form ?1 Sy

Secondly, study condltlons for the functlon F to be a contractrng mappmg Now we i
) consrder the dlfference e e L

F(X) /Eﬂ dﬂ Bna [(A +Baa\ #) (A +BaaY #)

",”ﬂ

(3 13) : QBaA ABQﬁa + Qna anQﬁa = Bﬁa

/ Eﬁ(dlt)Baa(A +BaaX - ) ‘Baa(Y’v‘ kvX)(A +BknY #,,),

U"‘.Vv”ﬂ x ~' e T e

To make thls, it is sufﬁcrent to calculate the expressron an S:'— ‘AgQ,ga for both parts
of eq.(3. 3) hav1ng in mmd that we apply it-to fa e ’D(H ) D1d we have - "" G ;

- Agam by Lemma 1 ‘we have f; i

S le(.\')—
<||Baa||z sup ||(A +BaaX .

uuﬂ

})ll <

QuaH a—AﬁQaa Qaa(A +Ban3a) AaQaa HQaaA ~Apan+Qaa aﬁQaa{‘]-

. On the other hand

Qﬁa I

g One ﬁnds 1mmed1ately from Eqs *(3.13), a= 1,2, that 1f Q,ga nges solutron Hy = A +
agan of the problem (1 4) in the channel <] then s L

iTHEOREM 2 Let an, Q,ga € B(’HQ,HB) be a squtzon of Eq (5‘ 15‘) satzsfym_q together Lo
“with an = Q the condztzons (3 12) Then the transform H’ Q lHQ with @ = gj-, :

: "“'dlag{HhHZ} ; ; ,

6
1+62’1+6

 and this compl l ‘ ; [l Qus
l an is comp etes the proof of Theorem 1 [‘Il : Q”] reduccs the operator H to the bIocL dzagonal form, H’

Qa 7k
'fwhere Ho = A + Bagan, a, ﬂ —-‘1 2 ﬂ ;é a. At the same tzme, the operators Oa,

reduce the Hamzltoman H H = A‘l’," ’~_‘Baﬁ ] ta trzangular form H("
; ’Bﬁa ’,‘Aﬁ, . o :

'.”‘COROLLARY 1: '\E'quatzan (5’ 5’) zs unzquely soIvabIe zn.v he unit b II M 1 B
. ,for any Bag such that : . . i ( ) C (HQ’HG)

‘ ‘.1(3 10) IBanIIz < do

: To prove the 1nequahty (3 10)‘ note that max min {l-{-_667’ ﬁ} = 2— (at 6 -»1)

i 'I*lence if (3 10) takes pIace then the funct1on 3 5 t :
~bal M (1) mto s ( ) is‘a‘con ractmg mapplng of -the unlt i

" REMARK. Irrthe proofs of Lemma 1 and Theorem l we drd not use the assumptron about :
finlteness of the numbers n,, of 1ntervals in¢luded in contlnuous spectra oS of the operators
Aa, o =1,2.'Really; these a.ssertlons ‘take place i in the-case of arb1trary spectrum [
: F1n1teness at least of one of the numbers n1 and ng w1ll be used at the moment lf’ :
im and/or niz are ﬁmte and ; : B fie .

e




T

,‘;COROLLARY 2: Subspaccs HE) = 0 (H eB {0}) {f f = {f,,,fg} € M, fa ,
o Has fp = ng.fa} are orthogonal 'H(‘) 1 7-((2) and reducmg for H H(D H)ﬂ?—l(")) c
"H(ﬂ) : T \ B ot -
SR Really, lf f € H“” ge H“” and f = {fanﬁufala g= {Qaaga,gn}, then (f,.q)
“i A S Qapds) + (ng,fo,,gg) = 0 since Qpa = —Qaﬁ, The'i 1nvar1ance of H) o= l 2 in’
: »respect with H follows from the equality HQ = QH'." . | A St
“Assertions quite analogous to the Theorem 2 and Corollary 2 one can ﬁnd in Refs [22], :
[23] Solvability (for sufficiently small || Bag||) of the equation (3. 13) was proved in [22] [23]
- by rather dlfferent method also in the suppos1tlon 3. 4) e .

¢

[Zf lBaﬂ /\ ;t)l”d/t

1/2, FIRE . ~ 4
J v Smce 0 > 2, ‘we have “Bag(/\ )llHﬂ <

: an ’\)llHut-llBaa(/\,;;)lng ST I IIBllsg_a_

LD 'ij twhere the operator Bap(/\ p) ag(/\ p) : gp(p)] ga(v/:,), r:”a(/{_}om‘t/vto/\Bga( ,/{\)/\’I s
g 3 1,e o
iy REMARK It follows from Theorem 2 that operator Q QX"/"7 w1th X dlag{Xl,Xz} S P /\ ¢ ES“T‘?I?;S/\S,’,?)HMIW ((f\l/l/\Slgima\yge;l:ne/\%so\llbéIa (and llW (X (/\,) —-)]W (x; /\,‘; Vol

T o R [-3) o ’ ’ )

v KV‘lS umtary Consequently, the operator H" = Q*HQ = X‘/"’H’X‘l/"7 becomes self—ad]omt ~ f{ :;‘:. TR W N+, (/\n AL A A A7, A € ¢, in terms of the norms || Bug(Ay + )~ B,,,g( )llHu :
e n: 'H “Since H" = diag{H7, H{'} wrth H": XI/ZH X'l(z the operators H D= 1,2, 2 and || Bga(+ ,\"’) Bga( /\ )llHu Estrmatmg the latter‘through ”Bag”B we come to the L
- are self—ad_]omt on D(A,) in Hy. Moreover-the operators H(®) = Q. drag{H" 0}- Q"= 1nequa11ty ot ‘ N B i
Q- diag{H,,0} Q! represent pa.rts of the Hamxltoman Hin "the correspondmg mvarxant o : ||W ”Baa < c Cga ”BgallBg., S
,ij'subSpaces HM and 'H(’) (see also Refs. .[22], [23]).: SR SRR e : [
Unfortunately, elgenvectors Y2 of the operators H dlﬂ'er from those for the lmtxal

' ifspectral problem (1 2) ‘l/)" j: ‘/’xpa Tiringinn ’:'_).f-'

,VTW1th 0 < c(0) < oo: Therefore, we have proved the assert:on (b)
R To prove the statement (a) we note that accordmg to (3 3)

- ‘;,kLEMMA 2 Let the kernel Bpa([l,/\), 9& a, of lhe operalor Bpa belong‘to the class Bex \ £

e "wzth 9> 2 “and Q,gn, be'a solutton of Eq (3 3) sattsfymg together wtth Qap —Qﬁa the
M'condztwns (3. 12) Theny: 0 RIS
(a) the operator an 1s an mtegral operaior an ’H bl 'Hn, wtth a kCT"ffI Qﬁa(l‘a /\)

'beIongmg to Be.' g : 8 :

;=227 (b) the potential We=

‘W (/\ /\) belongmg to B"’" ‘

Baa( )(1 —#)"W( \
. 1:/\__“ o

LR

W ’ 'H ’Ha, wzth a kerneI Lo

S ‘fu.

,’(s 17)'

: . wnthH"

- sup m'l“-;‘ 'u Wl }{;f‘,’9'<7é<le'>'~’,<,'y%l

,unﬂ. S

llQaalIB {llBaalls+C(0 aaCaa llBaallul | <<0)<+oo

| W(A A')—f aﬁ(/\ (Hg—A ‘Baa( A)

It means that

IW(A A)|<||Bap(A b ll(Ha—Ai,

)llHB llBaa( 1/\' UH;i L

;l"’,__rcm 1 belongs to: thc class Bg,;’ ; too

< CaallBaa(/\




ST

: the operators Al, A, aré separated dlSt{O’l,Ug} = do > 0 ‘and ||Bu|[2 = ||Ballz < —2“

' :,"numbers, o, f =12, I3 # a.

: — “H,; o =1,2, are’real and o(Hy)Jo(Hz) = g(H): Continuous, spectrum o(H,

L satlsfy a_similar condition. -

- ‘tlon of Hy Hata = 2thay o € D(Ha) =

"z becomes automatrcally a point-of the discrete: spectrum’of the 1n1t1al spectral problem

“in the capaclty of the’ channel a. components L(d:— {U U; r—-‘{u('l),u(’)} u(’) = 1/)(’)}
e By Theorem 2 we! have L(dUL(2 s L ’

. ,"‘etther z ¢ Ud(Hﬁ) ﬂ # oz, or (zfz-7 G O’d(Hg)) the vector u(’) '

4 EIGENFUNCTIONS AND THE EXPANSION THEOREM i;f’ s%i"l

“In the precedmg sectlon, e have proved the ex1stence (1n the umt ball M ( ) C 'H )
of a solutlon Qﬁa of.. the ba51c equatron (3 3) only in the case when spectra. O1y 02 of .

May be, however, Egs. (1:4) and (3.3) have solntlons also in ‘other cases. That i is why

- we study. the spectral propertles of the operator H = A + BagQﬁa not. supposrng that

||Baﬁ||2 < —2‘1 and usmg more general requlrements (3 1‘7) only, with Cag, some pos1t1ve
Of course,” we assume again that the condition (3.4)
takes place. Remember ‘that the requrrements (3.12) are sufficient for existence of the =
- operators. Vy (Hy): As well; the equatrons (3 13) and 3. 14) take place and the assertlons

: of Theorem 2 and Lemma2 are valid.

~'So, let us suppose that Qp..and Qqﬁ —'4 —'an are solutlons of Eqs (3 3) and (3 13)

' Zl satlsfymg the condrtlons (3 12) It fOIIOWs from Lemma 1 that Qﬁa € Bﬁa(Ha,Hﬁ) as well . - :
‘as’ Qap € Bap(Hﬁ,Hq) If Bpa G Bg:, 0 > g,fthen accordlng to Lemma 2; Qpa Bﬁa SO
. and Qap € Baﬁ : L : B

el

By Theorem 2 the operator H = dlag{Hl, I{g} is connected w1th‘the (self-ad]ornt)
operator Hbya srmllarrty transform. Thus, the spectra o( Hi) and a(H) of the operators. == =
=g ) of the "o

: each operator :H, coincides with:that of the operator Anio(Hy )‘= o5, since due to. 7}
“Bap“z < +60, the potential W, = quQﬁa is‘a compact’ operator. Since o ﬂ02 =0
‘we have o (H1) [ o(Hz) = (0 We show now: that the dlscrete spectra ad(H a= 1 2
‘Let us suppose that ad(H ) # (D z E ad(H ) and 1/)0, is’ the correspondlng ergenfunc— :_
: =D(As)- Then according to construction.of Ha,. ",
~we have Ho Yo = (As + Va(Ha))ba = (Aa+ Valz))¥s =214 Thus if z'€ 04(Ha ) then”

( 2):At the same time . becomes it’s eigenfunction. . s
- Letus: further denote the elgenfunctlons of .the. operator H dlscrete spectrum by

X (’) 1/)(’) =u¥), keepmg for them the same numeratlon as for elgenvectors of U, U; i=
u(’) (’) ,-of the Hamrltoman H HU = z;U;; s e oa H). We assume. that in the case
3Uis 2

of multlple dlscrete elgenvalues, certam z, may be- repeated in: thls numeratlon By Ui;
we denote the set U" ={U;i= 1,2,: ol

-

} of all the elgenvectors U g S
~Let us be such a subset of L(“ that 1t s elements have the operator H elgenvectors 1/)(’) S

Ry ‘TI{EOREM 3 Let Hﬁ = Aﬁ + B (,Qaﬁ, correspond (far ||Bpal|z ’< +oo) to the same. EE
e :vsolutton Qaﬁ ==Qp, of Eqs (3 3) and (3 13) as Hy = Ag+ BaﬁQﬁa, and the condz- Ko

s tions (3.12) are. vahd Let zZ; G a'd(H ) and- H u(’),: 2; u(’) with’ ug

(’) the channe[ o

"‘component of the ezgenvector Uj. {u(’) (’)} of the operator H HU = z,U Then

is not an ezgenvector of Hﬁ.: :

v _COROLLARY 4 uf‘nu;?

oo Statement of Theorem 3 means that dlscrete spectrum ad(H) is dlstrxbuted between .
. dlscrete spectra ad(Hl) and Ud(Hz) in’ such a'way. that’ operat’ors“Hl and Hz fhave not*

B Let us’ suppose that 1/)(‘7) = ud.

i ()G

4 common elgenvectors U = {u(’) u(’)} snnultaneously, component u(’)'can not bd} e

L elgenvector for Hy; and u(’) with the same], for H2

sl PROOF of the Theorem ‘will be glven by contradlctxon
() 3

k E A R
is'an elgenvector of H correspondlng to z-7 e il

,,_(,4-;1), S (A + BaaQn;— ~,)w"? S0l S 5

If z‘7 G oy = a'( a) then automatlcally 25 ‘¢ O'd(Hg) since due to condltlons (3 12) =
wel gave a'(Hg) ﬂa’ Aa = (0 Thus in’ the case; when %€ a'a the assertlon of Theorem is
“irevall P S .

We w1ll show that the vector y( ) isa solutlon of the 1n1t1al spectral problem (1 2) in the 2

channel ﬂ at z = z‘7 and U = {1/)(’), (’)} is an elgenvector of Hy HU = z,U To do’
thls, we, act on both parts of Eq (4 3) by: Hﬁ rememberlng that accordmg to (3 14),

\

ﬁyfa’ =

(dA)Ba

aayfaj) + QBa aﬁy( )

ZJ) 1B ﬁ = z:lyh*)\" 0.

So, we have proved that y 64 isa solutlon of the 1n1t1al problem in the channel ﬂ and we S

d1d deal w1th an elgenvector U = {ua ,uﬁ
(J) o 1/)(.7) and u(:) o y(J) " t

' Let us show that y can not be an elgenvector of Hg correspondlng to the elgenvalue
;V'Actually, due to (4 3) we have TR O - e o

} of the operator H havnng the components

N i )'IB pyf,’),y(’))‘




2 mtegral operator thh the kernel tb(i)(/\ ,\’ S ‘ ‘;‘n:‘ . ’

On the other hand . L SR L .
‘a= uy"’nz + <(A = z,) Baﬁy(’) Qﬁay"’t

o

! If (’) is an exgenvector of Hg, Hgy = z,yﬁ) then o

/ (dA)Bc.ﬁ(m, - Ar‘yg”. - (o é,)i‘Baﬁy

'«,‘;’a‘..,,k SR

Qaayly” —»—Q ay

S R a—IIy’II +lI(A —ZJ) Baay’ll >lly’ll

»‘"

ance a= we get y(’) =0 and due to (4 2) ¢'(J) = 0 However, by supposltron ¢'(J) 95 0
fers Thus we come to a contradlctron and y(’) can not be an elgenvector of Hg And so, 1f

Y2 € Ud(Ha) and H, u(’)_,_— z; u(’) then u(’) is not an elgenvector of }lg.. The proof of'\

'f-‘Theorem dis completed

Let us pay attentron to the contlnuous spectrum of H assummg here that Bag e Bf:, G

o where as usually W apra. Smce W 'E Bh . the mtegral operator w1th the kernel
' P
/\L&f\,?/\% is: compact in Mg'.,, 2 < 0’~ 0 0 < '7 < 7 (cf ‘'Refs.. [20] [21])

. M¢ gi(H,) then Eq. (4. 5) for ¢'(+) as. wella as for 1/! lvable (see Ref [21]
-in !the class ‘of the form (2.6)° dxstrrbutxons RO

lS umquel

. The operator o) s bounded ‘and lIl(i)'D( Mc “D(Ha.) " [20},.21): -

- (4.5).that ¥ has the property A w‘*’ \ll‘*)A“” “Thus, Qﬁaw‘*’( N)= (M= A,,)-‘

S Bgallfli)( A’) Substrtutlon of this expressxon in (4 5) shOWS that P satlsﬁes (2:5).'Due
) solutlon at AL & Ud(H) \tc have wli)(/\ )= ulf,)(/\ ). R
" This means that ‘each elgenfunctlon ul.f,)(,\ My Aea /\’ ¢ 0'4( ) of the lmtlal spectral , ,")

to the unlqueness of Eq (

e problem problem ( .2} is"also an’ ergenfunctron of -Hy:
) &) R 1I,(J) Q. 0,“(1) and
Let w‘*’ w‘*’

Consrder the functxons 1/)

*w‘*’( X) = g8 )= Qa AN, N € ot

- T}{EOREM 4. The functwns ¢'(J) (wzth] such that U € L(d) are ezgenfunctwns of ad]omt, : .
. roperator H:, H' =-AgH QﬁaBga, discrete spectrum, H; o) - =z B9 Operators \Il( Yo

:ghave ‘the property H'\IJ(i)
'i«place (11)49)1 ((xk)) 6 ‘Il(i)'\ll(i) l | . ’ \I](i)',(/(Jl
,'jwaIlOWIny completeness relatwns cre valzd :

0 and \IJ‘*"¢"> =.0. Also, the

e Note that A

Denote by \Ill,i), v M = Hor t the. mtegral opcratorthh the Lernel w(i)(/\ /\’) .
It- follows from .~

us.-‘a—‘e;n;.\;'bg,_ti}é b e

\P(i)A(O) At the 'same time the orthogonqlzty relatwns take =

PROOF Show for example that

‘(remember that z_., e R) VVe have ' L
o o HY = (e QaaBa )(:/"” Q ,,um) =

(A ‘-QaﬁBﬁa) o - (A Qc.wQGaBac.Qaﬁ) m
H Bagan and hence, . ', s : e

(e QaaBaa)¢(’) ~'z,¢"’ - (B ﬁQaZ., _QaaBna)tb(’)

i Second term in: the rlght part of (4 9) may be easnly expressed through u(’)

e

L (48)

k (4 9)

’lly, 0) ! —-,_—(kAg - z ) IB)@Q,IL'(J)/ (we use, agam the property U(H )ﬂag = 0 followmg
from (3 12)).: Smce Eqs (3 2) and H w(’),*' z !,Z)(J) take place we ﬁnd Qﬁo¢(1) ‘
'»Consequently, BN g A S :

aﬂQﬁa+Q0ana)w"> = BﬁaQaw‘MQGﬁma—; )(A,, - ,,-‘ 1By

SR —-Qaa(Aa*~~J) 0.
Subst1tutmg the expressrons obtalned mto (4 9) and then mto (4 8 we get

Bgﬂ,u

.'-.Accordlng to' the equatxons (3 13)
+ and; we come to (4.7). o

) _The equalltles H‘ X) = )«’ i)( /\’), X E Ua, Jare pro\ ed quxte analogously
The orthogonahty relatlons (y’)(’)\wlk)) =8k \ll(i)" 9 =0 and- lIl(i" f,’)
“trivial! Proofs of the relatron lIl(i)'lIl(i’_,_.- I, IHC s and the equahty (4 6) are very sxmllar

Oare'

o ‘Both these proofs are based on use of propertles of tlre wave operators U(*) As a sample
we: grve a proof of- the completeness relatlon (4 6) ‘ ~ ,

Consxder-the operator
' Z ¢,(J)

J U eud

*H;Z“"w( ¢"> Qc.nu"’>+kp l‘p Q"”“"")‘]"*

5 U,eud Sy

1/,(1) + q, \Il' k

Ja

V'\‘For,_convemence, we omlt srgns “:l:” in; notatlons of \l’t)A: u(ﬁ), u(ﬁ? and \Ila takmg 1n

: m1nd for example the case of sxgn‘ “+” We have fxom (4 10)

Z Il'h)

( ) y
Q 0“ 1 ) e a“paQap

Actu- S "

Baguf,’) I

the expxcssmn m thc squarc brackcts 15 equal to zero -




subspace cornespondzng to it’s contznuous spect1um~aa, »zs similar to the opemtor AS,), i ,‘

..

ey REMARK Thrs Theorem may be proved also in another way mal\rng use of the equalrty

Smce uggQag'—- (Qaguaa) = uat,, we can wr1te wrth a help of (4 ll) tha.t

w Z (J)( Q gu("’) ‘

T .A— uaauaa +Uaﬁu 6+ Z t,b(") 11’(”)

U avyeud

s z'EaAH) i
b U,gud 2

In the last sum; the condrtrons z_, € a,i( ) a.nd U ¢ L(‘{ mean really that we deal w1th
“ any 7 such tha.t U; e L{ﬁ This follows from the equahtres L{l Uug = L(" a.nd udﬂu2 =

(see Theorem 3 and Corollary 4) For U € Ua, the vector u(") ‘is ergenfunctlon of Hg, ’

(") = 1,)(") and Qagu(") ‘ Q mb(") = u(") Thus .A turns in ot ;’.M

«JT"“A ‘;;A»._:uﬂauaa—l-uaﬁuga'l' Z (J) SXJ)) (U(:!:)U(:!:)v + P) a
R A e e ‘ZJEvd(H) ERR : e

Smce U(*)U(*)" + P = I we ﬁnd .A =1, and th1s completes the proof of Theorem 4

L Theorem 4:means in partrcula.r that pmt Hc of operator H actzng in. the 1nvarmnt

H ‘I/(i)A(o)‘I/(i)' and spectruma is absolutely contznuous - T , R

\Ve lntroduce now. a new, inner product [ o la in 'Ha, [fa,ga]a‘ ( afa,ga) fa,g,, G 'Ha, e
“ with" X defined as in: Theorem2 X, =1, +QagQ ap @ =1,2. The operator Xa'is posmve e

deﬁnrte X >‘I Thrs means that [ ; ]a satrsﬁes all the axroms of 1nner product

THEOREM 5 The operator H,,, o
inner product[ i ]a e

PROOF Tt follows from Theorem 2 that operator H’ is* self-ad_]omt m/'H ( 'H1 EB 'Hg in
respect with the inner product 5L 1 9] = [ XS, g) with' X = drag{Xl,Xg} D1d srnce
Q‘ = Q"X Th= X710, we have for. f,g € ’D(H’) ’D( ) D(A )EB’D(Ag) :

‘;H'f,gl (XQ“HQf,g) (X ’\"QHQf,g)

<f,Q HQg) (f, X'“‘Q HQg) (g

Here we used the fa.ct that m the ca.se of (3 19) Qf G D(AI) EB D(Ag) lf f G ’D(Al) EB
D(Azl

‘g =4q,0}or f = {0 f2}, g = {0,¢,} with one of the components equal to zero a.nd
fa,ga € D(A ) a =1,2, one comes ‘to'the statement of Theorem g

I +Q00Qag— Z 11’(") .¢,(J)) \I"‘l‘)\lli')"

,: :';1 - ; : Lige U Elld

T whrch is vahd for both srgns “+ and o < In-this case, a self—ad_]omtness of Ho, in:,

_« . respect with [ +], follows from the fact that 1t s spectrum is real and also from relatlons

H"‘I/(i)‘ll(i)' = ‘I/(*)A(o)‘ll(i)" : ‘I/(i)\ll(i)'H . The equalrty (5.1). itself is “proved by
calculatmg it’sright part in the same way as it. was ‘done when the completenes“s relatrons
(4 6) were establlshed (see proof of Theorem 4) i

Takrng elements f, g in the equallty [H'f,g] [f, H’g] in the form f = {f;,O}, . £ I

is equal to s llm U (t) =

: ‘solutzon fa(t) = exp(-—-zHa ) 5,0)_ of Eq {6 1) satzsﬁes the asymptotzc condztzon

SRR We do not glve here proofs of the Theorems 6°and 7 because they are exactly the

-Here we have used the propertles ‘I/a = uf,f,), Qaa -—'-—Qag and an‘I/("' ‘( esta,b-

-~

e SCATTERING PROBLEM S e

, "We establlsh now tha.t operators \Il(+) a.nd \Il( - play the same lmportant role descrrblng
Soolat t1me asymptotrcs of solutlons of the Schrodmgel equatron ERET .

- as 1n the usual self a.d_|01nt case [20] [21]

: ‘THEOREM 6 OperatorU &t) = exp(zH t) exp(~1A( )t) converges strongly zft — :Foo, in
o respect with. the norm || - || correspondzng to_the inner. product [ ]a in 'Hm The limit
\I,(i)* ; : :

SO Slnce the norms |] ||X a.nd || H in- 'H are equrvalent ]|f]| < ”f|| S (1 + ”Qag”
. ][an|l)1/2]|f|| the same statement tal\es place a.lso ‘in respect w1th the 1n1t1al norm || Al

- ;—\_ .

;'V‘.THEOREM 7 For any element f( ). e 'H° ;one can; ﬁnd such unzque element o

11m || fa(t)—exp(—zA(o)t f( )||X 0

There ezzsts the unique 'element f(+ﬂ) e 'H‘ such that

°’t)f‘+’ ||X£

o ', Elehdtents\f and f(+) are- connected by the relatwn f(+)

S with
: ~v:"S(a) = \I,( 7~\I/(+) ‘I/( )“I,(+)[ ‘I/( )"X \l’(+) il

*‘Tsa.me as in-the case of one-particle Schrodinger operator in Ref. {26] - s
- _Theotern 7 gives the non- statronary formulatron of the scattermg problem fora system P
- \descrlbed by Hamrltonran H Moreover S @isa scatterlng operator for th1s system SEly

: THEOREM 8 Scatterzng operator S(") comczdes wzth the component oo of the scatterzng
T “operator S S U( )"U +) for a system descrzbed by the two channel Hamzltoman H .

: PROOF Let us show that operator S("’) has the l\ernel sm,(/\ /\') given' by Eq (2 7)

"‘s‘do thrs remember that ‘I/( )= ‘I/( ) = Qagu (see Theorem 4) Therefore,
Sae

llshed above Smce

(U( )-U(+)) __saa,

|




. problems 5%
- we will- d1scuss here three approaches seemed to:be reasonable when one tries to embed -

- "(for/instance, four—channel if N=3) self- adjoint Hamiltonian {12}, -

A kernel of the scattermg operator S(") may be presented also ina usual way (2 7)
. in terms of the t-matrix ta(z) =
that 1 ( ) differs from Taa( ) 1ntroduced in Sec

ff anlln + Qna(A =2) lBaﬁl lQﬁa

D1d easy calculatlons show that

i()=B aﬁ[Aﬁ—Bﬁa(A LBl ‘Qaa(A “ag

Howeve. the additional term 7, (z) is ev1dently dlsappearmg on: the’ energy-shell due to

o presence of the difference A; — z as’ an ‘end factor. Actually, in the dlagonal representas v
)\+1,0 Therefore kernels SR

~tion (2.2),(2: 3), A -z actsas ‘the factor A — = vanishing at z
) 'oft matrices't;and T,,a c01nc1de on the energy surface. " :
k - Note. also that in our case ‘71 ﬂ02 Sz 0. Hence we. have sﬁ,,*
b fumtary e SR : ,

~IN. FEW—BODY PROBLEMS b

or There is. a- rather conceptual questxon (see for mstance Refs [7]
*“use of the two—body energy— dependent potentials in few= body noni-relativistic scattering
Ev1dently this-question  is’ strongly.related to.the subJect of; the paper and

,'energy dependent potentlals in few=body equations: "

~Acustomary way to embed such potentials:into’the, center-of mass frame N body
o Schrodxnger equation consists in the followmg Namely, one. replaces (see papers [6],:[8];,
~[12],.[13] and " Refs. therem) the ‘pair -energy  z;;,. argumcnt of ‘the potential V;(zij), .

1 g, descrlbmg interaction in‘two-body subsystem {4,715 stand: for numbers of par-*
o ticles; 2
. and the k1net1c energy operator T of partlcles, supplementary to the subsystem {1,,_7}

43 ="1,2% ;N) with" the difference Z:—~ T}; between total energy. Z of. -system .
For the. resolvent like energy dependent potcntlals (L3) thls replacement is-quite.cor-.
-rect from’ mathematical point-of view since one'can rcmnstruct underlymg multichannel :*
3],

- spectral problem for this Hamlltonlan to the external: channel only one gets'the N- body
“Schrédinger equatlon exactly ‘with’ the:pair potentlals Vi;(Z°= T{;).'Thus one can guar--
“antee that spectrum of th1s equatlon is real and the scattermg problem for the N body

= system can be based.
T meet ‘serious conceptual ob_]ectlons for-

' However the: replacements % fb Z 5
r mulated in’ concentrated form by E.W. Schmid .- -[10].
- conservation law that to obtain @ ‘share of total energy- belonging to subsystem {47}, one:
““has to subtract from Z.not only Ty; but: also a’potential energy of interaction between -

"~ particles i,j “and the rest ‘particles of ‘the system. This‘idea shows really-a first way for
[10]) -embedding two-body potentials ‘into N-body™ """

- the correct (in the context of Ref."
" equations: one has to redefine pa1r potentrals as solutlons V,_7 of the followrng system of

S equatlons
D : L {: ,');e{. :)

Wao =W, (H ——‘z) ! Wg; taken on the energy-shell ‘Note -

[10]) concermng A

Reducmg the

Dld, it follows:from the- energy B

* may be consxdered only as a zero ‘approximation to solutions V,,(Z) of the system (7. l)
Unfortunately, this system may be treated relatlvely easy only in'the case of linear de- '
- pendence of the potentials Vi;(zi;) on the’ (pair). energies z;;. One can show in.this: case - -
 that operator-value functions VU(Y) of the operator variable Y Y Lz(R:"(N“)) o |
L2(R3(N ). may.be defined in such a way that solutions of Eqs. (7.1) generate onlyf |
. real spectrum for:the N~ ~body- Schrodmger equatlon") In the case of the resolvent-like -
-‘energy dependence (1.3) of -pair -interactions one meets serious obstacles-in solving the l
“system (7.1) connected with a strong non- lmearlty of 1t s equatlons Also, no underlymg, |
self—ad]ornt Hamiltonian is. still found. , »
Another way. to deal with the: two—body energy dependent potentlals in few—-body ‘
problems is to replace them with energy independent ones. In fact, in the present work we ™~~~ ..
“realized namely this‘idea wh1ch was'pronounced by B. H. 7. McKellar and C.M: McKay (7).

. where {z, ]} runs all the paxr subsysterns So the usual embbedmgs ._,(z,,) — V,,(Z ) o - }
l

‘;Dld let us-denote now a “share”-of the total-energy: of ‘the N-body system belonging = -
to the “pair,subsystem {z, J} by ‘ki;."Then this" h.‘7 has to sat1sfy the operator equatron'.i’.: D
followmg from the energy conservatlon la\v too, ‘ N

where h( ¥ stands for the kmetxc energy opelatm of the parr {z,]} and v,,, for an energy—
1ndependent ‘part of: the ‘pair 1nteractron Remember thatthe equation (7. 2) .In-nota- -
“tion (1.4) was a:main subject of the present work. I solutions h;j. of equations (7 2) be
- known; one could substitute the (energy 1ndependent) operators W= V.,(h”) in the
| "N body Hamlltoman treatmg them 'in conventlonal way. as’ addltxonal energy mdependent‘, 'w

il(see'Se’c -4).. Forbldden elgenstates correSpond normally to the spectrum generated byf
* ‘tespective internal.Hamiltonian: [17]: - There is also another questxon -is the spectrum Ve
- of :the :N-body ' Hamiltonian real-if potentrals W;; are substltuted in? Thmg is that™ .7
o ‘j,Hamlltoman ki becomes self—ad_|o1nt only in respect with a new inner product in Lg(R"‘) e
* (see Sec. 5).*-One can overcome-this difficulty replacmg hij with similar. Hamlltonlan‘f

h’ = 1’2h X_l’2 where X‘7 is’ analog for h,-7 of the operators )\; mtroduced in Sec 3.

\\\ Wr1t1ng h’ in the form h’ = h(O) +.Vi one gets a new palr potentlal V-’ wh1ch is already‘
' self—adJomt in: respect W1th the standard inner’ product in’ Lg(R"‘) Thus one may use -
o “then the potentrals V being sure that the N- body Hamiltonian" constructed is Hermitic. T 7
. [ Emphamze that- potentlal Vi glves the. same two-body spectrum and phase: sh1fts as the B
1~ potential v;; + W;; because. h’ is obtamed from “K;; by similarity transform It follows FEtan
" from: ‘Theorems-7 and 8 that the phase shifts given by Vi coiricide ‘also with: those for" :
. Eq. (7.3): Therefore, the operator Vi turns out one of the phase-equxvalent potentlals for
. the two—body subsystem concerned ; : .
21" So, we have dlscussed three dlfferent approaches to embeddmg the two—body energy—
dependent potentials in. few—body problems.: Certamly, the approaches based on'solving
the non-linear equations (7:1) and: (7.2) do not seem to be too attractive from the com- -
putatronal pomt of V1ew However, in the cases when the mternal Hamlltomans of paxre”

E 4)The author prepares a paper devoted to thrs sub_]e t.




o subsystems have a ﬁnrte dlscrete spectrum only and the couplmg of channels is relat1vely
+ small (see Corollary 1 to Theorem 1), the approach based on solvmg Eqs (7 2) could be
Vi qulte realized numerically.” e e :
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Motosunos A.K. E5-94-259
HcknioueHue IHEPrMY U3 B3AaHMORENCTBUH,

3aBHUCAIIMX OT HEEC PE30JABBEHTHBIM 06pa30M

Paccmarpusaercsl criexTpasbHas 3agava (A + V(z))y = z, BXOTOPOit OCHOBHOM rAMMIbTOHHAH
A sBASETCA CAMOCONPSKEHHDBIM OIEPATOPOM JOCTATOYHO MPOMU3BOJILHOM IIPUPOJIBI, 2 BOIMYLIEHHE
V(z) = ~B(A' — z)'lB' 32BHCHUT OT SHEPIUM Z KaK PE30JIbBEHTA HEKOTOPOIO APYroro CaMocomnps-
sxeHHoro oneparopa A'. TlocyenHuit 00bIUHO MHTEPIPETUPYETCH KaK rAMMJIBTOHMAH, OMMCBHIBA-
OIMIE BHYTPEHHIOI0 CTPYKTYPY dusuueckoit cuctemsl. [Ipeanonaraercs, uto B MMEET KOHEUHYIO
Hopmy I'unsbepra-IlIMuara. PopMyaupyroTcs ycaosus, NpH KOTOPBIX AEAaETCH BO3MOXKHOM 3aMe-
Ha BO3MyIueHus V(z) «notenumanom» W, He 3aBMCAIIMM OT SHEPIHUH, TAKMM, UTO FaMHIIbTOHMAH
H = A + W wnMeerT TOT XKe CnexTp (TOuHee, yacTh CIIEKTPA) U Te XKe COOCTBEHHBIE DYHKUMH, UTO U
MCXOIHAS CNEKTPAIbHAS 3a7aua. TaMIIbTORMAH H CTPOMTCS KaK PELIEHHE HETMHEHHOIO OepaTop-
HOro ypapHeHus H = A + V(H). YcranapivBaerca TeCHad CBS3b 3TOIO ypaBHEHMs C 3ajaueit o
A
B A
¢yuxumit oneparopa H = A + W noxa3biBaloTCs TEOPEMbI IMOJHOTEI M OPTOrOHanbHOCTH. IIpu
HAJMUMM y ONEPATOPa A HENPEPBIBHOTO CNIEKTPA AIH FAMITbTOHMAaHA H CTPOMTCS Teopus pacce-
SIHUSA.

[MOMCKE MHBAPUAHTHLIX MMOANPOCTPAHCTB raMMIbTOHMAHA H = . I cuctem coOCTBEHHBIX

Pa6ora seinonuena 8 Jlabopatopum teopetrueckoit dusuxu um. H.H.Borono6osa QUSIU.
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Motovilov A.K.
Removal of the Energy Dependence
from the Resolvent-Like Energy-Dependent Interactions

ES5-94-259

The spectral problem (A + V(z)y = zy is considered where main Hamiltonian A is a self-adjoint
operator of sufficiently arbitrary nature. The perturbation ¥(z) = —~B(A’ — z)_lB' depends on the
energy z as resolvent of another self-adjoint operator A’. The latter is usually interpreted as
Hamiltonian describing an internal structure of physical system. The operator B is assumed to have a
finite Hilbert-Schmidt norm. The conditions are formulated when one can replace the perturbation
V(z) with an energy-independent «potential» W such that the Hamiltonian H = A + W has the same
spectrum (more exactly a partof spectrum) and the same eigenfunctions as the initial spectral problem.
The Hamiltonian H is constructed as a solution of the non-linear operator equation H = A + V(H). It
is established that this equation is closely connected with the problem of searching for invariant
A B '
B A
for eigenfunction systems of the Hamiltonian H = A + W. Scattering theory is developed for this
Hamiltonian in the case when operator A has continuous spectrum.

subspaces for the Hamiltonian H = . The orthogonality and expansion theorems are proved

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.
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