


1. INTRODUCTION

The present work investigates certain connections between
linear transports along paihsAand bundle meétrics, defined on one
and the same vector bundle.‘yhich_arise from the question of their
consistency. More precisely, we shall consider the following main
problem. '

Let {E,n,B) be a real vector bundle with a base B, . total bun-
dle space E and projectlon n: E-——aB [1] let g be a bundle metric
on it {7], i.e. it .is a. map g.xy—fegx x€B, wherg'the map '

gx;n-r(x)ym;f(x) ;feﬂ§ "‘4” o C I ‘f\ '(i;i?.
is bilinear, nondegenerate and symmetric for every x€B. By defini-
tion the scalar product of‘u,vefd(x)'is uov:=gx(u,v). xeB, Let L
be a linear transport {L-transport) along paths in (E,n,B), i.el if
y:J ——B, J being an arbitrary real interval, is a.-path in B,: then
L:y——L¥, where LY is the L-transport aleng » and L%:(s,t)—>
'p——+L7;_ﬁL' s,teJ is the L—transpor£ along ¥ from 5 to t habing the
described in [2] properties. '

.Defxnxtxon 4.1, The.transport.along paths L and the bundle
metric g are consistent (resp. along a path y:J——B) if L preserves
the scalar products of the vectors along every (resp. along'the
given) path 7:J—B, i.e. if the scalar product of u,ver '(y(8)),
seJ is equal to the scalar product of the vectors obtained from u
and v by L- transportatlon along ¥ at an arbitrary p01nt x(t) ;EJ:

(L u, ¥ v), s,tel. (1.2)

(U V) =d a—t gt

?tsl Fit)

Due to the arbitrariness of i and v and the nondegeneracy of g
the equality (1.2) is equivalent to

o(L w7 ), s,tel. ‘ , (1.3)

g s—)l’. s——

i " Tpeen

Important examples for transports along paths (in this case
along curves) cons1stent w1th some metrlc are the parallel and
Fermi-Walker transports 1n a Riemannian manlfold which are consis-—
tent wlth the defining them Rlemannian metric. This is proved, for
1nstance, in [3,4] (see also below sectlon 3).

The purpose of this work is to find necessary and/for suffiw
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cient conditions for consistency, or one may say compatibility, be-
tween L-transports along paths and bundle metrics. Analogous prob-
lems have been investigated (in a slightly different notation) in
[5], where they were studied in the special case of the tangent
bundle to a differentiable manifold.

The organization of the material is the following. In Sect. 2
attention is focussed on finding necessary and/or sufficient condi-
tions for local {i.e. along a fixed path) or -global (i.e. along any
path) consistency between L-transports along paths and real bundie
metrics. Alsc the corresponding problems of existence are consi-
dered. In Sect. 3 are investigated problemse of consistency concer-
ning the speéific case of generated by derivations of tensor algeb-
ras L-transports of vectors. In Sect. 4 the results of Sect. 2 are
transferred to complex vector bhundles endowed with Hermitian bundle
metrics. Some remarks on the presented in this paper material are
made in Sect, 5.

At the end of this 1ntroductlon we shall note that in a field
of bases {e!.fl 1,...,dim(x (x)), %€B} along a path 7y:J—B, J
being an arbitrary R-interval, any L-transport along ¢ from s to t,

s,teJ is uniquely characterized by its matrix H(t,s;y):HHfj(t.s;w)I

Hereafter the Latin indices run from 1 to n:=dim(nq(x)), xeB and
further the usual summation rule from 1 to n is assumed over the
repeated on different levels indices. The general form of H(t,s;7)

is
H(t,si17)=F ' (t;9)F(s;7) ' Co(1.a)

for a nondegenerate matrix function F, defined up to a left multi-
plication with a nondegenerate matrix depending only on 7, i.e. up
toe the transformation

F(s;7) —D{¥)F(s;7), det(D())#0,. _ (1.5)

For further details of notation aﬁd results concerning L-tran-
sports along paths in vector bundles the reader is referred to [2].

2, GENERAL CONDITIONS FOR CONSISTENCY

Let in the real vector bundle (E,n,B) be given an L—t}ansport
along paths L and a real bundle metric g. Let 7:J—sB and in every
fibre = '(y(s)), seJ be fixed a basis {e (s): i=1,...,n=

2

=dim{n (x)), ®€B}. Let in {e } the transport LT . along 7 from s
to t be given by its matrix H(t s,y)-"H (t s,y)ﬁ [21.
The components of the metric g in {el(s)} at y(s) are

)

(g?(s) ;J‘ x(a

(e (s),e (s)) (2.1)

Let  G(z(s)):=f(g,,),,I. The ﬁondegeneracy of g means
det(G(7(s)))#0,0, s&J, and 1ts symmetry - a’ (7(3))-G(w(s)), éeJ,
where the superscrlpt T means a transp051t1on of matrices. '

Propos;tlon 2.1. A necessary and sufficient condltlon for a
global (resp. local) cons1stency between a bundle metric g and an
L- transport along paths Lis =

G(V(S))=H'(t.S;ar)G(a'(t))H(t,s:ar), s, teJ - : (2.2)

for every (resp. for the given) path r: J—B.

Proof. If u—u e, (s) and v=v' e, (s) (a summatien from 1 to n is
understood over repeated on dlfferent levels indices) are vectors
from'n (g(s)), then, due to the bilinearity of thé metric, we have

=utyd
(u,v)=u'v Tyeer (8 (8) e (s))=u'v(g

). ‘ (2.3)

s ¥is)’1g

Substituting this equality into (1.2) and taking into account. the
linearity of L, the definition of its matrix H [2), and the arbi-
trariness of u and v, we see (1.2) to be equivalent to

(g

)y, “(t,s59)(g ]'(t.s;?), : (2.4)

T(=) T(t)

which is simply a component form of (2 2).m

U51ng the general form of the matrices of L—transports along
paths, which is given by (1. 4), we can "simplify" (2.2) by putting
it into "one point" form which is the contents of

Proposition 2.2.. If the nondegenerate matrix function F(s;7)
defines the L-transport along paths L by (1.4), theﬁ a necessary
and sufficient condition for a global (resp. local) consistency of
L with the bundle metric g is the existence of a nondegenerate,
symmetric (resp. and constant) matrix function C of 7 such that

(F'(s:0)) T6(a(s)F  (si9)=C(n),. seJ, c'=c. _ (2.5)

Proof. Substituting (1.4) into (2.2) and multiplying the so
obtained equality on the left by (F '(s;7r))’ and on the right by
F'(s;7), we find that (2.2) is equivalent to ‘
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(FH(s:9)) TG F  (si0)=(F (1)) TG (r (£ F ! (t3). (2.6)

If the metric and transport are consistent, we can put here
t=t  for a fixed t €J, so we get (2. 5) with C(y)=(F (t ,7)) x
xG(y(to))F (to.y), be51des c’=C due to G'=G. On the contrary. if
(2.5) is fulfilled, then (2.6) is identically valid and, conse-
quently, (2.2) is also true. From here we conclude that (2.2) and
‘(2.6) are equivalent, i.e. propositions 2.1 and 2.2 are equivalent,
the former of which was already proved.m

The arbitrariness in the choice of F is described by the tran-
sformation (1.5). As a consequence of this the matrix C(7y) in (2.5)
is also not uniquely- defined. Evidently;“the above transformation
leads to C(7)+—{D Y (7))TC(#)D"*{s). It is easy to check the
validity of the inverse to this statement, i.e. we have

F(s;7) —sD(#)F(si7) & C(3)—(D (1)) (D (7). (2.7)

At this place naturally arises the question when and under
what conditions there exist bundle metrics (resp. transports along
paths)} which are consistent with a ~given transport along ‘paths
(resp. bundle metric). This question can be put in twe variants:
global, when coﬂsistency along every path is investigated, and
local, when consistency aloﬁg a given path is studied. The follow-
ing propositions give a solution of the above qoestion from diffe-
rent viewpoints. -

Proposition 2.3. If an L-transport along paths is oefined by
the matrix function F through (1.4), then any consistent with it
along y:J—B bundle metric along r has a matrix of the form

G(r(s);9)=(F(s;7)) C(#)F(s;7), seJ, ¢'=C, (2.8)

where C(7) is nondegenerate, symmetric and depending on y matrix.

Proof. This proposition is a corellary from proposition 2.2:
in fact (2.8) is the general solution of (2.5) with respect to G
when F is given.m

Proposition 2.3 shows that locally, i.e. along a given path,
every L-transport along paths defines (see (2.8)) a unique class of
consistent aiong that path with it metrics, uniquely defined only
on the same path. The global variant of this problem is more diffi-
cult and will be treated below in preposition 2.6.

Proposition 2.4, A necessary and sufficient condition for the
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existence of globally (resp. locally) consistent with a given
bundie metric L-transport along paths is the independence of the
signature of the bundle metric, i.e. of the matrix G{x), from the
peint of the base B (resp. the path of transport) at wh1ch it is
evaluated, i.e. from xe€B (resp. xer(J)).

Remark. If p(x) and g(x) are the numbers, respectively, of the
positive and negative eigenvalues of G(x), the signature of G(x) is
s(x):=p(x)-g(x) (see [6]). The proposition states that the bundle
metrlc admits a (globally or 1locally) consistent with it L-
transport along paths iff s{x)=const, which dué to- p(x)+g({x)=n:=

—dlm(u (x)), XeB is. equ;valent to p(x)=const. and/or q{x)=const,
i.e. to the independence of the number of the Dosxt1ve (neaatxve)
e1genvalues.of the»met;}c from the p01nt at whlch they are eva—
luated, v - . S

“" Proof. Let the bundie metric of (E n B) be (globally or loca—
lly) ‘consistent with an L transport along paths descr1bed 1n some
basis along y: J—B by ‘the matrix F (s,r) through (1 4) (w1th
F= F ). Then, by propos1t1on 2. 2 there ex1sts a nondegenerate and
symmetrlc matrix € (y) such that (s 7)) G(w(S))F"(s )3
=C (1), s€J. Because of C (7)-0 () there ex;sts an orthogonal ma-
tr1x D (#) for which D (1)C (1)D (v) 1s gons;an diagonal matrix
[6].: Then {see (1.5) and {2 7)) ‘the matrix F(s ¥):=D, (r)F (s;7)
describes the same L= transport and due to the 1ast equalxty it sa-
tisfies (2.8%) with c(r)-n (r)C (r)n (r diag(c ,...,c ). € ,.;..c €
€R. This means that in (2 5) the matrix F{s; 7) may be chosen in
such a way as C{7) to be a constant diagonal nmtr1x. If such a
choice is already made, then. due to (2.5}, G(r(s)) with the help
of a trahsformation of a form D G(w(s))D, where D=F"}(s;7), can be
transformed into the diagonal matrix d1ag(c .....c ) wh1ch does not
depend either on z{s) or on 7. On the other hand as G —G there
exists an orthogonal matrix Dl(w(s)) such that

D, (7(s))>G(x(s))D, (v(s))=diag(g, (s(s)),...,g_(s(s))),

where g (7(s))#0,m, i=1,...,n are the eigenvalues of G(z(s)) [6].
From the last two results, as a consequence of the Jacobi-Sylvester
inertia law [6], it follows that the number P of the positive and

‘the number g=n-p of the- negat1ve eigenvalues “of G(w(s)), i.e. of

the bundle metric, are equal respectively, ‘to the humber of p051-
tive and negative diagonal elements of D G(w(s)?D dlag(c ,...,c )=
=const. Consequently the numbers p and q(=n-p) do not depend on the'
point #(s), s€J in the local case (consistency along a path) or on
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the point of B inAthe-global case at which they are calculated,
i.e. the signature of the bundle metric is s=p—qz=const.

On the contrary, let in (E,n;B) be given a bundle metric g
whose signature s=p-qg, and consequently, the number p of its posi-
tive and the number g=n-p of its negative eigenvalues, do not de-
pend on the point x at which they are calculated (x<B in the global
case or xe€y(J) in the local case for some path y; J—sB). Because of

e =g there exists an orthoegonal matrix D (%) such that D (x)G(x)x
XD, (x)= dlag(g (X),....g (%)), where g, (x)#ﬂ ©, i=1,...,n are the
elgenvalues of_G(x),[q] If we put

) (x)'-dlag(ig (x)]"’a,...,lg (K)I-lfz)

and D(x)'—D (x)D (x),- then due to the above accentance
b’ (x)G(x)D(x)-d;ag(el....,c ), where p of ‘the numbers c:""'e are
equal to +1, the rema1n1ng 9=n-p ones be;ng equal to -1. Then from
propos;tlon 2 2’ for C(r) dlag(e....,c )—const (see also (2 5)) and
(1.2) for F(s v) (D(w(s))) ﬁ sel for every path 71 J—B (global
case) Jor for some path 7! J—an (1oca1 case), we conclude that the
glven bundle metr;c 1s.;respect1ve1y. globally or locally con51s—
tent w1th the L- transport along paths defined by the matrlx (1 4)
with the above deflnltlon of F.m

The next propositzon describes the general form and the way of

ue gnf

construct;on of L- transports along paths consistent with a glven
bundle metric adm:ttlng such transports along paths.

Proposxt1on 2, 5. Let in (E,n,B) be given a bundle metric whose
signature does not depend on the point y(s) at which it is evalua-—
ted for every (resp. some) path y:J—sB. Let there be chosen bases
{e {(s)}, seJ along 7 in such a way that the first p eigenvalues of
the matrix G(r(s)). deflnlng the metric in them (see (2. 1)), be po-
sitive. Then one L-transport along paths is con31stent with this

bundle metric along every (resp. a given) path ¥ if and only if

some of the deflnlng its matrix (1.4) matrix functions F has the
form '

F(2;9)=Y(9)Z(s; ¥} (D{x(s))) "}, seJ (2.9)

for every (resp. the given) path r. In this equality: Y{z) is nxn
nondegenerate matrix function qf ¥i.Z{s;7)- is a pseudo~orthogonal
matrix of type (p,q), g=n-p, i.e. 2Z(s;y)e0(p,q), or

(2.10)

(Z(s;r))TGp’qZ(s;7)=Gp'q:=diag(1,...,1,—1,...,—1)
' ‘-—-—V——J k——v-———_;
P times g tlmes
and D(y(s)) is a fixed {orthogonal) matrix such that
(D(r(S)))TG(z(S))D(ar(s))=Gp,q (2.11)

-Remark The case when in some basis not all of the first p
eigenvalues of the bundle metric are positive is obtained from the
above cne by transformation {renumbering) of the basis {e {s)}.

Proof. To prove the necessity we have to solve the equatlon
(2.5), when G and C are given,- with respect to F(s;7). From @'=c
the choice of. {e {s)} and the 1ndependence of p and’ q=n-p from y(s)
{because of’ p-q— =const) follows the existence of--a"satisfyihg
(2.11) matrix" D{y(s)):: e. g. we can ‘put’ D{y(s))=D (1(5))D (7({=s)),
where-* D and D were defined in the- proof of prop051t10n 2.4' T

Let F(s; a-)_ F (s.w)(n(v(s))) - From {2.5) and (2.11), wé ‘get

(F (s,?)) Gp' F (s.v)-C(r) Puttlng here CF ,{sin)= Y(?)Z(S,?):
where Y(r) is arbltrary nondegenerate matrix for whlch (Y(3)} Telr)x
xY(r)-Gp J we see that Z(s;y) sat1sf1es (2. 10) (The exzstence of
¥(y) follows from (2.5): from it and the law of Jacobi- Sylvester
it follows that C{¥) has p positive eigenvalues, due to which the
needed matrix Y(y), which is orthogonal, exists [6]. ). All: that pro-—
ves that F(s; 7) has the form (2.9) if .the considered L- ~-transport
along paths is consistent along every (resp some) path y with the
given bundle metric, [ .

On the contrary, the sufficiency of the proposition is almost
evident: if (2.9) is valid, then it is easy -to check the validity
of (2.5) for C(y)= (Yq(w)) G Y '(¥) and according to proposition
2.2 the L- -transport along paths and the bundle metric are consis-
tent along every (resp. some) path 7. [ ] ‘

Corellary 2.1. For a given . L-transport along paths L there
locally exists a consistent with it- along 7 bundle metric if and
only if along y exists a basis in which the defining it by (1.4)
matrix F(s:;r) has the form (2.9), in wh1ch Y(r) and D(s;y) are
arbitrary nxn nondegenerate matrices and Z7 (s; g)G - Z(s,y) Gp.q for
some p,qz0, p+g=n which may depend on.y, -

Proof. If along 7 there exists a consistent with L bundle
metric g, then' the expansion (2.9) follows from proposition 2.5.
Conversely, if (2.9) is valid, then substituting (2.9%) inte (2.8),



we get, in accordance with proposition 2.3, a class of consistent

with L along 7 metrics defined aleng 7. In particular, choosing Y
. T :

and C in such a way that Y CY-—-Gp o Ve obtain

?

G(x(s)in)=((D(x(s)))7")E  (D(3(s)))"",

where p and q may depend on y.m

Now we shall go back to the question of the global existence
of a bundle metric globally consistent with a given L-transport
along paths (see the comment after the proof of proposition 2.3).

Proposition 2.6. A necessary and sufficient condition for the
existence of globally consistent with a given L-transport along
paths bundle metrics is the existence of a local- basis along any
path-y:J—B in- which the matrix F(s;y), defining this transport
along. T:J;—ﬁﬁ DYy (1.4}; has- the, form {(2.9)--in which: Y¥(7). and
D(wts)) are arbitrary nondegenerate roam matrices. and: Z(s;y) is:a
pseudﬁQOrthogonal matrix-of type (p,q), with .- p+g=n. Besides, - if
for a given L-transport along paths are fulfilled these conditions,
then in the above mentioned bases all globa}ly consistent with the
L-transport along pathg;pundlgrmetfics are Qg{}pee by the matrix

SN =N ™G, (Bxte)) ™, , (2.12)

which depends only on theé point 7{s), but not on the path 7.

Proof. Let there be given an L-transport along paths for which
there exists a globally consistent with it bundle metric., Now we
shall prove that under this condition is fulfilled an equalitg like
(2.9). In arbitrary bases along every path y this L-transport along
7 defines a class of consistent with it bundle metrics along v
which are defined by (2.8). Let in (2.8) the matrix C{y) have k(7)
positive and 1(#}=n-k(7) negative eigenvalues. Then (see [6]) there
exists a matrix Y(y) such that YT(v)C(r)Y(1)=G as a con-
sequence of which {2.8) can be represented as

k(g i’

Glr(s)in=F (i (¥ a6, )0 Y HF(sin).

If the consistent with an L-transport along paths metric, which by
assumption exists, is described in some basis with the matrix Go(x)
having for every x€B p positive and g=n-p negative eigenvalues,
then by proposition 2.3 along 7 thiz bundle metric belongs to the
above class of bundle metrics and, hence, there exists a matrix
YO(T) (or the corresponding matrix Co(r); see (2.8)) such that
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e YT T f e -1 T -1 .
G (¥(s):i7)=F (S.ar)(Yo (7)) Gkow,’law,Yo (r)F(s:¥).

From here, due to the Jacobi-Sylvester law [6}, it follows that
ko(7)=p=const and lo(r)=n—p=const. If we. put F(s;y)::Yo(y}x
xzo(s;w)Dgi(w(s)). where D (x) is a matrix for which D:(x)Go(x)x
xDo(x):=Gp,q. X€B {6], then from the same equality, we see that

- -1, T, T N . -1
Go(w('S))—(.(Du(;_(S))) )‘Zn(s,v)Gp_qzu(S.a’)(Do(ﬂS))) .

From here, as a consequence of the definition of D,. we conclude
that Zo(s;r) is a pseudo-orthogonal - matrix of.,type (p.q)‘_(seg
(2.10)).- This result proves the sxistence of a-.representation like
(2.9) for the-considered—Lftransport along paths.. . PR '

The sufficiency of the proposition is almost evident.. In fact,
if (2.9}, is -, valid . for one\,L—transporpula;pnq Paths, . then
substituting ¢2.9). into (2.8),  we see the class of consistent with

it along 7 bundle metrics to be defined by
G(r(s) :?)é_((D(.—r(sr)))"')?ZT(S:r)Y_T(T)G(r)Y(w)Z(S;z)(D(r(s‘)))'_l,r

where C(y) is nondegenerate, symnetric (€7=C) matrix of type nxn,
which plays a role of a parameter whose change describes the consi-
dered class of bundle metrics along y. If P and g are arbitrary
nonnegative iniegers and p+g=n, then, due to the last equality and
(2.10), the choice o ’ '

D= Y (=T

defines a set of n+1 (resp. for p=0}-t.}. ,b:ﬁf‘Q:n-p) bundle me-
trics along 7, given by the equality

G(?(S);7:p.q)=(D"(7(S)))TGPIqD'I(r(s)) o (2.127)

and, evidently, depending only on the peint y(s), but not on the
map 7:J-—sB. Consequently these bundle metrics are globally consis-
tent with the given L-transport along paths.m



3. THE CASE OF GENERATED BY DERIVATIONS OF TENSOR
ALGEBRAS LINEAR TRANSPORTS OF VECTORS

fn this section we shall concentrate cur attention on the tan-
gent bundle (T(M},n,M) of a given manifold M. In parti?ular we are
going to consider in it some special questions COﬁcernlng the con-
sistency of bundle metrics and S-transports {linear transports
along paths generated by derivations of tensor algebras.[s]{ of
vectors along (smooth) paths. In this case the bundle metric g is a
nondegenerate symmetric section (tensor fie;d) of typg (0,2): The
bundle metrics in this fibre bundlg are used to be called751m?1y
metrics [3,7], because of which the adjective "bundle", as.ép?lléd
to metric(s), will be omitted till theé end of. the“prgsent s§?t¥9?1

The details concernirig S-transports along paths and the%r pro-

perties can'be found in [8].- . .
In accordance with definition- 1.1 the metric g and thg_

transport S7 along y:J—M are (locally) consistent along 7 1f =

(s¥ a,s? B), s, tel (3.1)

gﬂs)(ho'aokgﬂn s—3t o'?.:—n o

for every'A ,B‘éT (;(H). Thé metric and the S-transport are (glo-
o o ¥i= . : + .
bally) consistent if this equality is fulfilled for every path 7
-- Proposition 3.1. The ¢l metric. g and the S-transport S. are
consistent {resp. along a given path 7) iff the‘equa;1ty :
- - (3.2)

a¥ s,teJ'

e N, ML
is valid for every (resp. the given) path 7. .
A ) . .
Proof. Using the contracticn operator Ci_on the first supe
script and the first subscript, we find

g(a,B)=(C})*(AegeB), A,BeSec(T(M),,M). (3.3)

If we apply s? to (3.1} and take into account (3.3), the pro-
t—=3s . .
perties of the S-transports [8], and the arbitrariness of'Ao apd
5.1) is’ i ' =s¥ - which, due

Bo, we get that (3.1) is equ;valent po gﬂs)_st i P
to the arbitrariness of s,tel, is equivalent to (3.2).® ’

Let us note that by definition 5.1 from [8] the equality (3.2)
means thét the metric g is {(S-)transported along y section, hence
proposition 3.1 is equivalent to

Proposition 3.1’. The ¢! metric g and an S-transport S are

consistent (resp. along a given path ») iff g is S-transported

along every (resp. the given) path y section.
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Proposition 3.2,

The S~transport s?¥

tent along 7 with the ¢! metric g iff

where D%

(D"g)(r(S))=ng=o. seJ,

Proof.

is the defined by or definin
algebra over x(J) according to [8},
This proposition is a conse

and proposition 5.3, of {9].m

The equality (3.4) is useful angd e

(3.4)

g s? derivation of the tensor
proposition 8. .
quence of proposition 3.1

ffective tool for practical

check of the question of consistency of S-transports and ¢! met{

ries.,

(cf, [2], Sect.

A typical,exampleﬁfor this is the Ri
port (in (pseudo-)Riemann
Levi-Cevita connhection and f

7:J—>M are introduced bases {E
Trey(¥) to M at 5(s); seJ in wni
from the matrix G(r(s)) with compo

¥ and the S-transport s7
- Yol
the matrix rf(s)._lr_J(s

{Ez} {see [2,8]).

Proposition 3.3,

or which (3.4)
EJ. 4]; inrthis case V;}g=0, where V;}

T
5), the eg. (3.4) holds identically,
Riemannian manifolds the connection f

ric preserving as it preserves the sc
transported with itg help vectors alo
For some purposes it is convenient to writ
(3.2) and (3.4) in local coordinates.

emannian parallel trans-
ﬁag'manifglds} which is defined ffom_thé
is identically satisfied
is the defined by the Cris-

In (pseudo-)
or which ngzo is calied met-
alar product of the (parallel)
ng any path [ 10},
e the cdnditions
For this goal aleng a path

||7(s)} in the tangent spaces

ch the metric along 7y is given

nents (2.1), and the derivation

along r are described with the help of
i7)| of the coefficients of ¥ and § in

. ‘
The €' metric g and the S—transpo:t S are

consistent {resp. along a given path ¥} iff one of the following
two equalities is valiaq

where Y is the sclution of the initial

SNVt 8ir, IO Y (e s Ty, s, ey,

dG{7(s))
ds

- G(v(S))P7(S)-— r}(S)G(T(S))=0. sed,

for every (resp. the given) path ».
are'equivalent between each other
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(3.5)

(3.6)

=value problem (3.9) of (8],

The equalities (3.5) and (3.6)

as well as,

respectively,

te

along 7:J-—M is consis-

’



(3.2) and (3.4). Besides, (3.5) is the general solution of (3.6)
with respect to G. . -

Proof. With the help of (3.4), (2.16) and [8], eg. (3.8) it is
easy to check that in the chosen bases (3.5) and (3.6) are compo-
nent form in matrix notation of (3.2) and (3.4) respectively and,’
consequently, {(3.53) and {(3.6) are equivalent, respectively, to
(3.2) and (3.4). From here and propositions 3.1 and 3.2 follows the
first part of the proposition. From the same propositions follows
also the equlvalence of (3.2) and (3.4), and hence‘the eQuiveience
of (3.5) and (3.6). 1If we look on (3 6) as an equatlon with respect
to G (resp along 1), then from the definition of 'Y "jt is clear
that its general solution is given by (3 5) in which s has to be
fxxed and G(z(s)) must be replaced w;th an’ arbltrary constant
matr1x C (resp. a matrzx funcition L\r; ‘of ¥ : ' o

Propos;tion 3. 4. If in a g1Ven basis one S transport zs de-
fined by the matrlx l‘r of its coefflcients and ‘the metric g - by
the matr1x @, then the S- transport and the metrlc are “consistent
(resp. along a glven path, 7) iff there exists a nondegenerate
symmetrlc matrix C(y) such that T

Y(sg,siT, TYGl#(s))Y(s, 53T, )= c(r)-c (1) f ‘ (3.7

for Y defined in [8], eq. (3.9}, seJ. flxed 5, eJ and every (resp
the given) path 7. - )

Proof. According to the proof of proposltlon 3.4 of [8] the
S—transport is unlquely defined by the matrices o

F(s;7)=Y(s BT SE S ICIERE ) sed L (3.9)

through {1.4). Substituting (3.8) into {2.5) {(with the help’of'the
properties of Y), we get (3.7), whlch shows that proposition 3. 4 is
a special case of proposition 2.2.m

Proposition 3.5, If an S-transport is fixed in a given basis
through the matrix F , then any consistent along 7: J——eH with it
metric is obtained in the same basis by the formula

G(r(8)im)=¥(s5, 5,7, IC(N¥(5,,8i-T), ' SR

«here Y is defined in [8], eq. (3.9); s,eJ is fixed and C(z) is
nondegenerate symmetric matrix. A necessary condition - for the
obtained by this formula metrics to be globally consistent with the
initial S-transport is C(y} to be independent of 7, i.e.

C{y)=const. 12

Proof. The first part of the propesition follows, analogously
to the proof of propesition 3.4., from proposition 2.3 for F(s;7)=
=Y(s0.s;—rv) and the fact that (3.9) is the general solution of
(3.6) with respect to G (see proposition 3.3). The second part of
the proposition follows from the circumstance that if in (3.9) we
put s=s., we get

G(r(s)in)=C{r). . - . . S L (3.10)

Hence._1f the given by (3 9) metrics and  the deflned by’ r é—
transport are (globally) consistent then C(w) will not depend on 7.
as G(r(s ),1) is 51mp1y the value of the matrxx G(x). which repre—
gente ] 4n *he n;xe" b_sﬁs_ at +hn nolnt *rs ), b"+ auiﬂ ntly,
G(?(s )) does not depend on 7.8 ' e S
Proposxtlon 3.6, Let y:J—M be a ct path and g be a C metrlc
(resp._along 7} which in a basis {E |?‘)} along 7 is represented by
the matrix’ G(x), xex(J), whose s1gnature does not depend on the
point x. Let D(x) be an orthogonal matrxx such that E6]

D' (X)G(X)D(x)=G(x):=diag(gz(x),....g (x)), DT=D"," AR E TS
Where gl(x)#o,m, i=1,...,n are the eigenvalues or G(r) and
-+ K(x(s)):=DT(x(s)) - 9E(ILN), D(r(2))=K"(x(a)), sel. - '(3.i2>

Then in a considered basls the matrlx iy (s) of the ooeffl—

cients of all consistent (resp. along 7) w1th the metrxc g S—;
transports has the form- |

T,(8)=D() [P(x)+Q(x)E(x)4R(x) 10 (%) = _ -
¥=D(X)F?(#)fk(x)IDT(X)fD(X)Q(X{DT(X)Gtﬁ);Vx=g(sl;.;eréth.(3.l3};
where the matrices P, Q, R have.theifollowing synmetriesfn

P’ =P == L. ‘ . .  14a
, Q' =-q, R'=-R e (3.14a)

and their components are:

13



Q”(x):

It
[w]

for g, {x)+g,(x)=0, (3.14b)
R (x):=K (x)/2g, (x),

P‘J(x):=Klj(x)/(gl(x)+gj(x)), .
for g,(x)+g (x)%0, (3.14c)

R (x)::o,

the remaining of which can be chosen arbitrarily (only if (3.14a)
are satisfied).
Proof. In fact we have to prove that (3 .13) is the general
solution of (3. 6) along y with respect tor when G is glven.
" Multiplying (3.8) on the left by D (y(ws)) and on the r1§ht by
b(z(s)), and using (3.11), we get )

LTI

.+ Gr+F@=K, - < : : : ’ (3.15)
where r"-D I‘ D and here.. as well .as below in this proof for
brev:.ty we cmut everywhere the arguments s and 7{(s), seJ. When
written in component - form (see (3.11)) this equation will be

equivalent to

gl!‘”+gjl"“=KU. , - (3.15)
(Do not sum here over i and iy -
Let us consider the paJ.rs (i,3) for which g, ‘+g =0. Then

(3.15") reduces to 9, (I‘ I‘ ) K . hence we can f1nd only the
ant:.symmetrlc part. of the element. I‘ 'y So, using the identity
” 2(1" +I‘ )+-(I' -f‘ ). we get I‘ =p +Q g, where R :=
k. /2 1) 11 15%" 13’
HE g = —R“, 0y —Q =0 and the quant:Ltles P :=P are arbi-

trary. H

Now we shall consider the pairs (i,j) for which g, +g #0. In
this case we define the quantitles P P“, i.e. the remalmng
components of -the matrix P=P', . as the symmetric solution of the

equation (3.15-), i.e. g,P, ng“— ,y+ and hence PIJ=KU/{91+91)=

=Pn Then, if we put l" = P Q“gj+ 'y R;j:=—le:=0, we see that
(3.15-) reduces to Q +Q 0, i.e. the only restriction on the
quantities Q is thezr antlsymmetry

Thus we proved that r= P+QG+R where P, Q and R are deflned by
(3.14), is the general solution of (3, 15) w1th respect to 1‘--D r .
From here it follows that T -(D )"Il‘D -Dl‘D is given by (3.13) and

it is the general solution of (3.6) with respect to rr‘.
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4. CORSISTENCY BETWEEN LINEAR TRANSPORTS ALONG PATHS
AND HERMITIAN BUNDLE METRICS

In this section with (E,n,B) is denoted an arbitrary complex

vector bundle [1,11].
By a Hermitian. bundle metric g in (E,7,B) we understand (see
[1] and [11], ch. I, §8) a map g: X—g , x€B, where the maps

g, 1t () () —sC e _ g4‘.15

have the properties: ,1% linearityf nondegeneracy. and Hermiticity,

i.e; -
gxéml-v,v_f):;-:é;;('u,'w)+gx(v..w),' e, vi,:we;w"(és.. : - - _(-4.2‘6)
- gx(lu;uv);iﬁg;(u,v);‘Agpec, ﬁ,yen"(x),: . - i ‘lg.ée)
g (u,v)#0 for u.vfoen'lfx), A : (4 2%:)
g (u,v)=g_(vV;u), A oo (a2

where the bar over a complex number or a .matrix means complex
conjugation. In this definition we neglect the usual [11] condition
gx(u.u)>0 for u#0 as insignificént for the following investigation.
The studied below L-transports along paths in the compléx vec-—
tor bundle (E,n,B) are supposed to be C-linear (cf. [2], Sect. 2 or
[14], Subsect. 2.3). ST
Evidently, in the real case,. i.e. . when € is replaced with R, a
Hermitian bundle metric reduces to the defined in section 1 real
bundle metric. Therefore any result for Hermitian bundle metrics is
also valid for real bundle metrics. The contrary is mutatis mutan-
dis true, i.e. with certain changes in the formulatlons of the de-
finitions and proposltlons of sections 1 and 2 they remaln valid
also in the Hermitian case. The present sectlon ‘is intended for the
description of these changes. ‘
" The basic definition 1.1 row reads.
. Definition 4.1. The linear transport along paths L and the Her-
mitian bundle metric g are called consistent (resp. along'the’path

o
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¥) if L preserve the Hermitian scalar products of the vectors along
every (resp. along the given) path 7:J—B, i.e. if

=g, . o(L¥ a7 }, s.ted (4.3)

g Fit) s—3t B r—3t

Tis=)

for every (resp. for the given) path 7.

Let y:J—B and in every fibre n '(y(s)), seJ be fixed a (com—
plex) basis {e (s): i=1....,n=dimc(n*(x)), x€B}, In them the L-
transport L:——ag along y from s to t is uniquely defined by its,
generally complex, matrix H(t.s;r)=|Hf;(t,s;7)ﬂ (see [2]); the met-
ric g at the  point (s} is defined ©by- the - matrix
G(y(s)): H(ggts) I i, j—l....,n—dim (z"*(¥(s)) with the defined
by (2.1) elements. In terms of G(q(s)) the nondegeneracv and Hermi—
tic1ty of g mean, respectively, det(G(w(s)))¢0 © and
c* (1(3))-G(7(s)), where # means Hermitian conjugation of matrices
(6*:=g" (G) see [6]), i.e. G is a nondegenerate: Hermitian matrix
function. This follows from the fact that if usu'e (s) and
v=v'el(s). then due to (4.2), we have

u'vlg, | (e (s),e,(s))=g,  (u,v)=3 “;jjt“‘?
)=VJ;Tg;(s)(eJ‘§}fel(s))' ‘ _V‘ . ] (?f?)
i.e._det[(gr( ) I#O and (gT",)iJ=Zg}(')5“.

. Below we present the analogs of propositions 2.1-2.6, respecti-
vely, Qith numbers 4.1-4.6 for Hermitian bundle metrics, : -=
Proposition 4.1. A necessary and sufficient condition for glo-
bal (resp. lodal) consistency of a Hermitian bundle metric g and an
L-transport along paths L is the equality

&T(r(s))=H"(t,s; )67 (2(t))H(L, s57), s, ted - - (4.5)

for every (resp. for a given) pat_h 7:J—B. 7
Proof. Applying (4.3) to (u,v), u,veB, using (4.4) and the
arbitrariness of (u,v), we get

- orr ey T 4l
(m,)HH (t,s;9)R [ (L,839), I - R

(9.0,

7is)"1)

. . . T =
from where taking a complex conjugate and taking inte account G' =@,
due to,G*;G, we obtain the component form of (4.5).m- d :

Proposition 4.2. If the nondegenerate (complex) matrix func-
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tion F(s;#) defines an L-transport along paths L by (1.4) then a
necessary and sufficient condition for the global (resp. 1local)
consistency of L with a Hermitian bundle metric g is the existence
of a nondegenerate Hermitian matrix function C of y, such that

(F 890 6T (a())F (s:9)=C(3), seJ,  c*=c (4.6)

for every (resp. a given) prath r.

Proof. The proof of this proposition is an exact copy of the
proof of proposition 2.2 and it reduces to the substitution of
{1.4) into (4.5) and the separation in the obtained equality the
terms at y(s) to the left of the equallty sign and those at y(t) -
to its right side.= '

As is known [2] the function F, appearing in’ (4.6), is defined
up to the transformation"(i 5), so the function-C in (4. 6) is not

‘uniquely defined and analogously to (2. 7) one finds the 1mp11catlon

F(si9) =D(NF(si5) & ) (D™ (1)) (D™ (). R

Proposition 4.3, If an L- transport along paths is deflned by
the matrix function F through '(1.4), then any consistent with it
a@long 7:J—B bundle Hermitian metric along 7 is given by

& (¥(s)i1)=(F(s;9) ) *ClaIF(s;7), sel, c*=c, (4.8)

where C is nondegenerate Hermitian matrix function of y.

'Proof, Solv1ng {4.6) with respect to G(r(s)), when F is fixed
and C is arbitrary, we get (4.8).m

Proposition 4.4, A necessary and sufficient condition for the
existence of globally (resp. locally) consistent w1th a given Her-
mitian bundle metric L- ~-transport along paths is the 1ndependence of
the signature {and consequently, of the number of positive (and/or
negative) eigenvalues) of that metrlc, i.e. of the matrix G(x),
from the point of the manifold M (resp. of the path) at which it is
evaluated, i.e., of xeB (resp. xey(J)).
' Procf. The proof of this proposition in form coincides witn
the one of proposition 2.4 and as the latter is simple but long
enough here we shall present only the changes which must be done in
it for obtaining the needed proof in the Hermitian case.

1. The matrix Co(w) is nondegenerate, Hermitian and such that

(7 (s "6 () F; (si )= () =c¥ ().
2. The matrix D (7) is unitary (D;'=D) and sueh that c(y)=

17



=D (#)C,(¥)D (7)=diag(c,,...,€ ), ¢, ....C €€, n=dim (n '(x)), xeB.

3. Further in the proof the matrix functions D and D are uni-
tary {not orthogonal), b7 ana DI must be replaced, respectively,
with D¥ and Df (due to G*=G, but not GT=G) and one must have in
ming that the eigenvalues of the Hermitian matrices (in this case
Co and G) are real (e.qg. cl,....anRcc) [6].m

Proposition 4.5. Let in (E,n,B) be given a Hermitian bundle
metric g the signature of which is independent of the point (s} at
which it is evaluated for every (resp. some)} path 7:J—E. Let
there be chosen bases {e!(s)}. s€J along 7 such that the first p
eigenvalues of the Hermitian matrix G(¥(s)), defining the metric in
them (see (2.1)), be positivé. Then one L-transport along. paths. is
consistent with this Hermitian metric if and only if some of the
defining'it by (1.4) matrix funcpions F has the form . .

F(s;0)=Y(9)Z(s;0) (D(#(8))) ™}, se = S (4.9)
for every (resp. the given) path 7. In this equality: Y(») is nxn,
n::dim(n”(x)), x€B  nondegenerate depending only on gy matrix;
Z(s;7) is a pseudo-unitary matrix of type (p,q), g=n-p, i.e.

(Z<S;75)*Gp qZ(s;%)=G;‘q:=diagk1.....1.;1,...,~-1), o ké.ib)
) , —r

P tlle§ q times

and D(y(s)) is a fixed matrix such that

(D(w(S)))*GT(W(SJ)D(V(S))=Gb,q- i (4.11)

Proof. To prqvé the necesgity we have to solve thé!equation

- (4.6} with respect to F when G and C are given. From G"=¢ it

follows (GT)*=GT which combined with the choice of {ei(s)} and the

independence of p (or/and q) from y(s) leads to the existence of a
satisfying (4.11) uni;gry matrix D(y(s)) [6&].

Let F(s;7)=:Fi(s;z)(D(r(s)))'l. Then from (4.6) and (4.11), we
get (F:‘(S:w))*Gp’qF;l(s;q)=C(r). _ﬁutting here F (s;7)=:Y(7)2(s:7),
where Y(y) is an arbitrary nondegenerate (unitary) matrix for which
Y*(w)Q(w)Y(7)=Gp'qz,yé see thétuz(g;x) satisfies (4.10). (The exis—
tence of Y(y) is a consequence of (4.6): from it and the inertial
law of Jacobi—Syl?ester it follows thaf'c(y) has P positive eigen-
vélues, hence the sought matrikiY(r) exists [6].} All this proves
that F(s;7) has the form (4.9) under the condition that the consi-
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dered L-transport along paths is consistent along every
some) path y with the given Hermitian bundle metric.

On the contrary, the sufficiency of the proposition is almost
evident: if (4.9) is valid, then an elementary checking shows that
(4.6) is true for C(r)=(Yq(7))*quY'Ww) and according to propo-
sition 4.2 the L-transport along ,paths and the Hermitian bundle
metric are consistent along every (resp. some) path 7. m

-Proposition 4.6. A necessary and sufficient condition for the
existence of a globally consistent with a given L-transport along
Paths Hermitian bundle metrics is the existence of a local basis in
which the matrix F(s;7), defining this transport along y:J——B by
(1.4), has the fornm (4.9) in which: Y(y) and D(7(s)) are arbitrary
nondegenerate nxn, nzdimc(x"(x)), €3 matrices and Z(s;y) is a
pseudo—unitary matrix of type (p,q), P+g=n. Besides, if for a given
L—t?ansport along paths these condipions are fulfilled, then in the
above basis all globally consistent Giih ft Hermiiian'ﬁundlé met -
rics are described by the matrix ’

(resp.

T, 7 ' Lo o S S o
.G (7(3)2=((D(w(s)1)_’}*Gp,q(n(y(s)))", . o (a.12)

which depends only on the point y{s), but not on the path'é;

Proof., The proof of this proposition is an exact copy of the
ene of proposition 2.6 and it can be obtained from it with the fol~
lowing changes: metricr——Hermitian metric; transposition. sign
(T)k—-»ngmitian conjugation sign (x); (2.8—10)#——%(4.3-10’:‘GF——+
F—G' and Gor——eG:Jl ‘ -

S. REMARKS AND COMMENTS R

(1) From the proof of proposition 2.1 it is clear that (2.2)
is a matrix form of (1.3) ;n_the basgis {ei(s)}. seJ; .

(2) In (2.8) the uncertainty in the choice of F (see (1.5)) is
taken by C (see (2.7)), because of which G(¥(s);7) does not depend
on the concrete choice of F, . . -

(3) said in another way, proposition 2.5 means that if there
exist consistent with a given bundle ‘metric 'L—transborts along
paths (along a given path}, then they have in some basis a matrix
(1.4) in which the matrix F(s;y} has the form (2.9),

(4) In proposition 3.1 the condition that the metric must be of
class of smoothmess €' follows from the necessity for the equality
(3.2) to have a sense and vice versa (cf. [B,91).
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{5} Proposition 3.4 follows also from proposition 3.3: it is
sufficient to put t=sD into (3.5) and to denote G(y(t)) with C(r).

(6} In a general form & necessary and sufficient condition for
the existence of glcbally consistent with an S-transport metrics is
given by proposition 2.6 in which eq. (3.8) has to be taken into
account, due to which the needed variant of proposition 2.6 can be
formilated in terms of r?, but we are not geing to do this here.

(7) In proposition 3.6 the. condition for the independence of
the signature of the metric from the point at which it is calcula=-
ted is necessary for the existence of consistent with the. metric
(S-)transports along paths (see proposition 2.4).

(;)_Ifﬁgl(x)fgj(x)so for every i,j=1,...,n, of which type are,
in particular, the Euclidean metrics, then (3.13) may be written
equivalently-as . I - - ot :

M Bt L S DR Ry i ’ HEAR
r,(s)=t,(g)+ra(x)c(x).,xsv(sl,_seJ. o ' (5.1)
where T, ——r’ is arbitrary antisymmetric matrix and r HFT is arbi-
trary flxed symmetric solution of (3.8) with respect to r which
under certain conditions (see below) admits the representat1on (see

{63, chapter 12, sec. 13)

r (w(s))-—f(exp(str(s))t) 9911&511 “(exp(G(r(s))t))at, sel.  (5.2)°

)

Eﬁfdently. a necessary and sufficient conditxon for the exis-
tence of the representatlon (5.1) is the ex1stence of a symmetrlc
solution r r of the equation (3.6) with respect to PT. The use of
the descrlbed in the proof of proposition 3.6 method gives the pos-
sibility to prove that. such a solutien_exists iff for every pair
(i,J) for which g, (x)+g (x)=0 the equality K (x) =0 is satisfied
simultaneously. If (3. 6) admits: a symmetric solutlon r and there

exists at least one pair (i, j) for which g, (x)+g {x) K (x) 0, then

the integral in the right-hand side of (5. 2) does not exist and r
admits the representation :

f‘fitx)=ngx)ro(xinf(x).,xe&(éi;' B (5.3)
where o ., ..
rl:=r, L . (5.4a)
(Tn(x))11=K1J(X1/(91(X)+gj(x)) for gi(x)+gj(x)¢0, ~ (5.4D)
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and the remaining components of r,» for every (i,j) such that
Ql(x)+gj(X)=KlJ(x)=0. if any, are arbitrary.

(9) The fact that all results for the consistency of real
(symmetric, Riemannian) metrics and linear transports along paths
are true mutatis mutandis also in the case of Hermitian metrics is
not random. In fact, if we denote by h:xF——»hx. %€B an arbitrary
Hermitian metric in the complex vector bundle (E,=,B), then

g=Re(h)=%(h+hT). w=Im(h) =y (n h'), i=+vT, (5.5)

where hI(u,v)::hx(v,u), x(u)=a{v)=x, define, respectively, symme—
tric (Riemannian) and symplectic metrics in (E,n,B). The definition
of h is equivalent to the definition of g or w», which is a corol-
lary from

w (4,v)=g (u,3Iv), - . (5.8)

where the complex structure J on (E,n, B} is defined by Ju—xu. It is
1mportant to note that

h=he(IxJ), g=ge(JIxI), w=we(IxJ). ‘ (5

Due to this the definition of an arbitra?y symmetric (complex)
metric g with the property g=ge{JIxJ) allows a Hermitian metric h=
=g+igo(idExJ) to be introduced. (In {12] g itself is called a Her-
mitian metric.) The existence of g with the needed property follows
from the known fact that if g, is a symmetric metrie, then the met-
riec g°+g°o(3xﬂ) has the pointed property. T

Namely the fact that the definition of a Hermitian metric h is
equivalent to the definition of a symmetric metric g with the pro-
perty g=ge({JIxJ) is the reason that any result concerning symmetric
metrics can be formulated mutatis mutandis also for Hermitian
metrics. ’ '

The above connections between Hermitian, Riemannian and sym-
plectic metrics are not new and, for instance, can be found in the
article “"Hermitian Metric" in [13].

{10) The presented here material admits a generalization con-
cerning arbitrary transports along paths in fibre bundles and bundle
morphisms between them which willi be a subject of other work.
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