


1 Ihtro duction

In our recent paper [1], the notion of involutive bases of polynomial ideals was intro-
duced and an algorithimn for computing involutive bases was presented. The improved
version of the algorithm together with the proof of its correctness in zero-dimensional
case is given in [2]. Our computation cxperience [1, 2] shows that involutive bases of
zero-dimensional ideals in the total-degree term ordering may be computed by this al-
gorithm considerably faster than the reduced Grébner bases by Buchberger’s algorithmn
[3]. Note that involutive basis is a special form of the redundant Grobner basis, so it
gives all information about ideal and solutions. Moreover, the knowledge of involutive
basis in the case of generic zero-dinensional radicals provides an effective method for
converting it into the lexicographical Grébuer basis from which the solutions may be
easily obtained [4]. i

In the positive-dimensional case, involutive bases in the sense of [1] are not sure to
exist. This principle difficulty of the involutive approach is resolved in the present
paper. The idea is to use more sophisticated definition of involutivity than in [1]. In
our previous works {1, 2, 4] we used the involutivity conditions taken from the book of
J.F.Pommaret [5). In general case of positive-dimensional ideal, the involutive basis in
the sense of Pommaret does exist only after generic linear change of variables which is
not effective for practical computations. In the present paper we use another definition
of involutivity coming from the works of M.Janet [6]. Unlike Poinmaret bases, involu-
tive bases in the sense of Janet exist for an polynomial ideal. We clarify the relation
between Janet,Pommaret and Grébuner bases and propose an algorithm for computing
Janet bases. The algorithm is implemented in the computer algebra systen REDUCE
[7). It turns out that in the zero-dimensional case the new algorithm works not worse
than the algorithm INV BASE described in [4].

2 Pommaret Bases

@‘hroughout this paper we use the notations:
K— arbitrary zero characteristic field;

a,b— elements of K ;

Klz,,...,z,]~ polynomial ring over K;
frg,h,p— polynomials froin Klzy,. .. z,);

F,G, H, P~ finite subscts in Klzy,...,z,);
card(F)~ cardinality (nuinber of cleinents) of F;
U, v, w, s~ terms in polynomials (without cocflicients from K);

’
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| deg;(u)-— degree of variable z; in u; ‘ SRR _

cf (f,u)— coefficient of u in f; A
(F)— ideal generated by F. . s '
Let <7 be some admissible term orderinrg‘ and let variables be ordered as z, <t z2 <t
... <7 z,. We denote by ’ :
It(f)— leading term in f w.r.t. <r; , ]
le(f)— leading coefficient in f; i.e. ef(f, lt(f));
red(f) = f —le(f) -g‘(}f); .

Fy={i E€F}; - , '
Zgn()F)—'-{ '1¢a(=sf,s)t lcﬁmmon multiple of all it(f), f € F;
ming(F)— polynomial in F' with minimal .

~We recall some main concepts and results of the involution approach developed .in

\~ .

(1, 2, 4] and based on the definition of involutivity taken from [5]. -

 Definition 1 [5]. Variable . is multiplicative in thé; sense of Pommaret for the term
" if its index 7 is not greater than the index of the lowest variable inu che;wxsg, i
is non-multiplicative in the sense: of Pommaret for the term u. ,

For a given polynomial g we de,no/té'by NMp(g) a set of non-mnlltiplicative '@iabl% i
orl o
Definition 2. The term u is a Pommaret'diuisor for the term w if w = u orw =
u-v, v # 1, where all variables contained in v are multiplicative for u (syfanhcallx
uw<p w). ' : : e .
Definition 3. The polynomial h is a Pommaret normal form of polynomia.l f modulo’
G (symbolically h = NFp(f,G)) if h = f + ¥;; aijg: X uy; where g; € G’,. a; € K,
all variables in each term u;; are multiplicative for i#(g:) and no one term in h has a
Pommaret divisor in [t{G). )

In contrast to the Pommaret normal form, we denote by, NF(f,G) an usual normal
form of f modulo G. An algorithm for computing N Fp may be obtained from one fqr,

" NF [3] replacing usual division of terms by division in the sense-of Pogl;naret; v

Definition 4. G is autoreduced in the sensevof Pommaret if

Vg,g’eG,g#g’ _'(lt(g) <p lt(gl))' -

- G is completely autoreduced in the sense of. Pommaret if \?'geg NFp(g,G\{g}) =g

Definition 5 [5]. G isan involutive basis in the sense of Pommaret (Pommaret _basis)ﬂ
if it is autoreduced in the sense of Pommaret and : .

’ V V VgeG V:eNMp(g) NFP(g 7 G) = 0. ' . (1)

The main properties of Pommaret bases established in [1, 2] jare liSt_;ed below.
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Properties of Pommaret bases. _

. If G is a Pommaret basis then Vyq) NFp(f,G) = 0.

. If G is a Pommaret basis then ¥, N Fp(h,G) = N (R, G).

. Any Potnma.ret basis is a Grobner basis; generally redundant.”
. If the Pommaret basis of a given ideal exists, it is unique.

. For any zero-dimensional ideal there exists a Pommaret basis. -

SOl e W N =

invertible linear changes of variables.

One may easily check that involutive basis in the sense of Pommaret exists not for any
positive-dimensional ideal. E.g., for an ideal generated by-a single polynomial f the
Pommaret basis does exist if and only if It(f) is a power of the leading variable. In such

"irregular” cases the algorithm for computing involutive bases developed-in [1, 2] does
‘not stop. Moreover, there are no criteria for recognizing the irregular situations a priori.
This was the main difficulty of thie involution approach. To overcome this difficulty we
propose a new approach bascd on the more sophisticated concept of involutivity [6]).
We shall prove that involutive bases in the new sense (the so-called Janet bases) exist

; for any polynomla.l ideal and ma.y be constructed by a finite nuinber of steps.

3 - Janet Bases
Deﬁmtlon 6. Let U be a ﬁmte set of terms. The group of terms [d,...d;} c U is
[dn...di] = {u € U | degi(u) = di, k =n,n - L...i}. .

The number

o e ind([dn... &), U) = maz{degi-1(u) | u € [dn i}

is the hzghest indez of the group [d .di]in U.

Definition 7 [6]. Variable z; is multzphcatwe in the sense of Janet for all terms of the

group [dn... ;] C U if d; = ind((d,... d;y1], U). Otherwise z; is non-multiplicative in the
sense of Janet for all such terms.

Note that in contrast to definition 1 the multiplicative and non—multlpllcatwe variables

for a given term are defined now with respect to some finite set of terms.

Definition 8. The term u € U is a Janet divisor for the term w if w = u or w =

u - v, v # 1, where all variables contained in v are multiplicative for u in the sense of
Janet (symbohcally u-v=uXuv).

Let F be a finite set of polynomlals For some polynomial i we denote by NM(h, F) a
set of non-multiplicative variables in the sense of ‘Janet for the term It(h) with respect

*

. For any positive-dimensional ideal a Pommaret basis does emst after the mostl

e .

to the set [t(F). We write also A-u=h x u if all variables in u are multlphcatlve for )

1t(h).

In general case there is no correlation between deﬁnitions‘l and 8: for a given set -F
a variable which is multiplicative in one sense may be non-multiplicative in another
sense and vice versa. However, if F is autoreduced in the sense of Pommaret we have -
the following theorem.

Theorem 1. Let F be autoreduced in the sense of Pommaret.” Then NM. (. F) C -
NMp(f) for all f € F.

Proof. Consider some f € F. Let Iit(f) = zo.. zd‘ where d; # 0. We have to prove
that if variable zx is multiplicative for f in the sense of Pommaret (i.e. k € {1,...,4}) ~

~. then it is also multiplicative for f in the sense of Janet. First assume that k = % and . '
. x; is non-multiplicative for f in the sense of Janet. By definition 7 it means that there -

exists a non-empty group [d,... di11,€;] C It(F) where e; > d;. But in this case It(f)
is a Pommaret divisor for all terms from this group which contradicts the fact that

: Fis autoreduced in the sense of Pommaret. Now assume that k < i and z;is non-
multiplicative for f in the sense of Janet. It means that there exists a non-empty group
‘of the form [d,... d;,0...0, e} C lt(F). Again, lt(f) is obviously a Pommaret divisor for

all. terms from this group. Therefore F is not autoreduced in the sense of Pomma.ret
The obtained contradiction proves the theorem. O ;

Definition 9. The prolongation of the polynomial f € F by variable z is a product

© fez. Ifz € NMy({, F) then the prolongatxon is called non-multxphcatlve, otherwise .

multxphcatlve
Definition 10. F is weakly reduced 1f all terms in I¢(F) are dxﬁerent

Theorem 2. If F is weakly reduced then for any term v there ezist no more than one
Janet divisor in It(F).

Proof. Assume for a contradiction that the term v has. two different Janet divisors in
It(F): u and v’ such that u # v'. Let u < u' where by <[, is meant the lexicographical
term ordering. The latter means that there emsts i€ {1,...,n} such that

degk(u) deg;,(u) =dy, i<k<m, ; @)

deg,(u) < deg,(u) 3)

Consequently, deg,(v/u) # 0. It is easy to observe that the vanable T; contained -

in the term (v/u) in non-zero power is not multiplicative (in the sense of Janet)
for the term u € [d,... diy1,deg;(u)] because from (2),(3) it follows that deg;(u) #-
ind({dy... diy1], (1(F)). It means that u is not a Janet divisor for v. The obtamed
contradiction proves the theorem. O :

Corollary 1. If F is weakly reduced then for’ all u, v e lt(F) such that u 96 o and for‘
allv,v an mequahty U XV ;é U xv holds



Proof. Otherwise the term w = u x v = ¥ x v would have two different Janet divisors
which contradicts theorem 2. O

Below, an algorithm is described which for a given term u and a given weakly reduced
set F either returns a Janet divisor of u in lt(F) or reports that such divisor does not
exist.

Algorithm 1.

Input: u = z..2z5, F o . ‘ ) ) )
€n = min(dn, maz{deg,(It(f)) | f € F}; : _ s
for i:=n—1 step —1 until 1 do : r i

e = min(d (. 1)),

if [en... &;] N 1(F)

‘ then return no Janet divisors’;
return pe 2 L H :

It is easy to observe that if Janet divisor exists 1t is determmed by algorithm 1 uniquely,
in accordance to theorem 2. N

Definition 11. The polynomial A is a Janet normal Jorm of the polynomial f modulo
G (symbolically h = NFy(f,G)) if h = f + i @i;9: X ug; where g; € G, ai; € K and
no one term in h has a Janet divisor in It(G).

Properties of Janet normal form

1. If G is weakly reduced then for any polynomzal f of the form f = Z,J 00 X Uy
where ¢; € G an equality NF;(f,G) = 0 holds for any sequence of reductions.

2. The Janet normal form of any polynomial modulo a weakly reduced set is unique.
3. The Janet normal form modulo a weakly reduced set G is linear, i.e. for all f,h

and for alla,b € K an equality NF(a-f+b-h, G) = a- NFJ(f,G)—f—b -NF;(h,G)
holds.

Pmof. Completely analogous to the proof of the same properties of Pommaret normal
form, see theorems 1,2 and 3 in {1]. O

Definition 12. G is complete (in the sense of Janet) if for all ¢ € G and for all
z; € NM;(g,G) there exist ¢ € G and u such that

1t(g) - 7 = Ut(g') X u. @

Theorem 3. If (4) holds for some g,¢' € G, z; € NMJ(g, G), u and lt(g) €
[dn... diy1, &3] then l(g) € |dy... dipr, d; + 1].

Proof. Let It(¢’) € [c...ci]. Tt follows from (4)that ey L dpfork=n,n—1,....i +1
and ¢; < d; + 1. Assume for contradiction that there exists j € {n,n—1,..,i+1}
such that cx = dj,.. 1 Cj41 = dji1 and ¢; < d;. But in-this case the variable z; which -
is contained in wu in non-zero power is not multlphcatlve for the group [en--- ;] and,

in partlcular for the term It{g’) because there exists the group [d.:..d;] C It{(G) such
that [dn... dj+1] = [Gn...Cis1] and d; > ¢;. From this contradiction we conclude that
ce.= di for k = n,n—1,..,i + 1. Now assume that ¢;:< d; +'1. In this case the
variable z; is contained in u in non-zero power and being n_on-multlphca.tlve for the
group [dy... diy1, d;] is also non-multiplicative for the group [dy... di+1, ), in particular,
for the term l¢(¢'). This fact contradicts (4), consequently, ¢; =d; +1. O

. Let < L denote the pure lexicographical term ordering. An immediate from theorem‘3
s

Corollary 2. If (4) holds for some g,g €G, z; E NMJ(g, G) and u then lt(g) <z
it(¢’). O : .

Theorem 4 [6]. Let.G be complete. Then

 Veow Igec,w Ut(g) v =1t(g) x V', : C(B)

Proof. If all variables contaihed in v are multiplicative for lt(g) then ¢ = g and
v' = v. Otherwise, if z; € NM;(g,G) and-deg;(u) # 0 then, because of (4), there
exists g1 € G, uy such that lt(g) - z; = lt(g1) x uy. Therefore lt(g)-v = lt(g;) - v, where
It(g) <t It(g1). Repeating the same considerations for l¢(g;) - v; and acting recursively
we obtain a chain of equalities

1(g)v = . = (g )ve = It(gkas JWors = e - . _(é)

where It(gc) <r It(gx+1). Since G is finite chain (6) contains a finite number of equali- -

_ ties. Let lt(gn) - vy be the last product in chain (6). We conclude l?hﬁ.l; It(gn) - vw =

It{gn) X vy since otherwise chain (6) could be continued. Hence ¢’ ='gn and v’ =up.
o

Corollary 3. If G is complete then for all g € G, v there exist g’ € G, v such tha.t' .
g-v=g x v/ +pwhere p € (G), lt(g) v= lt(g’) % 7 and lt(p) <r lt(g) v. 1

Proof. Obvious. O

Below, an algorithm Complete is presented which for a given set F computes a complete °
set G such that (G) (F). »

Algorrthm 2(G= Complete(F))
Input: F
Output G - complete set such that (G) (F)
H:={g-z|g€CG,ze NMy(9,G)};.
G:=F
while H # 0 do
* h := element from H;

H:=H\{h};
[FNF;(it{h), It(G)) 7é 0 then
- G:=GU{h}; :

H o {g.zlgEG,ZENMJ(ng)};



Proof of the correctneds of algorithm 2. Let G; be a set G computed at the i—th
step of algorithm 2 and let Giyq = G; U {h}, h # 0. Since h is a non-multiplicative
" prolongation for G;, from definition 7 it follows that degi(lt(h)) < degi(lem(G;)) for
k =1,..,n. It means that lem(G;) = lem(F) for all 4. Therefore

v; card(G' ) < card(Git1) < card(F') | (7

‘where F‘ is a set of all polynomials of the form f - v such that f € F and lt( f)-ul
lem(F). Since F* is obviously finite, from (7) it follows that algorithm 2 terminates
after a finite number of steps with some result G. It means that the termination
condition H = @ holds that is possible if only NF;(lt(g) - =, t(G)) =0 for all g € G
and forall z € NM;(g,G). The latter is just the same as the completeness conditions
" (4). Hence G is complete. O

Definition 13 [6] G is an involutive basis in the sense of Janet (Janet basis) 1f it is
weakly reduced and

Voec Veenns(s) NFi(g - 2,G) = (8)
Theorem 5. Let G be muolutwe in the sense of Janel. Then
Ytec) N FJ(f ,G) = 0. : (9)

Proof. Completely. analogous to the proof of property 1 of Pomrnaret bases, see theorem
61in [1]. O
Corollary 4. Any Janet basis is a Grobner basi.s generally redundant.

“Proof. Completely analogous to the proof of property 3 of Pommaret bases, see corol-
lary 1in [1]. O

Theorem 6. Let G be a Grébner basis. Then H = Complete(G) computed by algo- -

rithm 2 is mvolutwe in the sense of Janet.

Proof. Since G is a Grébner basis, G C H and (G) = (H) we have that H is also a
Grdbner basis. Hence, for all f € (H) there exist h € H and u such that

f=hwu+f, - (10)
where f € (H), lt(h) -u = lt(f) and it(f) < lt(f). Since H is complete by corollary
3 h - u may be represented in the form

h-u=hxu+p (11)

where lt(h) - u = lt(h') x v/, p € (H) and lt(p) <T it(f). Substituting (11) into (10),..
we obtain that f = A’ x u' + f' where It(h')"x v’ = UI(f), f' € (H) and Uit(f') <r
- It(f). Taking into account that <z is noetherian and acting recursively we obtain

that NF;(f,H) =0 for all f € (H). In particular, the latter implies the 1nvolut1v1ty
- conditions (8). O

A e e

4 Algorithm Description

Below, an algorithm for constructing Janet basis G for an-ideal generated by a given
set.F' is presented. At each step of the algorithm the prolongation h = g-z, g €
G, z € NM;(g) with minimal w.r.t. <r product l{(g) - z-i§ selected and its Janet
normal form NF;(h,G) is added to the current set G. This process goes on until Janet
normal forms of all non-multiplicative prolongations are equal to zero. ‘

Algorithm 3. e ‘ .
Input: F '
Output: G - Janet basis of (F)
G' Autoreduce(F);
H:i={g-z|g€@G, zeNMJ(g)},
while H # 0 do

h = minp(H);
H:=H\{h} - -
W= NF;(h,G);
if h' # 0. then

G' - Add(G, h’),

H:={g-z|g€G, zeNMJ(g)};

For a given F the function' Autoreduce(F) returns a set G such that (G) = (F) and
each g € G is in a usual normal form modulo G \ {g}. ‘An algorithm for computing - -
Autoreduce is well-known (see [3], algorithm ReduceAll) The description of subalgo-'

rithm" Add(F, h) is given below

Subalgorithm 1 (G=Add(F,h))
Input:. F, h
Output: G such that (G) = (FU {h})
={f € F|lt(h) <pit(f)}; -
G’ F\ H;
= {NFP(Q) {h'}) l g€ G} u {h'}’

-whrle H+#0do

h = ming(H);

H:=H\{h}

K := NFp(h,G);

if ' # 0 then

T o= {g e G () <o zt<g>},
H :="HUGy;
G =G\ Gy;

G := {NFp(g,{h'}) | gye Gu{r'}

Termination of suba.lgorrthm 1 may be proved in the same way as for the algorithm
ReduceAll [3].



; To prc;ve the correctness of algorithm 3 we need the following three lemmas. .
" Lemma 1. Let S be an arbitrary ﬁhite set. Any infinite sequence {S;} of subsets
S; C S, satisfying the condition Vi k> (8:\Si+1)NSk = 0, has equal neighbour elements,
i.e._ there ezists m such that S, = Smia. : :
Proof. Obvious. 0 ’

Lemma 2. Let G be a set at some intermediate step of algorithm 3 and h be a current

prolongation. Then for all g € G and for all u such that It(g) - u <r lt(h) an equality

NF(g-u, G) =0 holds.

Proof. Since at each step of algorithm 3 the prolongation with minimal leading term
is added to G, we have that for all g € G and for all z € NM,(g,G)

1t(g) - = <7 lt(h) = NF;(g- =z, G) =0. ' o (12)
Let g be a polynomial from G, u be an arbitrary term such that the condition It(g)u <t
It(h) is satisfied. If u # 1 we may represent g -u as v (g X w) where v-w =1, 2%11
~ variables in v are non-multiplicative and all variables in w are multiplicative for g. Fix

somé variable z in v and write g - u = viz(g X w) where v = v/z. Because of (12),

9‘$=91X81+Edugk><sm
. , H L

where g; € G, ay € K. and g; is such that it(g1) x s1 = z - lt(g). From the algorithm

" of Janet normal form it follows that It(gx) X su <r It(g1) x s1. Substitutipg g-z iqto '

the equality g:u = v2(g X w) we have

gru=v- (g X W)+ auge - tur -
0

"where w; = s; - w and; by admissibility of the ordering <r, It(gx) - un <r lt(g) - u. It -
is obvious that It(g1) - v1 <r lt(h). Consequently, if v 7 1, we may repeat the same
process for g; - v;. Then, taking into account that vy <r v and acting recursively, we
obtain after a finite number of steps : ‘

! U ' 7 '
g u=gy X Wi+ aug - g
]

where ¢, € G, dy € K, It(g}) x w} = lt(g) - u and lt(g}) - uly <r lt(g) - u.' Repeating
the same process for each item in the right hand side of the last equation and taking-
" into account the fact that the ordering <7 is noetherian, we obtain after finite number
of steps _ : -
- g‘f‘l=zaij§i><171ij
7

-

o \~ where §; € G, &;; € K. Hence, by property 1 of Janet normal form, NF_j(g-u,_ G)=0.
o - ‘ ‘ L T
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Lemma 3. Let <7 be sequential term biden'ng and let h; be aA prblangation which -
is added to G at the i-th step of algorithm 8. If there erists the term u such that
It(h;) <7 u for all i, then algorithm 3 stops.

Proof. Assume that such term u does exist. Let G; be G computed at the i-th
step of algorithm 3. From the conditions of lemma 3 and algorithm 3 it follows that
mazr(G;) <7 u for all i. It is evident that if the leading term of some polynomial was
reduced during the computation of G; then it does not occur in [t(Gy) for all k> 4. ‘
Taking into account that <z is sequential ordering (each term has only finitely many
predecessors), we conclude that t(G;) satisfies the conditions of lemma 1. Hence,
there exists the number m such that I£(G,,) = lt(G,n+1)- Let us show that algorithm
3 stops after computing Gm. It means that Janet normal forms of all prolongations h
are equal to zero: Indeed, if there exists a prolongation k such that NF;(h,G,,) # 0
then there are two possibilities. . The first one, if it(h) is not a Pommaret divisor for
all g € G, then (Gmy1) = U(G,m) U {It(h)}. The second one, if there exists g € G,n
such that t(h) <p lt(g) then lt(g) does not occur in Gpsy. In both cases we have
1#(Gn) # 1t(Gpny1)- The obtained contradiction proves the lemma. O ‘

Proof of the correctness of algorithm 8. We have to prove that for any given F algorithm
3 stops with an answer G, an involutive basis in the sense of Janet.. Assume for
contradiction that algorithin 3 does not stop. Let-G; be G computed at the i-th step
of algorithm 3. Note that from theorem 1 and subalgorithm 1 it follows that each G;
is autoreduced in the sense of Pommaret and, consequently, is weakly' autoréduced.
Because of lemma 3, there exists a number m such that G, is a (generally reduridant) -
Grobner basis. Let h be a current prolongation which should be added to G, From
lemma 2, property 3 of Janet normal form and the fact that G, is a Grébner basis we

“ have that for all f € (F) such that i#(f) <z it(h) an equality NFs(f,Gm) = 0 holds.

Hence there are two possibilities: either NF;(h,G,) = 0 or NF;(h,G,,) = h' where
It(R') = It(h). Repeating the same considerations for each G), with k > m we conclude -
that after computing G,, algorithm 3 begins to work in the same way as algorithm .
Complete (without reductions of the leading terms) and consequently stops after finite -
number of steps. Hence the termination condition H = @ holds which means that the
output set G is involutive in the sense of Janet. O

Remark 1. The correctness of algorithm 3 is proved under the assumption that <p
is a sequential term ordering, since we used lemma 3. The case of any admissible term
ordering is still to be analyzed.

Remark 2. Algorithm 3 evidently differs from algdrithm InvolutionSystem presented
in (8]. In fact, algorithm of the work [8] is equivalent to successive execution of Buch-
berger’s algorithm and algorithm Complete given above.

Algorithm 3 may be considerably improved by omitting a lot of zero-redundant pro-
longations due to the following fact.

Theorem 7. Let G be a set at some.intermediate step of algorithm 3, h = g -z be a

11



current prolongation such that lt(h) has a Janet divisor in lt(G) and let the pmlongation

g -z with it(g') = It(g) be already considered. Then NF;(h,G) = 0.

Proof. Since g’ was in G at some earlier step, from the algorithm of Janet normal form

we have ’ ; 5
g =9+ aijgi - - (13)

- i : S

where g; € G and If(g;)u;; <7 lt(g). Taking into account that the prolongation ¢’ - z

was already considered and the term It(¢') - = has a Janet divisor in lt(G) we have

g-z=xw+) bugk-vu : (14)
, il

where §,0x € G and It(gx)ou <r It(g')z = It(h). From {13),{14) we obtain

h=g-z=FxXw+Y buge-va— 3 aigi - uyx
’ : Kl .

i

where 1t(ge)uw <r lt(h) and It(g:)uijz <z It(g)z = It(h). Hence, by property 3 of

Janet normal form and lemma 2, NF;(h,G) =0. O

An improvement of algorithm 3 based on theorem 7 consists in introducing an auxiliary

set P which stores the pairs (I¢(h), z) for already considered prolongations A =g z. If -

the corresponding pair for a current prolongation is already contained in P and if the
leading term of the prolongation has a Janet divisor in It(G), then this prolongation
is zero-redundant and therefore may be omitted without computing its normal form.

The improved version of the algorithm is given below. )

Algorithm 4.

TInput: - - :
Output: G - Janet basis of (F)

G := Autoreduce(F); .
H:={g-z|g€G, z€NMs9,G)};

P.=0;

while H # ¢ do
h := miny(H);
H:=H\{r};

if (It(h),z) € P then : :
if NF;(14(h), 1t(G)) = 0 then A’ := (;

else :

“Pi=PU{(lt(h),z)};

K= NFJ(h, G),

if 1’ # 0 then
G = Add(G, h");

S P:=PuU{(it(h),z)}; .

H:={g-z|g€G,ze€ NM;(9,G) and (lt{g - z),z) &€ P};
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Algorithm 4 has been implemented in the computer algebra system'"REDUCE [7]. Our
computational experience shows that the proposed improvement leads to considerable
speed-up.

5 Reiétibn between Janet and Pbmmaret bases |

From theorem 6 follows that unlike the Pommaret basis which is unique for.a given
ideal (if it does exist), the Janet basis is not uniquely defined. Indeed, for a given ideal
there exists an infinite set of the redundant Grébner bases and each of them generates .
corresponding Janet basis by applying the algorithm Complete. The following theorem -
is to establish the relation between Pommaret and Janet bases. ‘

Theorem 8. Let G be a Pt;mmamt basis and H be a Janet basis of (G) autoreduced
in the sense of Pommaret. Then It(H) = It(G). ’

Proof. Let h be an element of H. Since h € (G), from property 1 of Pommaret -
bases follows that there exists g € G such that li(g) <p It(h). Let It(h) = z&..z%
where ¢; # 0. Then lt(g) = :z:f,"...zg’: where j > i, d; < ¢j and dy = ¢ for k' > 3
Since g € (H), by theorem 5 there exists ' € H such that It(h') is-a Janet divisor

for 1t(g). Assume for contradiction that It(h') # lt(g). Then l¢(h') = zi»...z57 where

m 2 j, em < dm < ¢y and e, =.¢ for k > m. Consequently, variable ., is contained
in the quotient It(g)/It(A') in non-zero power and therefore it should be multiplicative
in the sense of Janet for the term I¢(h'). But it is impossible because there exists a
non-empty group [Ca... Cm1,6m] € lE(H) which contains lt(h). Indeed, since e, < G,
variable ., is non-multiplicative in the sense of Janet for the group [c,... Gmt1, €] and,
in particular, for the term lt('). The obtained contradiction proves that It(h') = It(g).

- But this implies &' = h since otherwise H could not be autoreduced in the sense of

that G = H' UG’ where H'ﬂG"\=@a.nd IW(H') = t(H). L .
Now let us prove that G' = 0. Let g be an element of G’ and It(g) = z%...z% where
a; > 0. Since g € (H), there exists h € H such that I£(h) is a Janet divisor for It(g).
Note that It(h) can not be a Pommaret divisor for lt(g) because-otherwise G could
not be autoreduced in the sense of Pommaret. Hence It(h) € laa...a;41,b;] where
J > iand b; < a;. From property 1 of a Pommaret basis it follows that for all' N
an equality N Fy(zY - g, G) = 0 holds. Consequently, there exists ¢ € G such that.
1(g) = zir..z5ii'z} where ¢; > a; (otherwise lt(¢') <p It(g)). By theorem 5, there
exists b’ € H such that It(h') is a Janet divisor (but not a Pommaret divisor) for It(g’).
Therefore It(h') € [an... axs1, di] Where k > j and di < a;. But the variable z;, which’
should be multiplicative in the sense of Janet for It(h') is in fact non-multiplicative.
Indeed, there exists a non-empty group [an-.. aky1,0x] € It(H) containing {t(h) such
that a; > di. The obtained contradiction proves that @ = 0. O ’ ‘ '

Pommaret. Thus, for each h € H there exists g € G such that it(g) = it(h). 1t means

Corollary 5. Let the conditions of theorem 8 hold and let G and H be both completely

- autoreduced in the sense of Pommaret. Then H = G.
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Proof. This is an immediate from the above theorem and theorem 5 in [2]. O

It is easy to observe that the result of algorithm 3 'is a Janet basis completely au-
‘toreduced in the sense of Pommaret. By corollary 5, it coincides with the Pommaret
- basis when the latter does exist for a given ideal. Hence in the case of generic zero-
dimensional radicals the successive execution of algorithm 3 (for the total degree term
ordermg) and algorithm Inviez proposed in {4] results in a lexicographical Grobner
basis from whlch the roots may ‘be easily obtained.

. The experlments w1th algonthm 3 show that 1t leads to approxlmately the same timings

. as algorithm Inuvbase ([2, 4]) when the Pommaret basis exists and works reasonably
" fast’ when the Pommaret bams does not exist. Note that the generalization of the
proposed algorithmic approach for the linear systems of partial dlfferentlal equations
is d1rect
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