


The sandpile models introduced by Bak, Tang and Weisenfeld [1] as simple models
of self-organized criticality (SOC) have been intensively investigated in recent years.
A class of such models called the Abelian sandpile models (ASM) [2] attracted special
interest since essential properties were analytically determined and some characteristics
were exactly evaluated for these models in two dimensions [3-6]. Nevertheless, the
problem of the consistent theoretical description of the dynamics of avalanches for
non-trivial lattices remains unsolved even in this simplest case . Recently, Ivashkevich,
Ktitarev and Priezzhev [7] have introduced the concept of waves in ASM avalanches.
They represented each avalanche as a sequence of waves and evaluated the critical
exponent of the size distribution of a general wave. They established the equivalence
between waves and inverse avalanches defined by Dhar and Manna [8] and reproduced
their result for the critical exponent of the size distribution of the first inverse avalanche.
Using special properties of avalanches starting at the boundary they found also the
critical exponent for boundary avalanches. ‘

In this Letter we investigate the power-law belhavior of wave distributions depending
on the "age” ol; the wave in a given avalanche. Besides, we obtain numerical estimates
for the critical exponents found exactly in [7]. The results of our computer simulations
are in agreement with the theoretical predictions {7, 8].

'We consider the ASM on a square N x N lattice with open boundary conditions [2].
The dynamics of the model is defined by the toppling N2 x N? matrix A with nonzero
elements A;; = 4 and A;; = —1 for adjacent sites ¢ and j. A sandpile configuration of
heights is stable iff 0 < z; < A;;. We add particles at random to the stable configuration
until a certain height exceeds 4. Then it topples, giving 4 particles to its neighbors. If
some of their heights become greater than 4, they ai-o topple and the process proceeds
until a stable configuration is reached. The process of topplings of all nonstable sites is
‘called the avalanche. Some sites may not topple, sone may to;/)ple once or more times
-during a given avalanche.

The avalanche may be represented as a scquence of waves in the following way
[7]. We add a particle to the site with the lieight 4, topple it once and then relax all

other unstable sites preserving the initial site from the second toppling. The set of
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' ;toppled sxtes is called ”the ﬁrst wave Then we perm1t the slte to topple a second

pe

* : tlme, crea.tlng a. second wave a.nd so on, untll the avala.nche stops It is shown [7] tha.t

: vthe last wave comcrdes w1th the ﬁrst 1nverse avala.nche [8]

There are several spa.tla.l cha.ra.cterlstrcs of an avalanche whlch have the power-la.w

,where s f is° the snze of the last wave They ha.ve also argued that the size of the cluster

of. ma.xnmum topphngs (the set of sltes whrch toppled more than ot er srtes durmg th '

' glven ava.la.nche) has the same power-law dlstrlbutlon

i Ivashkev1ch Ktltarev a.nd Prlezzhev [7] con51dered the:yna cs of wa.ves 1gnor1ng

C the pauses between ava.la.nches a.nd called thls collectlon of waves as .;the

wa.ves of

A general form They a.rgued that the a.verage number of general waves S of sizé 5. va.rles G :

:They a.lso showed tha.t the a.va.la.nches startmg at the bounda.ry
3/2

‘as’ l/s for large S,

: cons1st1 f the only wave a.nd the roba.blllty dlstrrbutron of thelr sizes's va.rles as s
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‘-‘0 99 TB,,._,,,J,,W : 151 In calcula.tlng the cr1t1cal

1n [8 7] TLa:t = 137 TGcn:ral <

exponents we. use the a.lgorrthm descrlbed by Manna. [9] We produce one" mllhon

avalanches for square latt1ces w1th N: ‘l— 100 150 200 300 500 constructlng the 51ze

drstrrbutrons for each value of N In the case of general waves we ta.ke mto account all

20N

waves appearmg in each avalanche. Open boundary cond1t10ns are con51dered except

the 1nvest1gatlon of the avalanches startlng at the boundary In the latter case we deﬁncA 'W

A

two oppOSIte SldeS of the square ag open boundarles and govern the two lother SldeS by ‘

m—1!

T

MaaadrniiNanig)

SSERINEENSNUNEN BN

T T T

T
1.0

llrllllll

||1|||r7—r—j




: obtamed ln thls Letter Tp,,.,g and TL,m One of the 1nterest1ng questlons is to derlve the‘g‘-f S

o relatlonshlp between these exponents Recent mvestxgatxons hy Dhar and Manna [8] L

' have shown that the values of the exponent of the ﬁrst inverse avalanche (ie. the last

: f-"wave) and the exponent of cluster of max:mum t0pplmgs probably c01nc1de We beheve'. S
jthat w1der and more elaborate computer expenments and theoretncal conmderatlonsff'
h could clarlfy the connect:on between cntlcal propertles of sandplle avalanches and o

o / ‘waves they con51st of
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