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1. INTRODUCTION 

The present work investigates certain connections between 

linear transports along paths. and pundle metrics, defined on one 

and the same vector bundle, ~hich_arise fro~ the que~tion of their 

consistency. Mor7 preci~ely, we shall consider the following main 

problem. 
Let (E,n,B) be a real vector bundle with a base B, total bun­

dle. ~pace .E. and pr,ojectio~ n:E_--:---78 [1]. Let. g_ be a bundle metric 

on it [7], i.e. it is a. map g:x~, xeB, where.the map 
. . X . . . . ·. 

g :n-'(x)xnc'(x) ·-->IR 
X • ·; . 

( 1.1). 

is biline·ar, nondegener~te and symmetric for every xeB. BY defini­

tion the scalar Product of u,ven- 1 (x). is u•v:=g (u,v), xeB. Let L 
X 

be a linear transport (L-tranSport) along paths in (E,n,B).· i.e~ if 

7:J~B. J being an arbitrary real interval., is a path· in B,· then 

L:·n----+L7 , where L7 is the L-transport along· 7 and· L1 :(s,t)l-----i' 

t----7L7 ·. , · s·, teJ iS the L-transport along r from s to t having the 
•-'--'' 

described in [2] properties. 

Definition 1.1. The .. transport . along paths L and the bundle 

metric g are consistent (resp. along a path r:J~B) if L preserves 

the scalar products of the vectors along every ( resp. along the 
given) path r:J~B. i.e. if the scalar product. of u,vEn- 1 (r(s)), 

seJ is equal to the sca_lar product of the vectors obtained from u 

and v by L-transportation. along r at an a_rbitrary point r(t), teJ: 

911 sl(u,v)=g71 t 1 (L!~tu,L!~tv), s,teJ. ( 1. 2) 

Due to the arbitrariness of U and v and the nondegeneracy of g 

the equality (1.2) is equival.ent "!:-o 

g71sl=g7(t.lo(L!~txL!~t), s,teJ. ( 1. 3) 

Important e;>carnp~~s for tra_nsports along pa-t;.hs (in this case 
along curves) consi.st~nt· With some· metri·~ are· .. ·.the pci..rallel and 

Fermi-Walker transports i~ a Rieffiannian manifold which are consis­

tent with the defining them Riemannian metric .. This is proved, for 

instance, in [3,4] (see also below section 3). 

The purpose· of this work is to find necessary and/or suffi-
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cient conditions for consistency, or one may say compatibility, be­
tween L-transports along paths and bundle metrics. Analogous prob­

lems have been investigated (in a slightly different notation) in 

( 5], where they were studied in the special case of the tangent 

bundle to a differentiable manifold. 

The organization of the material is the following. In Sect. 2 
attention is focussed on finding necessary and/or sufficient condi­

tions for local (i.e. along a fixed path) or-global (i.e. along any 
path) consistency between L-transports along paths and real bundle 

metrics. Also the corresponding problems of existence are corisi­

dered. rn Sect. 3 are investigated problemso of ConsistencY concer­

ning the specific case of generated by derivations of tensor algeb­

ras L-transports of vectors. In Sect. 4 the results of Sect. 2 are 

transferred to Complex vector bundles endowed with Hermitian bundle 

metrics. Some remarks on the presented in this paper material are 

made in Sect. 5. 

At the end of this introduction we shall note th~t in a fi~ld 

of bases {e
1

, i=1, .. .",dim{1l- 1 {x)), xeB} along a path r:J~B. J 

being an arbitrary ~-interval, any L-transport along r from s to t, 

s,teJ is uniquely characterized by its matrix H{t,s;r)=iH1 {t,s:r>U· 
• J 

Hereafter the Latiri indices ruri from 1 to n:=dim{n- 1 {x}), xeB and 

further the usual summation rule from 1 to n is assumed over the 

repeated on different levels indices. The general form of H{t,s;r) 
is 

H(t,s;r)=F- 1 ~t;r)F(s;7} ( 1. 4) 

for a nondegenerate matrix function F, defined up to a· left multi­

plication with a nondegenerate matrix depending only on r, i.e. up 
to the transformation 

F(s;7) ~D(>)F(s;,), det(D(>))*O.~. ( 1. 5) 

For further details of notation and results concerning L-tran­
sports along paths in vector bundles the reader is referred to [2]. 

2. GENERAL CONDITIONS FOR CONSISTENCY 

Let in the real vector bundle (E,1l,B) be 

along paths L and a real bundle metric g. Let 
fibre n- 1 (r(s)), seJ be fixe-d a basis 
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given an L-transport 

7:J~B and in every 

{e
1
(s): i=1, ... ,n= 

=dim(1l-
1
(x)), xeB}. Let in {e} the transport L7 along r from s 

I s----?t. 
tot be given by its matrix H(t,s;q)=IIH 1 '(t,s;q)ll [2] . 

. J 
The components of the metric gin {e

1
(s)} at q(s) are 

(gQCsl) IJ :=g7{sl (e 1 (s) ,eJ(s)). (2.1) 

Let G(q(s)):=ll<g ,> ~· The nondegeneracy of g means res 1 J . T _ 
det(G(7(s)))#O,«>, seJ, and its symmetry - G (7(S))=G(q(s)), seJ, 
where the superscript T means a transposition of matrices. 

Proposition 2.1. A necessary and sufficient condition for a 
globc3.1 ( resp. local) consistency betwe_en a bundle metric g and an 
L-transport along- paths L is 

G( 7( s)) =H T ( t, s; 7)G( >(t))H(t, sa), s, teJ (2.2) 

for every ·(resp. for the given) path r:J----?8. 

Proof. If u=u
1
e

1
(s) and v=v 1e

1
(s) (a summation from 1 ton is 

understood over repeated on different levels indices) are vectors 
from ·1l'-

1
(r(s)), then, due to the bilinearity of the metric, we have 

g7Csl (u, v)=u
1
vJgrcsl (e1 ~s), eJ (s) )=u1vJ(g

7
Csl) IJ • (2. 3) 

Substituting t~is equality into (1.2) and taking into account- the 

linearity of L, the definition of its matrix H [2], and the ar~i­
trariness of u and v, we see (1.2) to be equivalent to 

(gr<sl) 1 J=H~; (t, s; r) (gr<tl )k 1H
1 ~ (t, s; r), 

which is ·simply a component form of (2. 2). • 

(2. 4) 

using the general ·form of the matrices of L-transports along 

paths, which is given by (1. 4), we can "simplify" (2. 2) by putting 
it into "one point" form which is the contentS of 

Proposition 2.2 •. If the nondegenerate matrix function F(s;r) 
defines the L-transport along paths L by ( 1. 4), then a necessary 

and suffici·ent condition for a global (r_esp. local) consistency of 

L with the bundle metric g is the existence of a nondegenerate, 
symmetric (resp. and constant) matrix function C of r such that 

(F-
1
(s;>))TG(>(s))F- 1(s;,)=C(7), seJ, CT=C. (2. 5) 

Proof. Substitut.iri.g {1.4) 
obtained equality on the left 

F- 1 (s;r), we find that (2.2) is 

intO (2.2) and multiplying the so 

by (F- 1 (s;r)) T and on the right by 
equivalent to 
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(F-'(s;r))TG(r(s))F-'(s:r)=(F-'(t;r))TG(r(t))F-'(t:r). (2.6) 

If the metric and transport are consistent, we can put here 
t=t

0 
for a fixed t

0
eJ, so we get (2.5) with C(r)={F-

1
(t0 ;-r))Tx 

xG( 1(t ))F-1(t :r), besides CT=C due to GT=G. On the contrary, if 0 0 
(2.5} is fulfilled, then (2.6) is identically valid and, conse-
quently, (2. 2) is also true. From here we conclude that (2. 2) and 
(2.6) are equivalent, i.e. propositions 2.1 and 2.2 are equivalent, 
the former of which was already proved.• 

The arbitrariness in the choice of .F is described by the tran­
sformation (1.5). As a consequence of this the matrix C(r) in (2.5) 
is also not uniquely· defined. Evidently; -the above transformation 
leads to C(,-)~(D- 1 (r))TC(r)D- 1 {r). It is easy to check the 
validity of the inverse to this statement, i.e. we have 

F(s:.) o-+D(r)F(s:>) - C(r) 1-+(D-'(r)) TC(r)D-'(r). (2.7) 

At this place naturally arises the question when and under 
what conditions there exist bundle metrics (resp. transports along 
paths) which are consistent with a gi_ven transport along ·paths 
(resp. bundle metric). This question can be put in two variants: 
global, when consistency along every path i_s investigated, and 
local, when consistency along a given path is studied. The follow­
ing propositions give a solution of the above question from diffe­
rent viewpoints. 

Proposition 2.3. If an L-transport along paths is ~efined by 
the matrix function F through (1.4), then any consistent with it 
along 7:J~B bundle metric along 7 has a matrix of the form 

G(r(s);r)=(F(s;r))TC(r)F(s;r), seJ, CT=C, (2.8) 

where C(7) is nondegenerate, symmetric and depending on r matrix. 
Proof. This proposition is a corollary from proposition 2.2:· 

in fact {2.8) is the general solution of (2.5) with respect to G 
when F is given.• 

Proposition 2.3 shows that locally, i.e. along a given path, 
every L-transport along paths defines (see (2.8)) a unique· class of 
consistent along that path with it metrics, uniquely defined only 
on the same path. The global variant of this problem is more diffi­
cult and will be treated below in proposition 2.6. 

Proposition 2.4. A necessary and sufficient condition for the 
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existence of globally (resp. locally) consistent with a given 
bundle metric L-transport along paths is the independence of the 
signature of the bundle metric, i.e. of the matrix G(x), from the 
point of the base B (resp. the path of transpOrt) at which it iS 
evaluated, i.e. from XEB (resp. xEr(J)). 

Remark. If p(x) and q(x) are the numbers, respectively, of the 
positive and negative eigenvalues of' ~(x), the signature of G(x) .is 
s(x):=p(x}-q(x) (see [6)). The propOSition states-that the bundle 
metric admits a (globally or lOcally) ·consistent with it L­
transport along paths iff s(x)=const, which- dUe- -:to· p(x}+q(x)=n:= 
:=dim(n"" 1 (x)), XEB is_ .equ~valent to p(x)=const, and/or q(x)=const, 
i.e. to the 
ei'gemialues 

luated. · 

independence of the number of the positive (negative) 
of the niet~--ic r·~om 'the -poi'ilt. at w~icl"/ t_he~ -~~~ eva-

.'_----;",1 . ,_) ; :'i. . ,, 

Pl:-Oof. Let the bUndle metl-ic of'''(E:~n,B)-b~ (globailY.~"i- lo~~~ 
lly)' 'con"sist·ent with a·n L~trB:nspcirt· ~10hg Pf:'lth~--'de~c~~£~·J·~fn·:-~01!1~ 
basis along r:J~B :b}/ ·the ~t-rix F {~;'~) thrO~gh · (1:4) ('With .. ... . _-._ _0· . " . "'-' ,- ' -_ -- ! .< -F=F

0
)'; Then, by .propositiOn 2. 2, there· eXists a 'iiondeg~ll.~rat•< ~nd 

symmetriC matrix C
0 
(1>~ su~h . t.ha~- ·. ( F~ 1 ( s;:r).) T ~( r( s) )F~ 1 

( s-;,7):; 
=C (r), seJ." Because of. CT(rf=C (r)· there· exists an· orthogonal ma-o 0 0 . ' ' .. - ~-trix D (r) for which DT(r)C (r)D (r) is constailt diagonal matrix 0 0 0 0 . ' .. 
[6). Then (see (1.5) and (2.7)) the matrix F(s;r):=D

0
(r)F

0
(s:r) 

describes the same· L'-transport. and due to the last equality- it sa­
tisfies (2.5) with. C(7)=n!<r)C0 (r)D0 (r)=di-ag(C~; •. : ,Cn), C

1
,. • .,cnE 

EIR. This meanS that iri ·(2.5) the matiix F(sa) may be chosen in 
such a way as C(r) to be a Constant diagonal matriX; If such a 
choice i's already made,· then, due to (2. 5). G(r(s)) with the ·heip 
of a tra.ilsfor.mation of a form DTG(r(s.))D, where D=F- 1 (s;r}, can be 
transformed into the diagonal matrix diag(c , ... ,c) which does not 1 n T depend either _on r(s) or on r_. on: the otheT hand, as G =G, there 
exists an orthogonal matrix D

1
(r(s)) such that 

T . 
n, ( 7( s) )xG( r( s) )D, ( 7( s) )=diag( g, ( 7( s)), .•• , g

0 
(7( s))), 

where g
1

(r(s))'fi:O,co, i=1, ... ,n are the eigenvalues of G(r(s)) [6). 
F:rom the last two results, as a consequence of the Jacobi-Syl-vester 
inertia law [6], it follows that the number p of the positive and 
·the number q=n....:.p of the·negative 'ei9-envaiUes 'of G(j(s)), i.e •. of. 
the bundle metric, are equal·, respectively, .. to the ·numb~~ ·o:r ·po:si­
tive and negative "diagOna·f -elements of DTGC7(s)~D=dici9"'it: 1 ,·:.: ,-Cn>=. 
=canst·. Consequently the numbers p and q( =n-p) do not depend on the 
point 7(s), seJ in the local case· (consistency along a path) or on 
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the point of B in. the global case at which they are calculated, 
i.e. the signature of the bundle metric is s=p-q=const. 

On the contrary, let in (E,n;B) be given a bundle metric g 
whose signature s=p-q, and consequent-ly, the number p of its posi­
tive and the number q=n-p of its negative eigenvalues, do not de­
pend on the point x at which they are calculated (xEB in the global 
case or xer(J) in the- local case for some path r: J~B). Because of 
GT=G there exists an orthogonal matrix D (x) such that DT(x)G(x)x 1 1 XD

1
(x)=diag(g

1
(x), ..• ,gn(x)), where g

1
(X)¢0,0), i=1, •.. ,n are the 

eigenvalues of _G(x~ [6J. If we put 

D (x):=diag(ig (x)l- 1
/

2
, ... ,1g (xll-1/ 2

) 2 1 n 
and n{x)·:=D (X)I) -(~),··the-n "dUe-·to the above accentance, ~e get - ., l. 2 __ ··' -. - . . .. - ·. '::.:. ·. • . . - . . D1 (x)G(X)D(x)=diag(c , ... ,c), where p of the numbers c , ... ,c are 1 n 1 n • equal to +1, the rem~ining q=n-p on~s being equal to -1. Then from 
pf.oposl1:iOn 2:2-for' C(7)=di~g(c , ... ,c )=~onst (see also (2.5)) a.nd . ::: :· __ · - _ . ---.. - .,..:· . :_

1
_ -, 1 · . · _ . · n - . (1;4) for F(sa)=(D(r(s))) , seJ. for. every path r:J--tB (global 

case) or f~r s·om~ path -r~;~B (lo-~al case.), w~_ co~clude that the 
giveii-·burictle inetric is·;·_ :resp~_~tively, global!; or locally consis­
tent' with_ ihe_ L--tr~nspo~t al~Ttg paths defined by the matrix -~1.4) 
with the above defin.ition of F.• 

The. next proP6si tion describes the general form and the way of 
cOnstruction of L-transports along paths consistent with ·a given 
bundle metric admitting_ such _transports along paths. 

Propositi~n 2.5. Let in (E,n,B) be given a bundle metric whose 
signature does not depend on the point r(s) at which it is evalua­
ted for every (resp. ~orne) path r:J~B. Let there be chosen bases 
{e

1
(.s)}, sEJ along Tin such a way that the first p eigenvalues of 

the matrix G(r(s)), defining the metric in them (see (2.1)), be po­
sitive. Then one L-transport along paths is consistent with this 
bundle metric along every (r_eSp. a given) path T if and only if 
some of the defining its matrix (1.4) matrix functions F has the 
form 

F(s:r)=Y(r)Z(s:r)(D(r(s)))- 1
, seJ (2.9) 

for every (resp. the given) path r. In this equality: Y(r) is nxn 
nondegenerate mat:r:-ix function of r:~ Z(s;r)· is a pseudo-orthogonal 
matri~ of type (p,q), q=n-p, i.e. Z(s;r)eO(p,q), or 
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(Z(s;r))TG Z(s;r)=G :=diag(1, ... ,1,-1, ... ,-1) p' q p' q <----y---' "--y--' 
(2.10) 

p tImes q times 

and D(r(s)) is a fixed (orthogonal) matrix such that 

(D(r(s)))TG(r(s))D(r(s))=G 
p,q (2.11) 

Remark_. The- case when in some basis not all of the first p 
eigenvalues of the bundle metric are positive is obtained- from the 
above one-by transformation (renumbering) of the basis· {e

1
(s)}. 

Proof'. To prove the necessity we have to solve the equation 
(2.5), when G'and care givert,· with· respect- to F(s;r). Frein GT=G, 
the choice of'.{e

1
(s)}-clnd the independence of·p·and·q=n-p·f'rom 7(s) 

(becauSe of. p..:.q=s=const) fol!'ows- the existence Of . .-'a ·- satisf'yirig 
(2.11) matrix· D(r(s)):' e.g. we can put D(r(s))=D,(r(s))D

2
(r(s)), where· D

1 
and Dei 'were defined in the- proof of' proposition· 2-.4: "·. ·--.~,-

'Let F(s:r)=:F
1
(sir)(D(r(s)))- 1

• From (2.5) and (2.11), we 'get 
-1( T -1 · · .( · ) ( ) (F sa)) G F (sa)=C r). Putting here F (sa)=:Y(T z s;T , 1 p,q 1, ·; _·, . . .•. 1-_·_ -:<.-T-: where Y(r)- is arbitrary nondegenerate ~atrix for which (Y(T)) C(T)X 

xY(r)=G , we see that Z(s;r) satisfies (2.10). (The exist¢nce of p,q 
' . Y(r) follows from (2.5): from it and the law of Jacobi-Sylvester 

it follows that C(r) has p positive eigenvalues, due to whic_h _the 
needed matrix Y( T), which is or~hogonal, exists [ 6].), All· that pro­
ves_ that F(s;r) has the form (2. 9) if .the considered L-t:a:-ansport 
~long paths is consist_ent along every (resp. some) path r- with the 
given bundle metric. 

On the contrary, the sufficiency of the proposition.is almost 
evident: if (2.9) is valid, then it is easy to check the validity 
of (2.5) for C(T)=(Y- 1 b·))TG Y- 1 (7) and according to proposition . p,q 
2.2 the L-transport along paths and the bundle metric ~re consis-
tent along every (resp. some) path T·• 

Corollary 2.1. For a given L-transport along paths L there 
locally exists a consistent_ with it·along "' bundle metric if and 
only if along r exists a basis in which the defining it by (1.4) 
matrix F(s:T) has-the form (2.9), in which- Y(T) and D(sa) are 
arbitrary nxn nondege:ri.erate Matrices and -ZT(s;r)G Z(s;r)=G for p,q p,q some p,q~o. p+q=n Which may depend on.T. 

Proof'. If along T there exists a consistent with L ·bUndle 
metric g, then: the e'xparision (2.9) follows fi-om proposition 2.5. 
converSefy, if (2. 9) is valid, then Substituting (2. 9) lnto (2 .. 8), 
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we get, 

with L 

and c 

in accordance with proposition 2.3, a class of consistent 
along r metrics defined along r. 
in such a way that YTCY=G , 

p,q 

In particular, 

we obtain 

G(r(s):r)=((D(r(s)))" 1)G (D(r(s)))"', 
p,q 

where p and q may depend on r.• 

choosing Y 

Now we shall go back to the question of the global existence 
of a bundle metric globally consistent with a given L-transport 
along paths (see the comment after the proof of proposition 2.3). 

Proposition 2.6. A necessary and sufficient condition for the 
existence of globally consistent with a given L-transport along 
paths bundle metrics is the existence of a local· basis along any 
path r:J--::-+B in which the matrix F(s;r), defining this transport 
a~~~9- r:J~B by (i.4j, has- the-, form (2.9)---in which: Y(r) and 
D(r(s)_) ar~ arbitrarr nondegenerate_ J1X!l matr~c;~s. and: Z(s;r) is: a 
pseudo-orthogonal matrix~·of type (p,q),_ with · p+i:t=n. Besides,: if 
for a given L-transport along paths are. fulf~lled these_ conditions, 
then in the above ment __ i_oned base!3 all globally c_onsistent with the 
L-transport along paths '_bundle_ metrics are ~e_fined by the matrix 

. G(r(s))=((D(r(s)))-1)TG (D(r(s)))"', . - p,q 
(2.12) 

which· depends only on the Point r(s), but not on the path 7· 
Proof. Let there be given an L-transport'along paths for which 

there- existS a globally ·consistent with- it bundle metric. Now we 
shall prove that urider this condition is fulfilled an equality like 
(2.9), In arbitrary bases along every path 7 this L-transport ·along 
r defines a class of consistent with it bundle metrics along r 
which are defined by (2-.8). Let in (2.8) the matrix C(r) have k(y) 
positive and l(r)=n-k(7) negative eigenvalues. Then· (see [6]) there 
exists a matrix Y(r) such that yT (y)C(r)Y(r)=G , as a con-klrJ,H7J 
sequence of which (2.8) can be represented as 

G(r(s):>)=FT(s:7)(Y-'(r))TG,
111

,,
171

Y-'(>)F(s:r). 

If the consistent_ with an L-transport along paths metric, which by 
assumption exists, is described in some basis .with the matrix G

0
(x) 

having for every xeB p positive and q=n-p negative eigenvalues, 
then by proposition 2.3 along r this bundle metric belongs to the 
above_ class of bundle metrics and, hence, there exists a matrix 
Y

0
(r) (or- the corresponding matrix C

0
(r); see (2.8)) such that 

8 

T ->( T -> G0(r(s):r)=F (s;r)(Y0 r)) G, <r> 
1 171

Y
0 

(7)F(s;r). 
0 • 0 

From here, due to the Jacobi-Sylvester law [6], it follows that 
k0 {7)=p=const and 10(r)=n-p=const. If we put F(s;r)=:Y

0
(r)x 

XZ (s;r)D-
1
(r(s)), where D (x) is a matrix for which DT(x)G (x)x 0 0 0 - 0 0 

xD (x):=G , xeB [6], then from the same equality, we see that 0 p,q : 

G (r(s))=((D (r(s)))"')TZT(s:r)G z (s:r)(D (r(s)))"'. 0 0 0 p,q 0 0 

From here, as a conseqUence of the· definition of D
0

, we co_nclude 
that Z0 (s;r) is a pseudo-orthogonal matrix _of--:· type (p,q). (se~ 
(2. 1.0)) .-- This result.. pr-oves the existence of a-.- repr~s~nta~~on lik7 
(2. 9) for the. conside_red· L-.transpo_rt alo!lg paths.: 

The sufficiency of the proposition i_s almo~t __ evidenf.: .. _ In fact, 
if (2.9). is -,_valid for one .. L-transport:,. al~ng: paths,. then 
substituting (2.9)-,_into (2.8),:.~e_se~ _the class of. consistent with 
it along 7 bundle metrics to be defined by 

-1 T T T -1 G(r(s):>)=((D(r(s))) ) z (s:r)Y (r)C(r)Y(r)Z(s:r)(D(r(s))) , 

where C(r) is nondegenerate; symmetric (CT=C) matrix of type nxn, 
which plays a role of a parameter whose change describes the consi­
dered class- of· bundle metrics along· y. If p and ·q are arbitrary 
nonnegative integers and p+q=n, then, due to the last equality and 
(2.10), the choice 

:.i T ' -1 T C(r)=(Y. (7)) G. Y (r)=C (r) .• - '- p,q. 

defines a set of n+1 (resp. for p=o·, 
tries along 7, _given by the equality 

,p~n; q=n-p) bundle me-

G(r(s):r;p,q)=(D"'(r(s)))TG D" 1(r(s)) 
p,q (2.12') 

and, evidently, depending only on the point r(s), but not on the 
map r:J--4B. Consequently these bundle metrics are globally consis­
tent with the given L-t_ransport along paths.• 



3, THE CASE OF GENERATED BY DERIVATIONS 

ALGEBRAS LINEAR TRANSPORTS OF VECTORS 

OF TENSOR 

In this section we shall concentrate our attention on the tan­

gent bundle (T(M),n,M) of a given manifold M. In particular we are 

going to consider in it some special questions concerning the con­

sistency of bundle metrics and S-transports (linear transports 

along paths generated by derivations of tensor algebras [ 8]) of 

vectors along (smooth) paths. In this case the bundle metric g is a 

nondegenerate symmetric section (tensor field) of type (0,2). The 

bunc:tle metrics· in this fibre bundl_e are used t·o be called simply 

metrics [ 3, 7], because of Which the adjective· "bundle".- as. applied 

t·o metriC(S), will be omitted till the end of·. the··present se·ction: 

The details concerning· s-tr'arisports along paths and t.heir ·pro-_ 

pel-tieS can·· be fOund- ilr [8].-'· \<· !=; · 

In-··a·ccordimce with defiii.ition· 1.1· the metric g and the s·­

i.ransport s1 ill oft§ 7:· J~H are (locally) consiStent 8long· 7 if 

grcsl(Ao,Bo)=grctJ(S!~tAo,~!~tBo)' s,tEJ ( 3.1) 

for every A , B ~T · (M). The, metric and the s-transport are ( glo-
o o res> · 

bally). consistent if this- equality- is fulfilled for every path 'l·-

. Proposition 3.1. The C1
; ___ metric. g and the ~-:-transpor"t:- S. are 

consistent (resp. along a given path r). iff the. equality 

gr<t>=S!~tgr<.s>' s,teJ (3. 2) 

is valid for every (resp. the given) path 'l· 
. . .. -- 1. 

Proof. Using the contraction operator C
1 

on the first super-

script and the. first subscript, _we find 

g(A,B)=(C:) 2 (A®g®B), A,BeSec(T(M),n,M). (3.3) 

If we apply s 7 to (3.1) and take into· account (3.3), the pro-,__,. 
perties of the S-transports [8], and the arbitrariness of A0 and 

B , we get that (3.1) is equivalent to g =S7. g·· , wh{ch, dUe o . . res> t.---h ret 
to the arbi traririess of s, tei, is equfvale"nt to ( 3. 2). • 

Let .us note that by definition 5.1 from [B] the equality (3.2) 

means that the metric g is (S-)transported along r section, hence 

proposition 3.1 is equivalent to 
Proposition 3,1'. The C1 rnetrfc g and an s-transport s are 

consistent (resp. along a given path r) iff g is s-transported 

along every (resp. the given) path r section. 
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Proposition 3.2. The s-transport s1 along r:J~M is consis­
tent along r with the C1 metric g iff 

(:D
7
g)(7(s))=:D

7
g=O, seJ, (3.4) • 

where vr- is the defined by or defining s1 derivation of the tensor 
algebra over r(J) according to [8], proposition 8. 

Proof. This proposition is a consequence of proposition 3. t' 
and proposition 5.3. of [9].a 

effective tool for practical 
. . 1 . . 

The equality (3.4) is useful and 

check of the question of consistency 
of S-transports and C met-

rics .. A ty~ical example. for this is the Rie~.!mian parallel. trans-; 
port (in (pseudo-)Riemannian ~anifolds} which is defined from the 

L~vi-Cevita connection and f~r which (3.4) is ide~tically s~tis~i~d 
[3, 4]: in this case V0 g=O~ where v0 is the .de.fined .by the· CriS-. X X 

toffel symb<?ls from g covariant differentiation along the vector 

field X. and. as now V
7=v , 7 being the tangent. to r v~ctor field 

1 
(cf. [2), Sect. 5), the eq. (3.4) holds identically. In (pseudo-) 

Riemannian manifolds the connection for which Vxg=O is called met­

ric preserving as it preserves the scalar product of the (parallel) 
transported with its help vectors along any path [10] . 

For some purposes it is convenient to write the conditions 

(3. 2) and (3. 4) in local coordinates. For this goal along a path 

r:J~M are introduced bases {E
1

1rcs)} in the tangent spaces 

T7CsJ(M) to M at r(s)_; S.EJ in which the metric along '1 is given 

from the matrix G(r(s)) with components (2.1L and the derivation 

1J
7 

and the s-transport S7 along r are described with the help of 

the matrix r (s):=Jr
1 

(sa) I of the coeff-icients of 'D7 and S in 1 . J 
{E1} (see [2,8]). 

Proposition 3. 3. The C
1 

metric g and the s-transport s are 

consistent (resp. along a given path r) iff one of the following 
two equalities is valid 

. T T T 
G(7(t})=Y(t,s;r7 )G(7(S})Y (t,s;r

1 
), s,teJ, 

(3.5) 

dG(7(s)) _ G(,(s))r (s) - r (s)G(7(s))=O, seJ, rls r 7 (3. 6) 

where Y is the solution of the initial-value. problem (3.9) of [8], 

:for every (resp. the given) path r. The equalities (3._5) and (3.6) 

are equivalent between each other as well as, respectively, to 
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(3.2) and (3.4). Besides, (3.5) is the general solution of (3.6) 

with respect to G. 
Proof. With the help of (3.4), (2.16) and [8], eq. (3.8) it is 

easy to check that in the chosen bases (3.5) and (3.6) are compo­

nent form in matrix notation of (3.2) and (3.4) respectively and, 
consequently, (3.5) and (3.6) are equivalent, respectively, to 

(3.2) arid (3.4). From here and propositions 3.1 and 3.2 follows the 
first part of the proposition. From the s~me propositions follows 

also the equivalence of (3.2) and (3.4), and hence the equivaience 
~f (3.5) ·and" (3.6). If ~e look on (3.6) as an equatiOn With r~spect 
to G (resp. aloilg .·r,·. then. from the definition of Y it is Ciea·r 
that its "general· 'S01uii.'orl is· glven by (3.s>" in--which s·-has to -be 

fixed and G(-r(s)) must be replaced with an arbitr.iry Cbnstiui.t 

matrix C (~esp. a ·matrix iunction C(r) ~f ;·}.;; ;: .. 

Proposition 3.4·. If_ in a given basis one s-tranSp6rt is de­
fined by the matriX r ·'of its coeffici.Etnt.S and :·the ·m'etriC g - ·by 

"' . . . r . . . . . -· 
the matrix G, then the S-transport and the metric are- consistent 

(resp. along a given path r) iff there exists a nondegenerate 

symmetric matrix C(r) such that 

Y(s
0
,s;r

7
T}G(r(s}}Y(s,s0;-r1

}=C(r}=CT(r} (3o7} 

for Y defined _in [8], eq. (3.9). s_eJ, fixed s 0 EJ and .every {resp. 

the given) path 7· 
Proof. According to the proof of proposition 3 .. 4 of [8] the 

s-transport is uniquely defined by the matrices 

F(s;.r}~Y(s ,s;-r }=[Y(s,s ;-r }]-
1

, seJ 
0 7 0 7 

(3o 8} 

through (1.4). Substituting (3.8) into {2.5) {with the help'of the 

properties of Y), we get {3.7), whiCh shows that pr0position·3.4 is 

a special case of proposition 2.2.•· 
Proposition 3.5. If an S-transport is 'fixed in· a given· basiS 

thr_ough the matrix r
7

, then- any consistent along 7:J~~ with it 

metric is obtained in the same basis by the fOrmula 

. T ~ 

G( r(s}; r}=Y( s, s
0

; r
1 

}C(r}Y( s
0

, s; -r 1 ), 
(3o9} 

where Y is defiried in· [B], eq .. {3.9L s
0
eJ is fixed and C(r) iS 

nondegenerate symmetric matrix. A necessary condition · for the 

obtained by this formula metric~ to be globally consistent with the 

initial s-transport is C(r) to be independent of r, i.e. 

C(r)=const. 12 

Proof. The first part of the· proposition follows, analogously 
to the proof of proposition 3.4., from proposition 2.3 for F(s;r)= 

=Y(s
0
,s;-r

7
) and the fact that (3.9) is the general solution of 

(3.6) with respect toG (see proposition 3.3). The second part of 

the proposition follows from the circumstanCe that if in (3.9) we 

put s=s
0

, we get 

G(r(s
0
};r}=C(r}o (3o10} 

Hence, if the given_ by _(3.9) metrics __ ~nd: the. -~efi~ed by r 7 s­

transport _are ~glob~lly) consi~~ent_.. th~n C(~) will n~t ~epen~- o~. T: 

~-~- G_~r(s 0 )_a) -~s silnply the- value·_ of t_he rna_tf..ix _G(x}_. -~~-ich repre­
sents g in -the Q-iven basis, et the point r(s ) . but, evidently~ 

~~ . . 0 - .. . . . . 
G{7{s )) does not depend on 7·• 

0 . . 

Proposition 3.6. Let 7:J~M be a C1 path and g be a C1
- metric 

(resp .. along 7) which in a basis {E
1 

17111 >} along r ~s represE7nte·~- ~Y 

th-e matrix' G( x), XET('J), whoSe signature · dOes not depend on ihe 
poirit ~· Let D(x) be ari orthOg~nai rncttJ.ix Such :that ['6-] ·- :. :. 

T - . . T -1 ·. 
D (x}G(x}D(x}=G(x}:=diag(g

1
(x}, o o o,g

0
(x}}, D =D •. (3o11) 

whe~e g 1 (x)~o.~. i=1, ... ,n are the eigenvalues of G(x) and 

K( r( s}}: =DT ( r( s}} o dG( ~( s}} oD( r(s}}=K T (r( s}}; seJ·o s . 
. (3o12} 

Then in a considered basis 
cients of iili consistent {resp. 
transports has the form-

the matrix r (s) of the coeffi-
·- -- . ·- '· '1 .. "' ·; ' : . 
alorig 7) W:i t~ · the inet):'ic __ g s-. 

- . T 
r (s}=D(x)[P(x}+Q(x}G(x}+R(x}]D (x}= 

1 . 

· =D(xl[P(x}~R(x} ]D T (x}+D(x}Q(x}D T (x}G(x} 
0

• x=r( s} ,. ser(J},,_ ( 3o13}. 

where the rnat~ii:es P~ O, R have. the -following symmetries: 

T T T 
P =P '· 0 _:=:--0,__ R =-R (3o14a} 

and their components are: 
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the 

are 

0
1
,(x):=O, 

} 
for g

1
{x)+g

1
(x)=O, 

R1 ,{x):=K
1
,{x)/2g

1
{x), 

P1 ,{x):=K,,{x}/(g
1
{x)+gJ{x)), 

} for ~. {x)+g,<x>~o. 
R

1
,{x):=O, 

{3.14b) 

{3.14c) 

remaining Of which can be chosen arbitrarily (only if (3.14a) 
satisfied). 

Proof. In fact we have to 'prove that (3~ 13) is the gerieral 

solution of (3.6) along r with respect tor when G is 
Multiplying {·3.6) on the left by DT(,-(s)) and 

given. 
on the right by 

D{7(s)), and Using {3.11);· we get 

:- Gr+fG=K, 
{3. 15) 

wh~re r:=DTf 0 and here, as well .as below in this proof, for . - ~-- 7 .. . 
brevity we omit __ everyw~ere the arguments S and r(s), sEJ. When . . . 
written in component ·form (see (3.11)) this equ~tion will be 
equivalent to 

glrlJ+g/Jl=KIJ 

(Do not sum here over i and j!) 
Let 

{3.15') 
us consider -:he _pairs (i, j) for which 

r~-~uces to g 1 (r 1 ,-~, 1 )=K
1
J hence we can 

{3.15') 

9
1 
+g,=O. Then 

find only the 

anti symmetric part of_ the element r . Sq, using the identity 
..,. 1 "' -· ' 1 "' - ··. ..., lj 

r =-(r +r )+-(r -r ), we get r =P +R +Q g, where R := IJ 2 lj Jl 2 IJ JJ IJ IJ IJ IJ J IJ 

:=K11 /2g1 =:-R, 1, 0 11 :=-QJl:=O and the quantities P
1
,:=P

1
J are arbi­

trary. 

Now we shall. consider the pairs (i,j) for which g
1
+g

1
#:0. In 

this case we define the qu~ntities P
1
,=PJ1, i.e. the remaining 

components of -the matrix P=P , · as the symmetric so;tution of the 

equation (3.15,), i.e._. g 1 P11 +gJPJI=K
1
J, and hence P

1
,=K

1
,J(g

1
+gJ)= 

=PJI. Then, if we put r 1,=:P1 J+Q
1
JgJ+R

1
,, R

1
J:=-RJI:=O, we see that 

(3.15') reduces to 0 1 ,+QJ
1
=0, i.e. the only restriction On the 

quantities Q is their antisymmetry. 
I j . - "' 

Thus we proved that r=P+QG+R, where P, Q and R are defined by 

(3.14), is the general solution of (3.15) with respect to r:=DTr D. 

From here it follows that r7=(DT)-1rn-1=nrnT is given by (3.13) !nd 

it is the general solution of (3.6) with respect to r
7
.• 
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4. CONSISTENCY BETWEEN LINEAR TRANSPORTS ALONG PATHS 

AND HERMITIAN BUNDLE METRICS 

In this section with (E,rr,B) is denoted an arbitrary complex 

vector bundle [1,11]. 

By a Hermitian. bundle metric g in (E,n,B) we understand (see 

[1] and [11], ch. I, §B) a map g:-x~x' xeB, where the maps 

gx:n- 1 (x)xn- 1 (x)~ {4.1) 

have the properties: -1-i- linearity, nondegeneracy.- and Herrniticity, 
i.e; 

' -1 " 
gx(u+v,w)=gx(u 1 w)+gx(v,w), u,v,wen (x), {4.2a) 

g (~u,,.,.v)=~iig (u,v)o -~-.,.,.ec, u,vEn-1(x),· 
• • {4.2b) 

g (u,v)~O for u,v~OEn- 1 (x), 
• {4.2c) 

gx(u,v)~gx{v,u), ·{4.2d) 

where the bar over a complex number or a matrix means complex 

conjugation. In this definition We neglect the usual [11] Condition 

gx(u,u)>O. for u#:O as insignificant for the following investigation. 

The studied below L-transports along"paths in the complex vec­

tor bundle (E,n,B) are supposed to be C-linear (cf. [2], Sect. 2 or 

[14], Subsect. 2.3). 

Evidently, in the real case,. i.e .. when c· is replaced with IR, a 

Hermitian bundle metric reduces to the defined in section 1 real 

bundle metric. Therefore any result for Her.niitian bundle metrics is 

also valid. fOr real bundle metrics. The contrary is mutatis· mutan-
. . ! . 

dis true, i.e. with certain changeS in the formulations qf the de-

f-initions and propositions of se-ctions 1-- and;_-2_ they re'main_ yalid 

also in the Hermitian case. The present secti6TI 'is intended for the 
description of these changes.· 

The basic definition 1.1 riow reads. 

. ,· ~finition 4.1. The li~e~r transport along paths L and the Her­

mitian bundle metric g are called consistent (resp. along the ··path 
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r) if L preserve the Hermitian scalar products of the vectors along 
every (resp. along the given} path r:J~B, i.e. if 

g7 (sJ=g,.1t.lo(L!---+t.xL:--+t}, s,teJ (4.3) 

for every (resp. for the given) path r. 
Let. r:J~B and in every fibre 1'l-

1 (r(s)), sEJ be fixed a (com­
plex) basis {e1(s): i=1, ... ,n=dimc(1l-.t(x)), xes}. In them the t·­

transport L
1 along r from s to t is uniquely defined by its, •--+t 

generally complex, matrix H(t,s;r)=iH1 '(t,s;r)l (see [2]); the met-
• J 

ric g at the point r(s) is defined by· the matrix 
G(r(s)):=l(g

71
,,>

11
1. i,j=1, •.. ,n=dimc(n-1 (r(s)) with the defined 

by (2.1) elements. In ter~s of G(r(s)) the nondegeneracy and Hermi­
ticity of g mean, respectively, det(G(r(s),)).;!O,co and 
G*(r(s))=G(r(s)), where * means Hermitian conjugation of matrices 
(G*:=GT=(G)T; see [6]), i.e. G is a nondegenerate: Hermitian matrix 

:::~:,i;:;, :::: d::l::~s4 .:)r,o:e ~aeve fact that if u=u
1

e 1 (s) and 

u
1
v

1
g11 sl ( e 1 ( s}, e 1 ( s} )=gr<s> (u, v)-grlsl (v, u)-

_=v1u
1
g

1
Csl(e

1
(s?,e1(s)), 

i.e._det1Cg11 s>) 11 I;!O and (gr-c~,>j 1 =(g7csl) 11 • 

(4.4) 

Bel_ow we present the analogs of propositions 2.1-2.6, respect!...; 
vely, with numbers 4.1~4. 6 for Hermitian bundle metrics. ~' 

Proposition 4.1. A necessary a·nd sufficient condition for glo­
bal (resp. loCal} consistency of a Hermitian bundle metric g·and an 
L-transport along paths L is the equality 

GT(7(S))=H*(t,s:7)GT(7(t))H(t,s:7), s,tEJ (4.5) 

for every (resp. for a· given) path r:J~B. 

Proof. Applying (4.3} to (u,v), u,veB, using (4.4) and t_he 
arbitrariness of (u,v}, we get 

(grc.a>) t J=(gr< tJ) klu~; (t, s; r}Hl ~ (t, s; r)' (4. 5') 

from where taking· a eOmplex conjugate and taking into account ·GT=G, 
due to _G*~G, we obtain the component form of (4.5}.•· 

Proposition 4.2. If the nondegenerate (co~plex) matrix func-

16 

tion F(s;r} defines an L-transport along paths L by (1.4} then a 

necessary and sufficient condition for the global (resp. local} 
consistency of L with a Hermitian bundle metric g is the existence 
of a nondegenerate Hermitian matrix function c of r, such that 

(F-
1
(s;7))*GT(7(S))F- 1(s;r)=C(7), SEJ, C*=c (4.6) 

for every (resp. a given} path ,.., 

Proof. The proof of this proposition is an exact copy of the 
proof of proposition 2. 2 and it reduces to the substitution of 
(1.4} info (4.5) and the separation in the obtained equality the 
terms at r(s) to the left of the equality sign and thoSe at r(t) -
to its right side;. 

As is known [2] the functfon F, appearing in- (4.6}, is defined 
up to the transformation·· (1.5), so the fUnction- c in (4.6) is not 

uniquely defined and analogously to (2. 7} ~me fi_nds th~ _.implication 

-1 '* -1 F(s:7),_,D(7)F(s;r) <=> C(7),_,(D (7))C(7)D (7). (4.7) 

Proposition 4.3. If an L-transport along paths is defined by 
the matrix function F through (1.4}, then any consistent with it 
along r:J--+B bundle Hermitian metric along r is given by 

GT(7(S):>)=(F(s;7))*C(7)F(s;,), SEJ, c*=c, ( 4. B) 

where C is nondegenerate Hermitian matrix function of r. 

Proof. Solving (4.6) with respect to G(r(s)), when F is fixed 
and cis arbitrary, we get (4.8).• 

Proposition 4.4. A necessary and sufficient condition for the 
existence of globally (resp. locally} consistent with a given Her­
mitian bundle metric L-transport along paths is the independence of 
the signature {and consequently, Or the number of positive (and/Or 
negative) eigenvalues} of that rrietric, i.e. of the matrix G(x), 
from the point of the manifold M (resp. of the path) at which it is 
evaluated. i.e. of xeB (resp. xer(J}}.· 

Proof. The proof of this proposition in form coincides with 
the one of proposition 2. 4 and as the latter is simple but long 
enough here we shall present only the changes which must be done ~n 
it for obtaining the needed proof in the Hermitian case. 

1. The matrix C0 (r) is nondegenerate, Hermitian and such that 
-1 *T())-1 * (F0 (s;7)) G (7 s F0 (s:r)=C

0
(7)=C

0
(7). 

2. The matrix D0 {r) is unitary (D~ 1 =0*) and such that· C{r)= 
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=D*(r)C (r)D (r)=diag(c, ... ,c), c, ... ,c ec, n=dirn,...(:rr. 1 (x)), xeB. oOO 1 nl n "" 
3. Further in the proof the matrix functions D and D are uni-

T T 1 
tar'y (not orthogonal), D and D

1 
must be replaced, respectively, 

with n* and o; (due to G*=G, but not GT=-G) and one must have in 
mind that the eigenvalues of the Hermitian matrices (in this case 
C

0 
and G) are real (e.g. c

1
, ••• ,cne~cC) [6].• 

Proposition 4.5. Let in (E,:rr,B) be given a Hermitian bundle 
metric g the signature of Which is indep~ndent of the_ point r(s) at 
which it is evaluated fo!'_ every (resp. som~) path r:J~B. Let 
there be chosen bases {e

1 
(s)}, seJ along r such that the first p 

eigenvalues of the Hermitian ~atrix G(,-(s)), defining the metric in 
them (see (2.1)), be positive. Then one L-transport al~~g-paths is 
consis_tent with.this -~-e:rmit~an metric_if and only i.f some of the 
defining it by (1.4) matrix functions ~has the form: 

F(s:ri=Y(r}Z(s;r)(D(r(s}))-'; seJ (4.9} 

for every (resp. the·glven) path r. In this e"qu.iility:·· Y(r) is nxn, 
n:=dim(n:- 1 (x)), xEB . nondegenerate depending only on r matrix; 
Z(sa) is a pseudo-unitai-y matrix of tyPe_ (p,q)_, q=n-p, i.e. 

. * . . . . . (Z(s;r}) G Z(s:r}=G :=dlag(1, ... ,1,-1, ••. ,-1}. (4.10) 
p,q p,q "---y---1 ~ 

p t.l&es q t.tmes 

and D(r(s)) i~ a. fixed matrix such that 

(D(r(s)})
0
G•(r(s))D(r(s})=G. 

p,q 
(4.11) 

Proof. To prove the necessity we have to solve the" equation 
(4. 6) with respect. to F when G and C are given. From. G*=G it 
follows (G T) *=G T which combined wi-th the choice of { e ( s)} and the . 1 . 
independence of p (or/and q) from r(s) leads to the existence of a 
satisfying (4.11) unitary matrix D(,-(s)) [6). 

. . 1 -
Let F(s:r)=:F

1
(s;r)(D(r(s}))-. Then from (4.6} and (4.111. we 

get (F- 1 (s;r))*G F- 1 (s;r)=C(r). Putting here F (s:r)=:Y(r)Z(s;r), 1 p,q 1 . - . . 1 
where Y(r) is an arbitrary nondegenerate (unitary) matrix for which 
y*(r)C{r)Y(r)=G , we see that Z(s;r) satisfies (4.10). (The exis-. p. q ' . .. . . 
tence of Y(r) is a consequence of (4.6): from it and the inertial 
la_w of_ Jacobi-Sy~yester it follows that C(r) has p positive eigen­
values, hence the sought matrix Y(r) exists [6].) All this proves 
that F(s;r) has the fo=m (4.9) under the· condition that tbe consi-
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dered L-transport along paths is consistent along every (resp. 
some) path r with the given Hermitian bundle metric. 

On the contrary, the sufficiency of the proposition is almost 
evident: if (4.9) is valid, then an elementary checking shows that 
(4.6) is true for C(,-)=(Y- 1(r))*G Y- 1(r) and according to propo-•·• si tion 4. 2 the L-transport along paths and the Hermitian bundle 
metric are consistent along every (resp. some) path r.• 

_Proposition 4.6. A necessary and sufficient condition for the 
existence of a globally consistent with a given L-transport along 
paths Hermitian bundle metrics is the existence of a local basis in 
which the matrix F( s; 7), defining this _transport along r: J---+8 by 
(1-.4), has the form (4.9) in which: Y(r) and D(r(s))- are arbitrary 
nondegenerate n:x:n, n=di!!!C(~- 1 (x}}, x.::B· matrices and Z(s;r) is a 
pseudo-unitary m~trix of type (p,q), p+q=n. Besides, if fO-r a··given 
L-transport along paths these conditions are fulfilled, then in the 
~boVe basis all globally consistent ~i-lh ~:t Herniiiian· bundle met­
rics are described by the matrix 

G•(r(s})•((D(r(s}})- 1
}

0 G (D(r(s}}}- 1 , - .. - . p,q . (4.12} 

which depends only on the point r{s), but nOt on the path r. 
Proof. The proof of this proposition is an exact copy of the 

one of proposition 2.6 and it can be obtained from it with the fol­
lowing changes: metricr--7Hermitian metric; transposition sign 
(T) ~Hermitian conjugation sign (*); (2.8-10) ~(4.8-10); G1----+ 
1------?GT and G0 ~!-• 

s. REMARKS AND COMMENTS 

is_. clear that (2.2) 

SEJ. 

(1) From the proof of proposition 2.1 it 
is a matrix form of (1.3) i_n _the basis {e

1
(s)}, 

(2) In (2.8) the uncertainty in the choice of F (see (1.5)) is 
taken by_C (s_ee (2.7)), because of which G(r(s);,-) does not depend 
on the concrete choice of F. 

(3) Said in another way, proposition 2. 5 means that if there 
exist consistent with a given bundle metric L-transports along 
paths (along a given path). then they have in some basis a matrix 
(1.4) in which the matrix F(s;r) has the form (2.9). 

(4) In proposition 3.1 the condition that the metr-ic must be of 
class of smoothness C1 follows 
(3.2) to have a sense and viCe 

from the necessi_ty 

versa (cf. [ 8, 9)}. 
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for the equality 



(5) Proposition 3.4 follows also from proposition 3.3: it is 
sufficient to put t=s

0 
into (3.5) and to denote G(r(t)) with C(r). 

(6) In a general form a necessary and suffici€nt condition for 
the existence of globally consistent with an S-transport metrics is 
given by proposition 2. 6 in which eq. (3. 8) has to be taken into 
account, due to which the needed variant of proposition 2.6 can be 
formulated in terms of r

1
, but we are not going to do this here. 

(7) In proposition 3.6 the condition for the independence of 
the signature of_ the metric from the point at which it is calcula­
ted is necessary for the _existence of consistent with the. metric 
(S-)transports along paths· (s~e proposition 2.4). 

( ~). If __ g
1 

( x~ 79 J ( x)'li:O for every i, j=1, .... , n, of which type are, 
in particul_ar, _the Euclidean met:a:-ics, then (3.13) may be written 
equi va!ently-_ ~s ::(.-

"' . .. ' .... ?.·-... ~ 
r (s)=r (x)+r (x)G(x), x=r(s). seJ, 

__ 7 , __ ,-l;r:: 2.- -. ~: ~- -·. 
(5.1) 

where r
2
=-r! is arbitrary antisymmetric matrfx· and I\=r~ is arbi­

trary fixed symmetric solution of (3. 6) with respect to r which 
.. ' 7 

tinder certain conditions (see below) admits the representation (see 
[6], chapter 12, sec, 13) 

., 
r, ( 7( s) l=-J< exp(G( 7( s) )t) • dG( ~~ s) l: ( exp(G( 7( s) )t) )dt, seJ. 

0 

( 5, 2) . 

EV{dently, a necessary and sufficient condition for the exis­
tence of the representation (5.1) is the existence of a symmetric 
solution r1 =r~ of the equation (3.6) with respect to r

7
• The- use of 

the described in the proof of proposition 3.6 method gives_ the pos­
sibility to prove that_ such a solution· exists iff for every pair 
(i. j) for which g (x)+g (x)=O the equality K (x)=O is satisfied . 1 J . l J _. 
simultaneously. If (3.6)- admits a symmetric solution r and there 

. 1 
exists at least one pair (i,j) for which g

1
(x)+g

1
(x)=K

1
J(x)=O, then_ 

the integral in the right-hand side of (5. 2) does· not exist and ·r1 
admits the representation 

r (x)=D(x)r (xJDT(x), XE7(J), . l 1 . . 0 .. . . 

where 

rT:=r 
0. 0 

(r0(x)J
1
,·K

1
/x)/(g

1
(x)+gJ(x)) for g 1 (x)+g/x)~o. 
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(5.3) 

(5.4a) 

(5.,4b) 

and the remaining components of r
0

, for every (i, j) such that 
g (x)+g (x)=K (X)=O, if any, are arbitrary. 

I j I J 
(9) The fact that all results for the consistency of real 

(symmetric, Riemannian) metrics and linear transports along paths 
are true mutatis mutandis also in the case of Hermitian metrics is 
not random. In fact, if we denote by h:x~hx, xeB an arbitrary 
Hermitian metric in the complex vector bundle (E,n,B), then 

1 T 1 T . _r-;;;o g=Re(h)=z(h+h ), w=Im(hl=zr(h-h ), l=+v-1, (5.5) 

where h T (u, v): =h (v, u), :n:(u)=:n:(v)=x, define, respectively, syrnrne-x X 

tric (Riemannian) and symplectic metrics in (E,:n:,B)._ The definition 
of h is equivalent to the definition of g or w, which is a coral-
lary from, 

w (U,v)=g (u,Jv), 
X X ( 5. 6) 

where the complex structure 3 on (E,:n:,B) is defined by Ju=iu. It is 
~mportant to note that 

h=ho(JxJ), g=go(JXJ), w=wo(JXJ), (5.7) 

Due to this the definition of an arbitra:y symmetric (complex) 
metric g with the property g=go(JxJ) allows a Hermitian metric h= 
=g+igo(idExJ) to be introduced. (In· [12] g itself is called a Her­
mitian metric.) The existence of g with the needed property follows 
from the known fact that if g

0 
is a symmetric m~tric, then the met­

ric g
0
+g

0
o(JxJ) has the pointed property. 

Namely the fact that the definition of a Hermitian metric h is 
equivalent to the definition of a· symmetric metric g with the pro­
perty g=go(JxJ) is the reason that any result concerning symmetric 
metrics can be formulated mutatis mutandis also for Hermitian 
metrics. 

The above connections between Hermitian, Riemannian and sym­
plectic metrics are not new and, for instance, can be found in the 
article "Hermitian MetriC" in '[13]. 

( 10) The presented here material admits a generalization con­
cerning arbitrary transports al.ong paths in fibre bundles and bundle 
morphisms between them which will be a subject of other work. 
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npHHHM3CTCSI flO,AOHCKCI HCI npenpHHTbl 1 C0061.1.lCHHSI 06bC,Il,HHCHHOf0 
HHCTHTyTa Sl,!l.CpHblX HCCJIC.O,OBUHHH H «KpaTKHe C006W.eHHSJ QJ.15111». 

YcT8HOBJICH8 CJIC.AYK>I.l.ltlSI CTOHMOCTb flO,llOHCKH Htl 12 MeCRll,eB Ha H3,ll8HHSI 
Ol15Uf, BKJJJOll3st nepeChiJJKy, no oTAeJJhHbiM TeMHTH\ICCKHM KaTeropHSJM: 

11Ht~eKc TeMaTHKU 

1. 3KcnepHMCHTanbH3Sl cJ>u3HK8 BbiCOKHX 3HeprHA 

2. TeopeTH':IecKaSI q,usnKa BbiCOKHX 3HepruH 

3. 3KcnepuMeHTan&H8SI ueiiTpouua~ cpuauxa 

4. TeopernqecKaR cpusuxa HH3KHX.3HeprnH 

5. MaTeMaTnKa 

6 . .sl.AepHaSI cneKTpOCKonuR u pa.AHOXHMHst 

7. <i>HauKa TSI)I(eJibJX HOHOB 

8. Kpuoreuuxa 

9. YCKOPHTe.nH 

10. AsToMaTusau.ust o6pa6oTKH 3KcnepHMCHTaJJ&HbiX .A3HHbtX 
11. Bhi'IHCJIHTeJibH3Sl MaTeMaTnKa u Te~uuxa 

12. XHMH~ 

13. Texuuxa cpuauqecxoro 3KCnepuMeHTa 

lJ.eHa DO,Il,OHCKH 

H8 fO):( 

915 p. 

2470 p. 

365p. 

735p. 

460p. 

275p. 

185 p. 

185 p. 

460p, 
560 p. 

560p. 

90 p. 

720p. 
14. J1CCJJC)lOB3HHSI TBCPAbJX TCJI H JKH,llKOCTeH SIACPHhiMH MCTO,llUMH 460 p. 
15. 3KCnepHMCHT3JibH3SJ $H3HK.!.l SI,ACpHblX pe3K:U.HH 

npH HH3KHX 3HeprHSJX 

16. Jl.03HMCTpHS1 H Q>H3HKU 3UlllHTbl 

17. TeopHst KOH,Il,eHCHpOBaHHOfO COCTOSIHHSI 

18. J.1'cnOJJb3083HHC .pesyJJ&TIITOB 

H ,MeTO)l.OB <I>YHJl.UMCHTIIJJbHblX <f>H3H\ICCKHX HCCJJe,AOBUHHH 
B CMC)I(HbiX 06JI3CTSIX H3YKH H TCXHHKH 

19. Bno<!>H3HKa 

«KpaTKHe C006l!leHH» 0115111> (6.BbiOYCKOB) 

no)J.ITHCK3 MO::«eT 6b1Tb oq,opMJJCHU C mo6oro MCCSIU3 ro.na. 

460p. 

90p. 

365 p. 

90p. 

185 p. 

560 p. 

ilo BCCM BODpOcaM O<f>OpMJJCHHSI ITO,Il,DHCKH CJIC.AYCT o6p3lll3TbCS1 8 H3.A3-
Te.JibCKTHH OTAe.JI 0115111110 a.npecy: 141980, r.,Qy6Ha, MOCKOBCKOH 06JlUCTH 


