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1 Introduction 

In out recent paper [l], the notion of involutive bases of polynomial ideals was intro­
duced and an algorithm for computing involutive bases was presented. The improved 
version of the algorithm together with the proof of its correctness in zero-dimensional 
case is given in [2]. Our computation experience [l, 2] shows that involutive bases of 
zero-dimensional ideals in the total-degree term ordering may be computed by this al­
gorithm considerably faster than the reduced Grabner bases by Buchberger's algorithm 
[3]. Note that involutive basis is a special form of the redundant Grabner basis, so it 
gives all information about ideal and solutions. Moreover, the knowledge of involutive 
basis in the case of generic zero-dimensional radicals provides an effective method for 
converting it into the lexicographical Gralmer basis from which the solutions may be 
easily obtained [4]. 
In the positive-dimensional case, iuvolutive bases in the sense of [l] are not sure to 
exist. This principle difficulty of the iiivolutivc approach is resolved in the present 
paper. The idea is to use more sophisticated definition of involutivity than in [l]. In 
our previous works [l, 2, 4] we used the involutivity conditions taken from the hook of 
J.F.Pommaret [5]. In general case of positive-dimensional ideal, the involutive basis in 
the sense of Pommaret docs exist only after generic linear change of variables which is 
not effective for practical computations. In the present paper we use another definition 
of involutivity coming from the works of M.Janet [6]. Unlike Pomrnaret bases, involu­
tive bases in the sense of Janet exist for any polynomial ideal. We clarify the relation 
between Janet,Pommaret and Grabner bases and propose an algorithm for computing 
Janet bases. The algorithm is implemented in the computer algebra system REDUCE 
[7]. It turns out that in the zero-dimensional ca.~e the new algorithm works not worse 
than the algorithm INV BASE described in [4]. 

2 Pommaret Bases 

Throughout this paper we use the notations: 

K - arbitrary zero characteristic field; 
a, b- elements of K; 
K[x1, ... , xn]- polynomial ring over K; 
J,g,h,p- polynomials from K[x1, ... ,xn]; 
F,G,H,P- finite subsets in K[x1, ... ,xn]; 
card(F)- cardinality (number of elements) of F; 
u, v, w, s- terms in polynomials (without coefficients from K); 
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deg;(u)..:... degree of variable x; in u; 
cf(!, u)- coefficient of u in J; 
(F)- ideal generated by F. 
Let <T be some admissible term ordering and let variables be ordered as x1 <T x2 <T 
... <T Xn• We denote by 

lt(f)- leading term in f w.r.t. <T; 
le(!)._ leading coefficient inf, i.e. cf(!, lt(f)); 
red(!) = f - le(!) - lt(f); • 
lt(F) = {lt(f) If E F}; 
lcm(F)- least common multiple of all lt(f), f E F; 
minT(F)- polynomial in F with minimal lt. 

We recall some main concepts and results of the involution approach developed in 
[1, 2, 4] and based on the definition of involutivity taken from [5]. 1 

• 

· Defh~ition 1 [5]. Variable X;. is multiplicative in the sense of Pommaret for the term 
u if its index i is not greater than the inrlex of the lowest variable in u. Otherwise, x; 

· is non-multiplicative in the sense of Pommaret for the term u. · · 

For a given polynomial g we de_note by NMp(g) a set of non-~nltipli~ative variables 
for lt(g). · 

Definition 2. The term u is a Pommaret divisor for the term w if w = u or w · = 
_u • v, v f: 1, where all variables contained in v are ~ultiplicative for u (symbolicaµy 
u ~P w). · · 

Definition 3. The polynomial h is a Pommaret normal form of polynomial f modulo 
G (symbolically h = N Fp(J, G)) if h = f + ~;; a;;g; x u;; where g; E G, a;; E K-, 
all variables in each term u;; are multiplicative for lt(g;) and no one term in h has a 
Pommaret divisor in lt(G). 

In contrast to the Pommaret normal form, we denote by N F(f, G) an usual normal 
form off modulo G. An algorithm.for computing NFp may be obtained from one for 
NF (3] replacing usual division of terms by division in the sense-of Pommaret. 

- . 
Definition 4. G is autoreduced in the sense of Pommaret if 

Vg,g'EG,g#g' ,(lt(g) 5P lt(g')). 

G is completely autoreduced in the sense ~f Pommaret if V9ea N Fp(f!, G \ {g}) = g 

Definition 5 (5]. 9 is an involutive basis in the sense of Pommaret {Pommaret _basis). 
if it is autoreduced in the sense of Pommaret and ' · 

VgeG YzeNMp(JJ) N Fp(g · x, G) = 0 

The main properties of Pommaret bases established in [1, 2] 'are listed below. 
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Properties of Pommaret bases. 

1. If G is a Pommaret basis then V1e(G) NFp(f, G) = 0. 

2. If G is a Pommaret basis then 'r/h N Fp(h, G) = .\ F(h, G). 

3. Any Pommaret basis is a Grobner basis, generally redundant: 

4. If the Pommaret basis of a given ideal exists, it is unique. 

5. For any zero-dimensional ideal there exists a Ponimaret basis. 

6. For any positive-dimensional ideal a Pommaret basis does exist after the most 
invertible linear changes of variables. · 

One may easily _check that involutive basis in the sense of Pommaret exists not for any 
positive-dimensional ideal: E.g., for an ideal generated by a single polynomial f the 
Pommaret basis does exist if and only if lt(f) is a power of the leading variable. In such 
"irregular" cases the algorithm for computing involutive bases developed·in [1, 2] does 
·not stop. Moreover, there are no criteria for recognizing the irregular situations a priori. 
This was the main difficulty of the involution approach. To overcome this difficulty we 
propose a new approach basc<l on the more sophisticated concept of involutivity [6]. 
We shall prove that involutive bases in the new sense (the so-called Janet bases) exist 
for any polynomial ideal and may be constructed by a finite number of steps. 

3 -. Janet Bases· 

Definition 6. Let U be a finite set of terms. The group of terms [dn••· d;] C U is 

[dn--• d;] = {u EU I degk(u) = dk, k = n, n - 1...i}. 

The number 
ind([dn•--d;],U) = max{deg;-1(u) I u E [dn ... d;]} 

is the highest index of the group [dn••· d;] in U. 

Definition 7 [6]. Variable x; is multiplicative in the sense of Janet for all terms of the 
group [cl,. ... d;] CU if d; = ind([dn.;• d;+1], U). Otherwise x; is non-multiplicative in the 
sense of Janet for all such terms. 

Note that in contrast to definition 1 the multiplicative and non-multiplicative variables 
for a given term are defined now with respect.to some finite set of terms. 

Definition 8. The term u E U is a Janet divisor for the term w if w_ = u or w = 
u · v, v f 1, where all variables contained in v are multiplicative for u in the sense of 
Janet (symbolically u • v = u xv). 

Let F be a finite set of polynomials. For some polynomial h we denote by N A-!J(h, F) a 
set of non-multiplicative variables in the sense of Janet for the term lt(h) with respect 
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to the set lt(F). We write also h • u = h x u if all variables in u are multiplicative for 
lt(h). 

In general cas'e there is no correlation between definitions 1 and 8: for a given set F 
a variable which is multiplicative in one sense may be non-multiplicative in another 
sense and vice vers~. However, if Fis autoreduced in the sense of Pommaret we have 
the following theorem. 

Theorem 1. Let F be autoreduced in th; sense of Pommaret. Then N MJ(f, F) c 
N Mp(!) for all f E F. 

Proof. Consider some f E F. Let lt(f) = x:;, ... xf where d; f 0. We have to prove 
that if variable xk is multiplicative for f in the sense of Pommaret (i.e. k E {1; ... , i}) · 
then it is also multiplicative for f in the sense of Janet. First assume that k = i and 

'Xi is non-multiplicative for fin the sense of Janet. By definition 7 it means that there 
exists a non-empty group [dn ... d;+1,e;] c lt(F) where e; > d;. But in this case lt(f) 
is a Pommaret divisor for all terms from this _group which contradicts the fact that 
F is autoreduced in the sense of Pommaret. Now assume that k < i and Xk is non­
multiplicative for fin the sense of Janet. It means that there exists a non-empty grimp 
of the form [dn••· d;, 0 ... 0, ek] C lt(F). Again, lt(f) is obviously a Pommaret divisor for 
all terms from this group. Therefore F is not autoreduced in the sense of Pommaiet. 
The obtained contradiction proves the theorem. D 

Definition 9. The prolongation of the polynomial f E .F by variable x is a product 
f · x. If x E N MJ(f, F) then the prolongation is called non-multiplicative, otherwise 
multiplicative. 

Definition 10. Fis weakly reduced if all terms in lt(F) are different. 

Theorem 2. If F is weakly reduced then for any term v there exist no more than one 
Janet divisor in lt{F). 

Proof. Assume for a contradiction that the term v has. two different Janet divisors in 
lt(F): u and u' such that u f u'. Let u <Lu' where by <Lis meant the lexicographical 
term ord_ering. The latter means that_ there exists (E {1, ... , n} such that · 

degk(u) = degk(u') = dk, i.< k :s; n, 

deg;(u) < deg;(u'). 

(2) 

(3) -

Consequently, deg;(v/u) f 0. It is easy to observe that the variable x; contained' 
in. the term (v/u) in non-zero power is not multiplicative (in the sense of Janet) 
for the term u E [dn; .. d;+1 , deg;(u)] because from (2),(3) it follows that deg;(u) f 
ind([dn ... d;+I], lt(F)). It means that u is not a Janet divisor for v. The obtained 
contradiction proves the theorem. □ 

Corollary 1. If Fis weakly reduced then for all u, u' E lt(F) such t!J,at u f u' and for 
all v, v' an inequality u x v f u' x v' holds. ' 
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Proof. Otherwise the term w = u xv= u' xv' would have two different Janet divisors 
which contradicts theorem 2. D 

Below, an algorithm is described which for a given term u and a given weakly reduced 
set F either returns a Janet divisor of u in lt(F) or reports that such divisor does not 
exist. 

Algorithm 1. 
Input: u = x'f: .. . xf 1, F 
en:= min(d,., max{degn(lt(f)) If E F}; 
for i := n -1 step -1 until 1 do 

ei := min(<4, ind([en ... e;+1], lt(F))); 
if [en·•· e;] n lt(F) = 0 

then return 'no Janet divisors'; 
return x~n ... xi'; , 

It is easy to observe that if Janet divisor exists it is determined by algorithm 1 uniquely, 
in accordance to theorem 2. 

Definition 11. The polynomial his a Janet normal form of the polynomial f modulo 
G (symbolically h = N FJ(J, G)) if h = f + L;; a;;9; x u;; where 9; E G, ll;j E K and 
no one term in h has a Janet divisor in lt(G). 

Properties of Janet normal form. 

1. If G is weakly reduced then for any polynomial f of the form f = L;; a;;9; x U;j 

where g; E G an equality N FJ(J, G) = 0 holds for any sequence of reductions. 

2. The Janet normal form of any polynomial modulo a weakly reduced set is unique. 

3. The Janet normal form modulo a weakly reduced set G is linear, i.e. for all f, h 
andforalla,b EK an equalityNFJ(a•f+b·h, G) = a-NFJ(J,G)+b·NFJ(h,G) 
holds. 

Proof Completely analogous to the proof of the same properties of Pommaret normal 
form, see theorems 1,2 and 3 in (1]. D 

Definition 12. G is complete {in the sense of Janet) if for' all g E G and for all 
x; E NMJ(9, G) there exist g' E G and u such that 

'lt(9) . X; = lt(g') X u. {4)' 

Theorem 3. If (4) holds for some g,g' E G, x 1 E NMJ(g,G), u and lt(g) E 
[cl,. ... di+i, d;] then lt(g') E [dn••• <4+1, <4 + 1]. . 

Proof. Let lt(g') E [c,, ... e;]. It follows from (4) that ck ~ dk for k = n, n - I, ... , i + 1 
and e; ~ d; + 1. Assume for contradiction that there exists j E {n,n - 1, ... ,i + l} 
such that Ck~ dk, ... ,ci+1 = di+l and c; < d;. But in this case the variable xi which 
is contained in u in non-zero power is not multiplicative for the gr~up [c.,, ... c;] and, 
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in particular, for the term lt(g') because there exists the group (d,.; .• d;] C lt(G) such 
that [d,, ... d;+1) = [c,, ... c;+1] and di > c;. From this contradiction we conclude that 
Ck = dk for k = n, n - l, ... , i + 1. Now assume that C; •< <4 + 1. ·In _this case the 
variable x; is contained in u in non-zero power and being non-multiplicative for the 
group (cl,. ... d;+1, d;] is also non-multiplicative for the group [cl,. ... d;+1, e;], in particular, 
for the term lt(g'). This fact contradicts (4), consequently, e; = <4 + 1. □ 

Let <L denote the pure lexicographical term ordering. An immediate from theorem. 3 
is 

Corollary 2. If (4) holds for some g,g' E G, x; E N MJ(9, G) and u then lt(g) <L 
lt(g'). □ . . . 

Theorem 4 [6). Let .G be complete: Then 

VgEG,v 39
1eG,v' lt(9) · V = lt(9') Xv'. (5) 

Proof. If all variables contained in v are multiplicative for lt(g) then 91 = g and 
v' = v. Otherwise, if x; E 'NMJ(9,G) and de9;(u) =IO then, because of (4), there 
exists 91 E G, u1 such that lt(9) · x; = lt(91 ) x u1. Therefore lt(g) · v = lt(91) • v1 where 
lt(9) <L lt(91). Repeating the same considerations for lt(91) · v1 and acting recursively 
we obtain a chain of equalities 

lt(g)v = ... = lt(gk)Vk = lt(9k+1)Vk+1 = ••• (6) 

where lt(9k) <L lt(9k+1)- Since G is finite chain (6) contains a finite number of equali~ 
ties. Let lt(9N) · VN be the last product in chain {6). We conclude that lt(9N) · VN = · 

r lt(9N) x VN since otherwise chain {6) could be continued. Hence g' = 9N and v' = VN. 
□ 

Corollary 3. If G is complete then for all 9 E G, v there exist g' E G, v' such that 
g • v = 91 xv''+ p wher~ p E (G), lt(9) • v = lt(g') x ,J and lt(p) <T lt(9) • v. · 

Proof. Obvious. □ 

Below, an algorithm Complete is presented which for a given set F computes a complete · 
set ,c such that (G) = (F). 

Algorithm 2 (G = Complete(F)). 
Input: F 
Output: G - complete set such that {G) = (F) 
H := {g • x I 9 E G, x E NMJ(9,G)};. 
G:=F 
while H =I 0 do 

h := element from H; 
H :=H\ {h}; 
ifNFJ(lt(h),lt(G)) =/ 0 then 

G:=GU{h}; 
. H := {g · x I 9 E G, x E NMJ(g,G)}; 
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Proof of the correctne~s of algorithm 2. Let G; be a set G computed at the i-th 
step of algorithm 2 and let G;+1 = G; U {h}, h =I 0. Since his a non-multiplicative 
prolongation for G;, from definition 7 it follows that degk(lt(h)) :S degk(lcm(G;)) for 
k = 1, ... , n. It means that lcm( G;) = lcm(F) for all i. Therefore 

V; card(G;) < card(G;+1) :S card(F*) (7) 

where F* is a set of all polynomials of the form f · u such that f E F and lt(f) • u I 
lcm(F). Since F* is obviously finite, from (7) it follows that algorithm 2 terminates 
after a finite number of steps with some result G. It means that the termination 
condition H = 0 holds that is possible if only NFJ(lt(g) • x, lt(G)) = 0 for all g E G 
ari.d for all x EN MJ(g, G). The latter is just the same as the completeness conditions 
(4). Hence G is complete. D 

Definition 13 (6]. G is an involutive basis in the sense of Janet ( Janet basis) if it is 
weakly· reduced and 

~geGVxeNMJ(g) NFJ(g · x,G) = 0. (8) 

Theorem 5. Let G be involutive in the sense of Janet. Then 

V /E(G) N FJ(f, G) = 0. (9) 

Proof. Completely_ analogous to the proof of property 1 of Pommaret bases, see theorem 
6 in [l]. D 

Corollary 4. Any Janet basis is a Grobner basis, genemlly redundant. 

Proof. Completely analogous to the proof of property 3 of Pommaret bases, see corol­
lary 1 in [1]. D · 

Theorem 6. Let G. be a Grobner basis. Then H = Camplete(G) computed by algo-
rithm 2 is involutive in the sense of Janet. · 

Proof. Since G is a Grabner basis, G c H and (G) = (H) we have that His also a 
Grabner basis. Hence, for all f E (H) there exist h EH and u such that 

f = h-u+j, (10) 

where j E {H), lt(h) · u = lt(f) and lt(/) <r lt(f). Since His complete, by corollary 
3 h · u may be represented in the form 

h-u=h'xu'+p (11) 

where lt(h) • u = lt(h') x u', p E (H) and lt(p) <r lt(f). Substituting (11) into (10), 
we obtain that f = h' x u' + f' where lt(h')·x u' = lt(f), f' E (H) and lt(f') <r 
lt(J). Taking into account that <r is noetherian and acting recursively we obtain 
that N FJ(f, H) = 0 for all f E (H). In particular, the latter implies the involutivity 
conditions (8). D 
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4 Algorithm Description 

Below, an algorithm for constructing Janet basis G for an ideal generated by a given 
set F is presented. At each step of the algorithm the prolongation h = g • x, g E 
G, x E NMJ(g) with minimal w.r.t. <r product lt(g) ·xis selected and its Janet 
normal form NFJ(h, G) is added to the current set G. This process goes on until Janet 
normal forms of all non-multiplicative prolongations are equal to zero. 

Algorithm 3. 
Input: F 
Output: G - Janet basis of (F) 
G := Autoreduce(F); 
H := {g•x I g E G, x E NMJ(g)}; 
while H =I 0 do 

h := minr(H); 
H := H\ {h}; 
h' := NFJ(h,G); 
if h' =I O then 

G := Add(G,h'); 
H := {g. XI g E G, XE NMJ(g)}; 

For a given F the function Autoreduce(F) returns a set G such that (G) = (F) arid 
each g E Gisin a usual normal form modulo G \ {g}. 'An algorithm for computing 
Autoreduce is well-known (see [3], algorithm ReduceAll). The description of subalgo­
rithm Add(F, h) is given below. 

Subalgorithm 1 (G=Add(F,h)) 
Input: F, h 
Output: Gsuch that (G) = (FU{h}) 
H := {J E FI lt(h) '.SP lt(f)}; ' 
G:=F\H; 

_G := {NFp(g, {h}) I g E G} U {h}; 
while H =I 0 do 

h := minr(H); 
H := H\ {h}; 
h' := N Fp(h, G); 
if h' =I O then 

G0 := {g E G j lt(h') :SP lt(g)}; 
H:=HUGo; 
G:=G\Go; 
G := {NFp(g, {h'}) I g E G} u {h'}; 

Termination of subalgorithm 1 may be proved in the same way as for the algorithm 
ReduceAll [3]. 

9 



1)1 

i 

I 

! 

rf 

! 

To prove the correctness of algorithm 3 we need the following three lemmas. 

Lemma 1. Let S be an arbitrary finite set. Any infinite sequence {Si} of subsets 
Si <;;,S, satisfying the condition Vi,k>i(Si \S;+1)nSk = 0, has equal neighbour elements, 

i.e. there exists m such that Sm = Sm+i. 

Proof. Obvious. D 

Lemma 2. Let G be a set at some intermediate step of algorithm 3 and h be a current 
prolongation. Then for all g E G and for all u such that lt(g) • u <T lt(h) an equality 

N F(g · u, G) = 0 holds. 

Proof. Since at each step of algorithm 3 the prolongation with minimal leading term 
is added to G, we have that for all g E G and for all x E NMJ(g,G) 

lt(g) · x <T lt(h) -+ NFJ(g · x, G) = 0. (12) 

Let g be a polynomial from G, u be an arbitrary term such that the condition lt(g )•u <T 
it(h) is satisfied. If u -1- l we may represent g · u as v • (g x w) where v · w = u, all 
variables in v are non-multiplicative and all variables in ware multiplicative for g. Fix 
some variable x in v and write g • u = v1x(g x w) where v1 = v/x. Because of (12), 

g · x = 91 x si + L akz9k x Bkz 
kl . 

wher~ g; E G, akz EK and g1 is such that lt(g1 ) x s1 = x • lt(g). From the algorithm 
of Janet normal form it follows that lt(gk) x skz <T lt(gi) x si, Substituting g · x into 
the equality g • u = v1x(g x w) we have 

g · u = vi · (gi x wi) + L akz9k · Ukz · 
kl 

. where W1 = 81: W and; by admissibility of .the ordering <T, lt(gk) · Uk! <T lt(g) • u. It · 
is obvious that lt(g1 ) • v1 <T lt(h). Consequently, if v1 -/- 1, we may repeat the same 
process for g1 • v1 • Then, taking into account that v1 <T v and acting recursively, we 
obtain after a finite number of steps · 

I I ~I I I 
g . u = 91 X Wi + L. akl9k . Ukz 

kl 

where g; E G, akz E K, lt(gD x w~ = lt(g) · u and lt(i) · ukz <T lt(g) · u. •Repeating· 
the same process for each item in the right hand side of the last equation and taking· 
into account the fact that the ordering <T is noetherian, we obtain after finite number 
of steps · 

g · u = I:;a;;9; X W;; 
ij 

where g; E G, a;; E K. Hence, by property 1 of Janet normal form, N Fj(g • u, G) = 0. 

□ 
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Lemma 3 •. Let <T be sequential term ordering and let h; be a prolongation which 
is added to G at the i-th step of algorithm 3. If there exists the term u such that 
lt(h;) <Tu for all i, then algorithm 3 stops. 

Proof. Assume that such term u does exist. Let G; be G computed at the i-th 
step of algorithm 3. From the conditions of lemma 3 and algorithm 3 it follows that 
maxT(G;) <Tu for all i. It is evident that if the leading term of some polynomial was 
reduced during the computation of G; thert it does not ,occur in lt(Gk) for all .k > i. 
Taking into account that <T is sequential ordering ( each term has only finitely many 
predecessors), we conclude that lt(G;) satisfies the conditions of lemma 1. Hence, 
there exists the number m such that lt(Gm) ~ lt(Gm+1), Let us show that algorithm 
3 stops after computing Gm. It means that Janet normar forms of all prolongations h 
are equal to zero. Indeed, if there exists a prolongation h such that N FJ( h, Gm) -1- 0 
then there are two possibilities. The first one, if lt(h) is not a Pommaret divisor for 
all g E Gm then lt(Gm+i) = lt(Gm) U {lt(h)}. The second one, if there exists g E Gm 
such that lt(h) 5',p lt(g) theri lt(g) does not occur in Gm+l• In both cases we have 
lt(Gm)-/- lt(Gm+i). The obtained contradiction proves the lemma. □ 

Proof of the correctness of algorithm 3. We have to prove that for any given F algorithm 
3 stops with an answer G, an involutive basis in the sense of Janet. Assume for 
contradiction that algorithm 3 does not stop. Let G; be G computed at the i-th step 
of algorithm 3. Note that ·from theorem 1 and subalgorithm 1 it follows that each G; 
is autoreduced in the sense of Pommaret and, consequently, is weakly autoreduced. 
Because of lemma 3, there exists a number m such that Gm is a: (generally redundant) 
Grabner basis. Let h be a current prolongation which should be added to Gm, From 
lemma 2, property 3 of Janet normal form and the fact that Gm is a Grobner basis we 
have that for all f E (F) such that lt(f) <T lt(h) an equality N FJ(f, Gm) = 0 holds. 
Hence there are two possibilities: either N FJ(h, Gm) = 0 or N FJ(h, Gm) = h' where 
lt(h') = lt(h). Repeating the same considerations for each Gk with k > m we conclude· 
that after computing Gm algorithm 3 begins to work in the same way as algorithm 
Complete (without i,-eductions of the leading terms) and consequently stops after finite 
number of steps. Hence the termination condition H = 0 holds which means that the 
output set G is involutive in the ·sense of Janet. D 

Remark 1. The correctness of algorithm 3 is proved under the assumption tliat <T 
is a sequential term ordering, since we used lemma 3. The case of any admissible term 
ordering is still to be analyzed. 

Remark 2. Algorithm 3 evidently differs from algorithm I nvoluticmSystem presented 
in (8]. In fact, algorithm of the work (8] is equivalent to successive execution of Buch~ 
berger's algorithm and algorithm Complete given above. 

Algorithm 3 may be considerably improved by omitting a lot of zero-redundant pro­
longations due to the following fact. 

Theorem 7. LeJ G be a set at some intermediate step of algorithm 3, h = g . x be a 
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current prolongation such that lt(h} has a Janet divisor in lt(G) and let the prolongation 
g' · x with lt(g') = lt(g) be already considered. Then N FJ(h, G) = 0. 

Proof. Since g' was in G at some earlier step, from the algorithm of Janet normal form 
we have 

I '"' , g = g + L,aijgi "U;j (13) 
ii 

where g; E G and lt(gi)u;; <r lt(g). Taking into account that the prolongation g'. x 
was already considered and the term lt(g') • x has a Janet divisor in lt(G) we have 

g' · x = !J x w + L bk,gk · Vkl (14) 
kl . 

where g,gk E G and lt(gk)vk1 <r lt(g')x = lt(h). From (13),(14) we obtain 

h = g · x =:= !J x w + L bk19k · Vkl - L ai;9; · Ui;X 
kl ij 

where lt(gk)vk1 <r lt(h) and lt(gi)u;;x <r lt(g)x = lt(h). Hence, by property 3 of 
Janet ~ormal form and lemn:a 2, N FJ(h, G) = 0. □ 

An improvement of algorithm 3 based on theorem 7 consists in introducing an auxiliary 
set P which stores the pairs (lt(h), x) for already considered prolongations h = g • x. If 
the corresponding pair for a current prolongation is already contained in P and if the 
leading term of the prolongation has a Janet divisor in lt(G), then this prolongation 
is zero-redundant and therefore may be omitted without computing its nor~al form. 
The improved version of the algorithm is given below. · 

Algorithm 4. 
Input: F 
Output: G - Janet basis of (F) 
G := Autoreduce(F); 
H := {g •x I g E G, x E NMJ(g,G)}; 
P:=0; 
while Hf= 0 do 

h := minz,(H); 
H := H\ {h}; 
if (lt(h),x) E P then 

if N FJ(lt(h), lt(G)) = 0 then h' := O; 
else 

• P :=PU {(lt(h),x)}; 
h' := NFJ(h,G); 
if h' f= 0 then 

G := Add(G,h'); 
P :=PU {(lt(h'), x)}; 
H := {g •x I g E G, x E NMJ(g,G) and (lt(g •x),x) ¢. P}; 

12 

Algorithm 4 has been implemented in the computer algebra system·REDUCE [7). Our 
computational experience shows that the proposed improvement leads to considerable 
speed-up. 

5 Relation between J a.net and Pommaret bases 

From theorem 6 follows that unlike the Po;nmaret basis which is unique for a given 
ideal (if it does exist), the Janet basis is not uniquely defined. Indeed, for a given ideal 
there exists an infinite set of the redundant Grabner bases and each of them generates 
corresponding Janet basis by applying the algorithm Complete. The following theorem 
is to establish the relation between Pommaret and Janet bases. 

Theorem 8. Let G be a Pommaret basis and H be a Janet basis of (G) autoreduced 
in the sense of Pommaret. Then lt(H) = lt(G). -

Proof. Let h be an element Qf H. Since h E (G), from property 1 of Pommaret 
bases follows that there exists g E G such that lt(g) 5,p lt(h). Let lt(h) = x:;n ... x; 
where e; f= 0. Then lt(g) = x';;' ... xJ; where j -~ i, d; :5, c; and dk = ck for k > j. 
Since g E (H), by theorem 5 there exists h' E H such that lt(h') is a Janet divisor 
for lt(g). Assume for contradiction that lt(h') f= lt(g). Then lt(h') = x~" ... x:;;, where 
m ~ j, em < d.n :5: Cm and ek = ck for k > m. Consequently, variable Xm is contained 
in the quotient lt(g)/lt(h') in non-zero power and therefore it should be multiplicative 
in the sense of Janet for the term lt(h'). But it is impossible because there exists a 
non-empty group [c,, ... Cm+1, Cm] E lt(H) which contains lt(h). Indeed, since em < <'--rn, 

variable Xm is non-multiplicative in the sense of Janet for the group [c,., ... Cm+1, em) and, 
in particular, for the term lt(h'). The obtained contradiction proves that lt(h') = lt(g). 

• But this implies h' = h since otherwise H could not be autoreduced in the sense of 
Pommaret. Thus, for each h E H there exists g E G such that lt(g) = lt(h). It means 
that G = H' U G' where H' n G' ~ 0 and lt(H') = lt(H). .. 

Now let us prove that G' = 0. Let g be an element of G' and lt(g) = x~" ... xf' where 
a; > 0. Since g E {H), there exists h E H such that lt(h) is a Janet divisor for lt(g). 
Note that lt(h) can not be a Pommaret divisor for lt(g) because-otherwise G could 
not be autoreduced in the sense of Pommaret. Hence lt(h) E [an••• a;+1, b;] where 
j > i and b; < a;. From property 1 of a Pommaret basis it follows that for ·an N 
an equality N FJ(xf · g, G) = 0 holds. Consequently, there exists g' E G such that. 
lt(g') = x~" ... x1t4i'x,? where c; > a; (otherwise lt(g') 5,p lt(g)). By theorem 5, there 
exists h' E H such that lt(h') is a Janet divisor (but not a Pommaret divisor) for lt(g'). 
Therefore lt(h') E [0n ... ak+1, dk] where k > j and dk < ak. But the variable Xk which 
should be multiplicative jn the sense of Janet for lt(h') is in fact non-multiplicative. 
Indeed, there exists a non-empty group [0n ... ak+1, ak] E lt(H) containing lt(h} such 
that ak > dk. The obtained contradiction proves that G' = 0. D · 

Corollary 5'. Let the conditions of theorem 8 hold and let G and H be both complete[!/ 
autoreduced in the sense of Pommaret. Then H = G. 
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Proof. Thi~ is ax:i immediate from the above'theore~_and theorem 5 in [2]. D 

It' is easy to observe that the result_ of algorithm 3 is a Janet basis completely au­
toreduced in the sense of Pommaret. By corollary 5, it coincides with the Pommaret 
basis when the latter does exist for a given ideal. Hence in the case of generic zero­
dimensional radicals the successive execution of algorithm 3 (for the total degree term 
ordering) and algorithm Invlex proposed in [4] results in a lexicographical Grabner 
basis from which the roots may 'be easily obtained. 

, The experiments with algorithm 3 show that it leads to approximately the same timings 
as. algorithm Invbase ([2, 4]) when the Pommaret basis exists and works reasonably 
fast when the Pommaret basis does not exist. Note that the generalization of the 
proposed algorithmic approach for the linear systems of partial differential equations 
is direct. 
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