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1. INTRODUCTION 

In the work (1), we have considered certain aspects of the ge­
neral theory of transports along paths in arbitrary fibre bundles 

without investigating its ties with the ones of parallel transports 

and connections, which is the aim o_f the present paper. 

Sect. 2 contains a review of the theory of parallel transports 

in fibre bundles adapted to suit our purposes. At first, are consi­

dered parallel transports generated by connections, after which 

attention is paid to the axiomatic approach to the concept of pa­

rallel transport. The' main resUlt of this pape.r, ptoved in Sect. 3, 

is that ·any parallel transport; axiomatically defined or generated 

by a connection, is a.· transport along _paths satisfying certain 

additional conditions. Also sOme other ties between'parallel,trans­

ports ;ind·transports alorig paths are investigated. ln'Sect. 4 it is 
shown how iinear trahsport~ along paths generated by derivati?ns of 
tensor· algebras [2l·can be··regarded as (axiomaticaily defined) pa­

rallel transports.' 
In this paper, we shall uSe t~e following notation. 

By (E,n,B) we denote ~n arbitrarr fibre bundl~ with a .base B, 

bundle space E and projection n:E~B [25,37,17] .. The fibres 

n~ 1 (x) ,. xeB are supposed to be homeomorphic. 

An arbitrary real interval and a path in B are denoted, res­

pectively, by J and r: J ----+B. If B is a manifold, ·the. tangent to 7 

vector field_ is written as 7. The path i:J~E is a_ lifting of 

r:J~B (resp .. through uen~ 1 (7(J))) if nof:::r (resp. ':lnd.7(J):m). 

By M, Tx(M) and (T(M),n,M) ·we denote, respectively, a diffe­

rentiable manifold, the tangent to it space at xeM, and the tan­

gent bundle toM, T(M):= u T (M); 
X 

xEK 

Now for reference purposes, we shall summarize a certain mate-

rial from [1-]. 

A transport along paths I in (E,n,B) is a map I:r~I7 , where 

r 7: (s,t) !----7I7 , s,teJ in which t.he maps . ___., 
~ _, )) _, 

.Is~t:n (7(s --m (7(t)), ( 1. 1) 

satisfy the equalities (idx is the·identity map of the set X): 

r · 7 · r 
It~roi•~t=Is~r· r,s,.teJ, ( 1. 2) 
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11 =id , seJ. 
s--h - -t 

1t ( .,, s)) 

( 1. 3) 

It is easily seen that 

(r• ) -•-r• 
s ---+l - t. ---+s ' 

( 1. 4) 

Important special classes_ of transports 

ted by one or both of the conditions 

along paths are selec-

r7 1J' =17 . s,teJ', 
s~t. s~t. 

( 1. 5) 

ro-r· - 7. -. 
1s--+t. -I'tl s 1----+'t"l t.l 

s,teJ", · ( 1. 6) 

where r!J' is the restriction of 1 on the subinterval- J
1 of J and 

-r:J"---+J is one-to-one map. from the interval "J"ciR onto J.· 

As for.the transports along paths the types of the inter-

vals J, J'··. and J~', are insignificant, in this work, for purposes 

which will' be. cleared, up later, .all real intervals are supposed to 

be closed, i.e.· of type [a·, b] for some as;b, a, beiR. 

i.r the fibres tt-
1 (x), xeB are differentiable 

when (E,tt,B) is smooth [40]), one can consider the 

transports along paths obeying the condition 

17 eDiff(n- 1 (7(S)),n- 1 (7(t))), s,teJ, ·-· 

manifolds. (e.g. 

class of smooth 

( 1. 7) 

where Diff(M,N) is the set of diffeomorphisms from the manifold M 

on the-manifold N. 
Any path r:[0,1] ~B is called canonical (canonically de­

fined). Its inverse path is r_:=ro-r:, where -r::[0,1] ----7[0,1] is 

given by <<s):=1-s,· se[0,1] [38,39]. The (canot:ical) product of 

the- 'paths ;r
1
,r

2
:[0,1] ----tB is the path ;r

1
r

2
:[0,1] ----78 such that 

(;r
1

;r
2
)(s):=r

1
(2s) for se[0,1/2] ·and (r

1
r

2
)(s)=r

2
(2s-1) for 

SE[1/2,1) [38,39). 

2. REVIEW OF .PARALLEL TRANSPORTS IN ~IBRE BUNDLES 

This section contains a brief review of the concept "parallel 

transport" in fibre ~undles. It will be a basis for comparison of 

the parallel transport with the transports along paths studied in 

[1-3]. 
A common feature of most of the works [4,5,6-8,12,15-18,21-35] 
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dedicated to that problem is that in them as a basic object is 

taken the connection (in corresponcting fibre bundles) and with its 

help ~he parallel t~ansport is defiried. In connection with this, 

one can distinguish the works [9-11,13,14,19,20,36) in which as an 

initial (axiomatically given) object one tak~s the parallel trans­

port which, in its turn, defines (and .sometimes is identified with) 

the connection. It has to be noted that _in these works in contrast 

to our considerations in [1-3], main att~nt~o?_is _paid tq the de­

pendence of the parallel ~ransport on. the curve (path) al~?ng __ which 
it is made. 

2.1. PARALLEL TRANSPQRT J;N DifFERE~_TI_lt.~LE 

FIBRE BUNpLEs· ENDOWED WITH CONNECTION, 

Let (E,tt,B) be ·locally trivial differentiable and smooth"(Of 
class C

1
). fibre·' bundle [17;-25.,37]. The fibre n- 1{n(u)) thr-ou9h UEE. 

is a manifold the· tangent space ·of -whiCh at ·u "is denoted by ·Tv (E)·:= 

:=T (tt- 1(tt(u))). ·.Evidently Tv(E.)cT (E); BY .-definition Tv(E)u con-
u u - u u 

sists of vertical vectOrs [5,25,38,40l. 

Definition 2.1 (cf. [5,35,40,41]),' A"c"onnecti'on (of general 

form) in (E,tt,B) iS a smooth (of class-' C1
) dim(B)-dimEmsional diS­

tribUtion Th.(E):E~T(E) such that the in18ge Th.(E):u~Th(E} ·of ueE. 
u 

lies in Tu(E). and is a direct complement of T:(E) in Tu(E). i.e. 

Tv(E)eT•(E):=T (E), 
u u u ( 2. 1) 

where e is the direct Sum sign. By definition TheE> con~ists of ho-
. u 

rizontal (with respect to the connection Th(E)) vectOrs.· 

Definition 2.2 (cf. [5,21,3.:,40,41]), The smooth (C1 ) path 

T:J~E is horizon~al (with respeCt. to the _connection Th(E)) if its 

tangent vector field·T· is horizontal, i.e. if TCs)eT~ (E). 
. l(s) 

Remark. In this definition and below ·we speak about smooth 

(or differentiable), of clasS C
1

, path~ as the_· corresp~nding gene­

ralizations for partially 'smOoth paths_ are tr~via). 

Defin-ition 2.3 (cf. [5,21,3.5,40,41]). The 11ft r~7:J---:'Ii:: of 

;r: J---:'18,. · (resp. throu9h ueE) is horizontal (wit-h respect to the_ 

connection Th(E)) if 7 is a" horizontal path (r~~p. through u). . 

For defining the concept "parallel transport" in differen­

tiable fibre bundles, of primary importance is the question of the 

existence of a unique horizontal lift of a given pa~h from the base 
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in the total space of the fibre bundle through any point above it. 

As has been pointed out in [40], p. 607, lemma 2, a sufficient con­

dition f:or this is the fibre n""' 1 (b) for some beB to be a compact 

man_ifold. (Because of the local triviality, if this iS so for some 

beB, t_he above property will be valid also for every beB.) The 

existence and uniqueness of the lifting mentioned are automatically 

fulfilled in principal fibre bundles (G-fibre bundles) [5,35,40,41) 

where they are assured from the additional requirement for the con­

nectiOn (called often a G-connection) to be invariant under the ac­

tion of the structure group G of the principal fibre bundie. '(More 

strictly, if R9 :E~E is the right action generated- from geG, then 

the connection Th(P) of the principal fibre bundle (P,n,B,G) is de­

fined by the foll-owing. three conditiOns: 1°. ·Tv(P)®Th(P)=T (P), 
u u u 

ueP; 2° Th(P) muSi depend differentiabiy- on ueP; 3°. 

R T~'~(P)~T: (P), where R is the differential of R· [5,10,40].) 
g•u 

9
u.:· _ 9" g 

Another case for the existence of a unique horizontal lift of any 

path from the bases through ~very lying above it point is when the 

fibres· of the f~bre bundle are discrete (see [ 17], pp. 75-7~ and 

[38], chapter III. lemma 15.1). The abo;e pain-led prob-lem. is c-Onsi­

dered from a general point of view in chapter III of the _book [38] 

(see ·e.g. sectioris 12, 13~- 15, and 16 from it), where, in particu-_ 

lar, are; given the corresponding necessary and sufficient condi­

tions for the existence of (maybe unique) lift of the pointed a·bove 

form. 

Let there be given a smooth fibre bundle (E,n,B) with connec­

tion T~'~(E) such that for every C
1 path 7: J~B and every point 

uex""' 1(7(Jr> there exists a unique horizontal lift· n---+7 of 7 u 

through u, i.e. f :J~E, rro7 =7, ue7 (J) and f (s)eT~'~ (E). seJ. 
u · u u u 'I (s) 

u 
(We will note that this assumption for the connection, without 

being ment:ioned, is unexplici tly used in the considerations in 

sections_ 1 and 2 of [ 9].) Let J=[ a, b], a:s;b. Let us note that the 

considered below connections (and parallel transports) will' be of 

Ehresmann•s type (see [25], vol. 1, p. 314). 
_Definition 2.4 (cf. [5,7,15-18,21-25,35,.40-42]). The ·parallel 

transport (generated by T~'~(E)) of the fibre n""' 1(7(a)) onto the 

fibre rr""' 1(7(b)) along the path r:[a,b]~B is a diffeomorphism 

·1 ) •1 ) o
7

:n (r(a )-->n (r(b) , (2.2) 

such that if UEn.
1(r(a)}, then • :u.......,. (u):=7 (b), r r • 

where 
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7u:[a,b)~E is the unique horizontal lift of 7 in E through u. 

Definition 2.5 (cf. [5,9,40]). The parallel transport defined 

by the connection Th(E) is a map ~ from the set of C1 paths in the 

base B into the· group Morf(E,n,B) of the bundle morphisms of 

(E,n,B), such that if r:[a,b]~B. then fll:r~---+~p e 
T 

EDiff(n""' 1(r(a)),n- 1(7(b))), i.e. the image lfJ
7 

is the defined by 

Th(E) parallel transport along 7, which is an element of the group 

Diff(tt""' 1 (r(a)),tt""' 1(7(b))) of diffeomorphisms between the fibres 
n" 1(r(a)) and n" 1 (r(b)). 

·Proposition 2.1. The parallel transport 1/J has the following 
three basic prop~rties: 

a) Invariance-under o~ie~tation preserving Parameter changes, 

i.e. if 7: [a,b]----:--78 and -t: [c,d]'~[a,b],_ csd, _asb_ is_ an orientation 

preservi_ng diff~omorphism, then 

~P_r'?-t=rp7 • (2. 3) 

b) If 7_:[0;1]~8 is the -(canoniCal) inverse to r:[O,i]---+B 

path, i.e. r_(s)=7(1-s), se~0,1], then 

·1 •• _=<•,> . (2.4) 

c) If 7i,72:[0,1)---+B, 7
1
(1)=72(0) and 7172 is-the (canonical) 

product of 71and 72 (see Sect. 1), then 

rp =rp orp • 
7172 72 71 

(2.5) 

Reinark. Because of (2.3) it ~s enough to consider· (2.4) anq 

(2. 5), · as well as any other property of the parallel transport·, 

only for canonically defined paths in spite of- the fact tha~-- they 

are valid also _for arbitrary ones. 

Proof._ The proof_- of :this proposition can ·be found.- for ·exam­

ple, in [5,7-10,13,14,18,40).• 

Here we shall drop the generality of the above considerations 

and till the. end of the present section we will _deal with the spe­

cific case of principal fibre bundles [5,15,21-24]. 

At first, let_ us note t~at in principa~ fibre bundles :~he para­

llel transport f along 7 commutes with:the right action R, geG of 
7 ~ ' - 9 

the structure. group G on · the total ~pace of_ the_ fibre bundle 

[8,15], i.e. "oR =R Of~., for arbitrary path 7 and every_geG. 
7 9 9 • . . . 

on the other hand, in these fibre bundles- the parallel trans-

port can be defined uniquely also by . the ri9ht ~cti.on. of G (see. 

e.g. [40], p. 632, theorem 1 and [9']). In fact,.-iet. r:{a,b]----+B. and 
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uen:- 1 (r(a)). Then, due to the loc_al triviality of (E,n,B) (see e.g. 

[43], p. 48), there exist a neighborhood U of r(a)=n:(u) and a dif­

feomorphism t/1: n: -t (U)~UxG, t/1( u): =(n:(u), ;t( u)), where ;t: n-
1 (U)~G 

is right invariant, i.e. ;t(R
9
u)=;t(u)g, geG, and hence 

(R •• -
1
)(n(U),<(U))=R U =·- 1

(n(R u),<(R u)) =·-
1
(n(U).<(U)g). 

9 9 9 9 

Denoting by e the unit of G, w~ find: 

~,.(u) = (tp
1

ot/J- 1){r(a),;t{up = {~7 ot/J- 1 ){7(a),e:t{u)) = (tp
7

oR:tlu)o 

ot/J- 1 )(r(a),e) = (R:t~u)o~1 o!fJ~ 1 )(r(a),e) =(R:t<ulo!fJ- 1 )(r{b)~q7 ), 

where in the last equality we have used the fact that 

(~ o!fJ- 1 )(r{a) 1e)en-1 (7(b)) and conSequently· there eXists a unique 
1 . 

q eG~ which does not dePend on u and is· such that· (~ ~!Jr- 1 ){r(a).e),;, r 
1 

r . 
=Itt- (r(b), q_). So, in principal fibre bundles· the '·par'allel· ·trans-

• 
port 'PT along r is given by the equality ~7(u)=~R:tcu) o 

o-!Jr- 1 ){7{b),q
1
). Hence, the definition ·of a parallel transport ~ is 

equivalent to the defi_nition of a. map q from the- set of C
1 paths in 

B onto G such that q:r~7• 

Proposition 2.2. The map q:rr-49-
7 

has the properties: 

q10'C=CJ1, 

-1 
... _=(g1) • 

qr r =CJr CJr I 

1 2 1 .2 

(2. 6) 

( 2. 7) 

( 2. 8) 

Where- i, '!, 7:. 1 7~·; 7
2

, and 7
1
1

2 
are defined- in propos.ffion 2._1.­

Proof. The _eq~alities (2.6)-(2.8) follow from the defiriition 

of q
7 

and, respectively, the equalities (2.3)-(2.5).• · 

Let us note that in som~·wor~s, e.g. in-[11,17,19 1 26~36,40], 

the t~ird property of a parallel transport is expressed _not thro~gh 

the equality (2.5), but by 

'Pr T =tp7 orpT ' 
. 1 2 1 2 . . ·-

(2. 5') 

whiCh, --·-gerieraliY. is· no.t· trUe when using th·e _acc;epted·-by- us· no­

tions: as .. ~ acts on the· left,- then (2. 5) is valid bUt not. 
7 . ' -.-.- . . - .. _ . 

(2_.5,). I:or·(~._5,) to,b~ valid, as pqinted out.in [,17), p .. 76, one 

hal?., to _c:;.h~nge the' O~i:entat.iOn~ '0{ r
1

, · r 2• · 

(2-~.SYand-_{?.4) i£·f0f~:ow_s.ui&t·-. . 
and ·r1-'12·;-·. in--- fac.t,_: ·frOm 

~(7 1) =:<~T '1· )-1=(rpT orpT )-1~{~T )-~o(~'1 )-1=~<7 ). o~(7) ' 
12- 12 2 t 1 2 1- 2-

6· 

i.e. 

~ ) =~ ) ·~(· ) . 
<r1 7 2 - {,.-t - 1 2 -

So, if we make the change IJ'rl---tlpr_=(t;
1
)- 1 , 

not (2.5). Such is the case, for instance, 
20] in which the· parallel transport 

-1 -1 ~·:n---+,>~:=~1_:. (>(b))--m (1(a)). for 

(2.5') i_s true. 

(2.9) 

(2.S') will be valid but 

in the works [10, 11,19, 

is defined as the map 

which, due to (2.9) 1 

As regards the property· (2. 8) (in Principal 'fibre bundles) in 

its right hand side_ the terms are written in a needed order as 9 . . 1 
acts on the .t.!.sh:t:. but not on the left as. 1/!'1. 

At __ the end of this section, we shall st:ess the fact that the 

properties (2. 3)-(2. 5}_ . of the parallel- transport rp expresS their 

depel)dence on the ct~rve of· transport. From this viewpoint, there 

naturally arises the_ question of the "continuity" or "differentia­
bility" (~he "smoothness") of that dependence. The author. knows two 
approaches to_ tha_t problem. First, in the set of· smooth· (.Of class 

C
1

) paths· a topo~ogy is _introd~_ced {see e.g. [14] and [38)o p .. 104) 

which, in particu~ar, may be generated by some metric {for a case· 

of closed paths see [13]), which is. used to study the smoothness of 

the map ~:r~. And second, a (generally multidimensionai) smooth 1 . 

deformation of '1 is made and the dependence of ~T on that deforma­

tion [9) ~s inves_tiga"t,ed, i.e. the class of homotopic with r paths· 

connecting r{a) and r~b) is considered and.the dependence of a pa­

rallel transport along these paths on the parameters of the used 
homotopy is inves~igate.d [38). 

2.2. AXIOMATIC APPROACH TO THE PARALLEL TRANSPORT 

IN LOCALLY TRIVIA~ FIBRE BUNDLES 

The axiomatic definition of a parallel transport in locally 

trivial fibr_e bundles is based on the_ idea of a (diffeomorphic) 

mapping of the fibres of. a give_n_ fibre bundle One onto _another. 

More precisely 1 in the known to the author 1 i_terature [ 9-

11,19,20:36139,40] in which ~~is ~uestion is. set, it_ is put in the 

following way. Let (E,n,B) be a locally trivial fibre bundle and 

x 1 X EB. To any path r:J-:---+B, :w_here J=[a,b], in the base B connec-t 2. . -. . 

ting x1 and_ x2 , i.e. for which r(a)=x
1

· and 7(b)=x
2

, .a map {diffeo-:-
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morphism) IP7 :rr-
1(x1)--m-

1(x2 ) is put into correspondence and the 

dependence of 1/J on r is axiomatically defined. Namely, on 1/J are 
7 7 

imposed_two kinds of restrictions. Firstly, these are conditions of 

a functional type defining the "change" of 1/J'I when with the_ path 7 
some operation is made (e.g. changing its orientation or its repre­

sentation as ·a product of other paths). Secondly, in an appropriate 
way the "smoothness" of the map 71---?1/J (conditions for smoothness) . 7 
is defined. We shall n:ote that the defined in this way parallel 

transport is sometimes c·alled a global or an integral connection in 
the fibre bundle [9,19]. 

A scheme for solving the stated above problem for an axiomatic 

definition of the parallel transport in _locally· trivial fibre 

bundles has been introduced, maybe for the· first time, in the work 
[19], after which, with little changes (following the context or 

using some features·. in .. different special cases (e.g: in principal 

or homogeneous (associated) fibre bundles)), it is repeated·- in. 

other publica_tions· of the. same author [10,11,36]. 

The above question, but in the "infinitesinlal" case (the· 
points x

1
. and x

2 
are infinitely near in· a coordinate' sense), is 

investigated in the- works. of. G. F. Laptev (see [20] an.d the given 
therein references of the printed·works of G.F. Laptev). 

Ref. [9] contains a more general consideration 9f the problem, 
which is analogous to--the one of Subsect. 2.1, but in [9] a more 

general concept for· connection ( "infini t'e"sima:i nonlinear" co_~nec­

tion) is used which is due to the replacement of the tangent spaces 
to the corresponding manifolds with the- Grassmanian manifolds con­

sisting of their one dimensional (linear) subspaces. 

In [40], part II, sect. 24 the above question is described 

but, in fact·, only a construction of a parallel transport by the 
method described in Subsect. 2.1 is made. 

In the above sense, the defined iri · [39], Sect. 3. 2 transp~rt 
along paths in an assembly of groups (a (flat) topological fibre 

bundle, the fibres of which are groups) ,.is also a parallel trans­
port. 

Form here till the eri.d of· the present subSection we shall make 

comments on- the axiomatic· definition of the pB.rallel. t~a_risport in·-' 

the mentioned above rer'erences and, in connection with our purposes 

attention will be paid mainly to the coi1diti.'o"ns .of .functiO·n-~1 cha­
racter. 

Before going on, .let us note that in the· cited literatl,Jre. 

instead of an arbi_trary closed interv.al J=[ a, b) the unit interval 
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1=[0,1] is used, i.e. I=JI . This ·is not importan_t because of 
a=O,b=t 

the invariance of the parallel transport under orientation preser-

ving changes of the parameter of the paths along which it acts- (see 
below eq. (2.11),). 

Let (E,rr,B} be a locally trivial smooth fibre bundle, J=[a,b], 

X
1
,x

2
EB, r:J---+8 be a C

1 path, r(a)=x
1 

and 7(b)=x
2

• The parallel 

transport in (E,n, B) is a map 1/J from the set of C1 paths in the 

base B [38] onto the group Morf(E,n,B) of bundle· morphisms of 
(E,n,B) [17,22,25], such that 

,; 

"' n-•• eDiff(n"
1 

( 7(a)); x- 1 
( 7(b))). '1' . . •. (2.10) 

The first group of restrictions imposed on 'P usu8.t1:Y, con-
• J • • • • - • 7. 

tains (2.3)-(2.5). i.e. it is wan:te:d that 

.'~'ro-r:=I/J'I, 
(2.11) 

-1 
"'r _ ""<1/Jr) ' (2.12) 

1/1'1 '1 =~Pr ot;7 ' 
1 2 2 1 

(2.13) 

where r. -c, r, 7 and 7 7 are ctefil1ed.in proposition·2.1. 
. t 2 : . t 2. - ·. 

The conditio_ns (2.11)-(2.13), _which general_ly ~re_lridepet:ldent, 

are postulated, for example, in [10,11,19,36], where instead of 1/J . . . . . . . . 7 
c7:=f(r):='P ·is used, as a consequence of which (2.13) is written 

~ . 

in the form (2.5r) (with ~7 instead of 1/1
7

, and, besides, the paths 

7 and r' :=ro-c ·are called equivalent·, which is denoted by 7-7', and 

(2:11) is written C!,S c7=~r' for· 7-'1'·). 

In [40] the restrictions (2.11)-(2.13) are m·entioned but, in 

fact, they are not used for an axiomatic construction of parallel 

transports. 
In [9], attention is paid uniquely to the condition (2.13) 

which taken together with the corresponding co~di tion for smooth­

ness defines . therein 1p as an integral connection of the fibre 
bundle. ,.s in this work the full pro~fs of th~ .. stated _there propo­

sitions are not given, part of which ~re not cor:rect_ (e.g. the ·ex~­

stence of a unique lift is supposed (see Subsect .. 2.1);. sOmething 

which generally is not_ true (see" e.g. [38,_40])), the author of the 

present text was not abl~ to re-establish them to. an end, so it is 
not clear whether (2.11), (2.12) or some other restrictions on 1/J 

are used unexplicitly in [26]. 
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Usually, as a consequence of other restrictions (resp. inde­
pendently) (see e.g. [11,19,20]) tp satisfies (resp. on tp is impo­

sed) the restriction 

111 :::id , r :{a}_~{ X } , x eB, 7 ~1 a a a a n ex ) 
aeiR, (2.14) 

• 
i.e. t-o the degenerated into a point path there· corresponds ( resp. 
to correspond) the identity map of the fibre over that point. 

For example, in (11,19] rt=ri[O,t], te(0,1] is put to :pe the 
restriction of r on [0, t]c(O,l] and it is required that lim IP = 

t~o 1 t 

=id 
-1 

(a functional condition) and that the principal part 
n 1710) > 

of the deviation of ~. 

' 
from id shou+d depend smoothly. on -1 

!!: !7!0!! 

rt and 7t (condition for smoothness) from where~ evidently,· follows 
(2.14). On the contrary; if (2.14) is taken as a base, then the 
first of these restrictions will be a consequence from the condi­
tion for sm?othness (which, in fac;::t. needs a concrete and strict 
formulation (cf. [9])). 

Definition 2.6. The map_ V"J:·n-i1'7 , where f/)
7 

satis~ies. (~.10)­

(2.14), is called an axiomatically~ defined parallel transport. 
Remark. in [40] ;_ p. 608 V' is cailed an abStract connection. 
F~om the described. here ·approach tO the parallel transport a 

_little_ 8side" are the. _investigations of G. F. Laptev. (see. [20] aJi.d 
the. references in it) due to their coordinat·e and local (Or strict­
ly - infinitesimal) chara~ter. As a consequence of this, the func­
tional conditions··and·the conditions for smoothness (differentiabi­
lity) of a parallel transport are given in a unified way.(see· [20],_ 
p. 46-47). 'not sharply separately as in our text or in [ 9]. From 
the above conditions in (20]. p·. 47 (see therein condition_ c)) only 
(2.14) is given, but (2.11)-(2.13) therein are a consequence ·from 
the explicit-coordinate and infinitesimal.form o:f a parallel-trans­
port. Besides, in [20] f/). is used instead of~-. 

7_ . 7 

As has already be"en said 'above, the second· grOup of festric­
t.io~s- imposed .on the ~ap (2.1) ·are ·the conditioris for sm~othness. 

some 

are defin~d, <P: r ~ ci.s a. continUoUS or differentia'ble · (from 
·.. . k 7 . . 
class C , k=1, ... ,oo,w) function of 7. 

They 

In the· approach uSed· ·in ( 2c:i] these condl ti oris are reduced to 
the requirement for analyf.'l.city of the Principal liriear Part of an 

10 

exP.licit coordinate expression for the transport from the final 
point of a transport (see [201, p. 47, condition d)). 

In the works of U.G. Lumiste [10,11,19,36] the question of 
smoothness o~ ~p:rl----?lP7 is, in fact:. replaced with the requiremen:t. 
for continuous differentiability (smoothness). of" the _map. tr--;v>

7 
, 

. ' 
te[0,1], rt:=7I[O,t] wi_th, maybe, some modifications depending on· 
the concrete case under consideration, as is, for example, in [36], 
p. 206, con_di.tion a3 where the _concr~te properties of the homoge­
neous fibre bundles are used. T~is condition for smoothness may be. 
put in the first of the types described at the end o~ ~ubsect. 2.1 
as it uses the topology of the reai line (inst_ead of the one in the 
set of smooth· Paths in B).· 

We ·shall ·especially mention the work (9} where. the iinportant 
role of the conditions foi'- smoothness is stressed-· and the"y tryem.:. 
selves, in the considered ther~ cases, are formulated strictly and 
clearly. 

At the end of this section we shall only mention that there 
al.So eX"i.st .a. third group_ of. conditions which soTne-li~~s- are· imposed 
on the m-~·p .(2.1) and wh.iGh are connected with th.e concrete struc­
ture ·of the investig~-te'd fi.bre bundles. They usually define the 
"intercommunications" of the map (2.1) with the (structural) group 
of transformations acting in the fibre bundle. Typical examples of 
this are the conditions o-2 and 0'4 from (36], p. 205-206 which 
concern homogeneous fibre b~ndles and the condition ~7 oR9 =R9 o~7 for 
commutation of rp with the right action R , geG of the structure 

r • 
group G in the case of principal fibre bundles [ 8,_15]. 

3. THE_AXIOMATICALLY DEFINED PARALLEL TRANSPORT 

AS A SPECIAL CASE OF TRANSPORTS ALONG PATHS 

Before comparing a parallel transport with transport. along 
paths we have to· note the following. The axiomatiCally defined pa­
rallel transport is· considered· usually, along canonically given 
paths 7:[0,1]------?B, which is significant when defining explicitly 
the can~nica.lly inverse path 7_ and the canonical pi'oduct of two 
paths (see Sect. 1 and [1], Sect. 3). Because of the invariance 
under parameter- changes of the parallel tranSport (see Subsect. 
2.2), this restriction is not essential and it is a question of 
convenience and easiness in the corresponding investigations. This 
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circumstance shows that the parallel transport must be compared not 

with the general transport along· arbitrary paths, but with trans­

ports I 7 along the 7: J~B, where J is a closed interval, i.e. 

J=[a, b) .. The importance of this restriction comes from the fact 

that, in the general case, the transports along paths are not inva­

riant under parameter changes, i.e. they do not satisfy (1.6), so 

they ca~ explicitly depend on the path of transport. 

Let I be a transport along paths in the fibre bundle.(E,rr,B) 

and 7:[a,b]~B. To I we assign a map tp:7~7 • defined by 

• :=I7 :n-1 (>(a))--->n- 1(r(b)) .-r a~b 
( 3. 1) 

Lemma 3.1. If 17 is a transport along 7 satisfying_ additional 

conditi~ns (1.5) and (1.6), __ then the map_ rp:7~7 defined by (3.1) 

satisfies the equalities (2.11)-(2.13) and 

7 .· -1 
Is~t=rp· Jo(rp J) , s,teJ=[a,b], (3.2) 

'Jo't' 7o't' 
t • 

whei'e 't'J: (a, b)~[ a, s]·, se[a, b] are for s>a arbitrary orientation s . ' . 

prese~ving .diffeOmorphisms depending on ·i' through the interval J. 

Proof. Firstly, we ·_sha~l" prove equality (3. 2). Using sequ~n­

tially (1.2), (1.4), (1.5), (1.6) and (3.1), we get: 

I7 =I'~· oi7 =I7 o(I7 )-t=I7jla,tl 0 (I7jla,sl)-l= 
s~t a~l s~a a~t a~s a----+t a~s 

I 
[ 

I . )-1 ,,,' ( ,,,' )-1 =I" la,tl 0 I7 la,sl =I t 0 I s = o( )-1. 
J J J J a---+b a---+b rp J rp J 't (a)---+"t" (b) "t" {al---+'t' {b) · 7o't' 7o't t t s s t s. 

The property (2.11) follows from the equality (1.6): if 

"t"![c,d]~[a,b] is an orientation preserving diffeomorphism, which, 

in particulai-, means 't(c)=a· and --r(d)=b, then from 0.'.6) and (3.1), 

we get rp =I 70 "t" =I7 - · · ,;I7 =rp . 7o"t" e---M 't'(c)~"t"{d.) a~b '¥ 
The ·property (2.12) is a cOnsequence of (1.6) in which, because 

of r_:=7o"t":, 7:[0,1] ~B. we have to put· -r=< (see sect. 1). Under 

these·assumptions, frOm (3.1), (1.6) and (1.4) we get 

(see 

'1_ 7 -1 
• =I =I1 =I =<• ) . 
7_ o---H "t":{oJ----+"t":t 1J 1~0 7 

The property (2.13) is a consequence of [1], proposition. 3.4 

therein eq. (3.4)) in. the case of a canonical choice of a. pa..,.. 

rameter ::r, i.e. (see Sect. 

se[0,1/2] and 

1 and [1]) for. ::t=::rc:=(0,1;1/2;--r;,'t';). 

--r;-: s ~2s-1, se[ 1/2, 1]. (It should be with -r;: s ~2s, 

.12 

noted that the proof of proposition 3.4 of [1j essentially uses the 

condition (1.5).) Then, from (3.1) and eq. (3.4) from[~]. we get 

7172 72 71 72 71 
rp7 7 =I0---+1 =IO----+'t' { 1) oi't' { 0)~1 =I0----+1 oi0----+1 =rp'l orp7 ' 

12 2 1 2 1 

with 71'12!=(7172):{c·• 

Lemma 3.2. The defined by (3.1) map rp:7~7 for any transport 
along paths I has the property (2.14). 

Proof. If 7 :{a}~{x }, x eB, aeiR, then from (3.1) and (1.3), 
7 

a a a . 

we get rp =Ia~a =id _
1 

=id _
1 

• • 
7~~, 1I {7 {all 1I <x J 

• • 
Theorem 3.1. If I is a smooth transport along paths, i.e. 

I!_,_,.eDiff(n- 1 (>(a)),n~ 1 (>(b))}, r:J---+B, J=[a,b], (3.3) 

having the properties (1.5) and (1.6), then the· defined by (3.1) 

map rp: n---+rp7 is an axiomatically deflned para11_e_1_ trans~~rt. Vice 

versa, if rp is _an axiomatically defined parallel transport, then 

the map (3.2>. in which "t"J:J.---?[a··.~J', ·seJ are ~rbitraTy orienta-
' tion preser\ririg diffeomoi'phislns and· i: J ~s~ defines·- a smooth 

transport 'along paths I:r~I7 ,' I 7: (s,t) ~I7 satisfYing the 
. . s~t 

additional conditions (1.5) and (1.6). 

Remark. If rp is an axiomatically defined parallel transport, 

then, because of the properties of 't"J, seJ, we can replace in 
• 

(2.11) r with 7j[a,s] and put in it "t"='t'J. In this way, we obtain 

as (7j[a,s])o~1=7o"t"J, Therefore, 
' . (3.2) ~lr l=' J=• J· 

a,s 17jla,s]JO"t" '¥0't 
. . ' 

is now equivalent to 

I! ---?t =rp7j Ia, tl o(rpr J l_a, sl) -1'. s, teJ=[a, b]; (3,4) 

Proof. The first part- of the theorem is· a consequence of 

lemmas 3.1 and 3.2, definition 2.6 and the fact that now (2.10) is, 

due.to (3.1), another form of (3'.3). 

On the contrary, let rp be an axiomat_ically define~ parallel 
transport (see definition· 2.6). 

If. iri theorem· 3;1· of "[1], we put:··.Q=1I-1(7(a)) and F7~ 

=[• )- 1 :1I- 1 (7(S))~7r- 1 (7(a)) (~J(a-)=a,; .CJ(b)-=s),. we see th;t 
J • ' 7o"t" · · ' . 

the -map (3.2) is a tr_ansport along 7 from s to t. So, Ia~I7, 

where I 7 : (s,t) ~------+! 7 , is a transport along paths. s---+t 
The smoothness condition (3.3) follows from (2.10)' and (3.2). 

To prove the equalities (1.5) an~ (1._6) foF t?l-e. tr~nsp?rt 
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along paths I, we shall use the following ·lemma which will b~ 

proved below after this proof. 

Lemma 3.3. If <p is an axiomatically defined parallel trans­

port, then the maps (3.4) (or equivalently (3.2)) admit the repre­
sentation 

17 =(q:~ )Cis,t)= 
a-H. 7/[min(s,t.l,lllax(s,t.ll 

( 3. 5) 
. 

{ 
/Prjrs,tl -1 

= } I 

(rprj[t,sl 

for s:St 

for s~t 

where c(s,t}:=+1 for s:St a~d c(s,t):~-1 for s>t (or s~t}. 
From (3.5}, because of (rjJ'} jJ'=rjJ' for any subinterval 

J'~J. it immediately follows 

I'( =IyJ!mln{s 0 tl_,lllax{s,tll 
s~t s~t · (3.6} 

whi_c,h ?Y [1], proposition __ ~.3 is equivalent .to (L5)'. 

If -r: J" ~J is an orientation preserving diffeomorphism, then 

(7o-r}j[r,s]=(7j[-r(r),-r(s}]o-r for every r,seJ11 such that r:Ss .• Combi­

ning this equality· with (3.5}-, letting s,tEJ11
, A:=min(s,t) and iJ!= 

:=max(s,t}_, and using (2.11}, we get: 

Ir·o-r -( }cls,t)_( )c<s,t)_ 
s~l- lp(7o"t'lJtA,jJJ - lp<rJI-r(}.),"t'(j.Jl]lO"t -

_ Cls,tl_ Cl"t'lsl,"t'llll_I7 · 
-(IPI7jl-r1Al,"t{l.tlll} -(q><7jl-r1Al,'t"(l.tlll) - "t'lsl ~"t'ltl 

as r:Ss leads to -r(r}:S-r(s), r,sEJ11
.• 

The proof of lemma 3.3 is based on 

Lemma 3.4. If 1p is an axiomatically defined parallel transport 

and r:J~B. then 

lp7j (s,t] orp7j lr,sl=rp7j (r,t.l' for r:Ss:St, r,s,teJ. (3.7) 

Proof. Let -r :[0,1]--?[r,s] and -r :[0,1]~[s,t] be orienta-
l 2 . . 

tion preservihg diffeomorphisms. Evidently, al~o such is the map 

-r:[0,1] ~[r,t), defined by -r(A):=-r1(2A} for Ae[0,1/2] and 

-r(A}:=-r2(2A-1) for Ae[1/2,1]. Usin9 (2.11}, the definition of the 

(canonical} product of paths (see Sect. 1}, and (2.13), we find: 

'P7jls,ll 01/J7J!r,sl=lp'lo"t ~lpro-r =~p<-ro-r 117o-r ,=~p~o-r=rp7J!r,t.J'• 
. 1 2 1 2 

Proof of lemma 3,3, Combining (3.7) and (3.4} for· a:Ss:St:Sb, we 
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. I 
' 

get 

11" =!{) o(~p )- 1
=1,0 o<p o(<p )-l=~p 

s~t '1/lll,tl r/la,sl 7/ls,tl r/Ia,sJ 7]la,sl 7/ls,tl 

and for astsssb, we obtain 

7 ( ,-1 -1 -1 1
s-H.=<p7/la,tl

0 
(/)1"/la,s) =rpr/ta,t]

0
(!p7/lt,s] 0 !p7/la,t}). =(cp7/lt.,sl) .8 

Theorem 3.1 is a strict expression of the statement that the 
axiomatically defined parallel transport is· a special. case of tran­

sports along paths in fibre bundles, and that any ·transport alobg 

paths ·satisfying certain additional condi.tions, namely (1.5} ~~d 

( 1. 6}, defines an axiomatically defined parallel transport. This 
. .. 

th~orem also expresses a one-to-one correspondence between axioma-

tically defined parallel transports and transports aiOng ·pat~s 

obeying the conditions (1.5) and (1.6}. Speaking more freely, we 

can say th~t according t~ it a ~ransport along paths is an axioma­

tically de~ined parallel transport if_ and only if it satisfies the 

additional conditions (1.5} and (1.6). 

Proposition 3.1. If a transport along paths I (resp. axiomat~­

cally defined parallel transport- rp) defines through (3.1} ( resp. 

(3.2}} the axiomatically defi~ed parallel transport~ (resp. trans­

port along paths I}, then the generated by ~ (resp. I} by_ mea_ns of 

(3.2) (resp. (3.1}} transport alori.g paths (resp. axiomatica-lly de­

fined parallel transport) coincides With the initial transport 

alorlg paths I (resp. the axiomatically defined· Parallei tranSport 

•>. 
Proof. Let 'I (resp. 'IP) be the gerierated by lfJ (res:P .. I) tran­

sport along paths (resp. axiomatically defirled parallel· .transpor"t). 
Using (3.1} and (3.2), we find 

J J 70'[' ro-r -l 7 
'I7 = o --1 =I. t. o (r • ) =I o s ~t lp J IP J a·~b a ~b J J ... 

70't" 70"t' '[' (a)~'[' (b) 
. t s l . l· 

7 
o! =17 oi7 =I 7 

't"J ( b 1 ~'['J ( 3 
l a ~t. s ----)a s ----)t. 

• • 
(resp . 'IP=I7 

=I{J o~p- 1 =~poid =I{J).• 
7 a ~b '(O"t'J 70't"J 7 n:-t('((a) l 7 

b a 
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4. THE GENERATED BY DERIVATIONS OF TENSOR ALGEBRAS 
TRANSPORTS ALONG PATHS AS PARALLEL TRANSPORTS 

IN TENSOR BUNDLES 

In this section, by 71 we denote a C
1 path- in the- manifold M 

such that 71:(a,b]~M for a definite asb, a,beR. 

Let s be an s-transport along paths (in the tensor algebra 

over M) [2) .. 

Definition 4.1. The- S-parallel transport associated with the 

S-transport S is a map 1p from the set of Ct_ paths in M into- the set 

of· bundle morphisms of the tensor· bundles over these paths such 

that 

··•-· "" •-S7) •'I" IV\ 'I" IV\ h ~·'l._r---"7Y'7)·- a..,.....--+b ... 7)Cal'"' ~ .. 7)(bl'"'' as .... , { 4. 1} 

where T (J.i) is ihe· tensor algebra at-- xEM. The map_~ will be called 
. . .. 7) . . . X . . 

an S-parallel transport along (the path) 7), 

Lemma 4.1. If 1/J. is t-he S-parallel 

s-transport s, r:J----7M and s,tEJ, then 

tran~port- gene-rated by an 

s' - { 
9" • 7):=rl[s;t] for sst 

s~l- . 1 . 
(9")- , •==ri[t,s) for s>t 

(4.2) 

Proof. (4.2) follows from (4 .. 1) and (1.4), as any s~transport 

has tbis property (see (2], eq. (2.10) and also [3], Sect.· 2).• 

Between the S-transports . and S-parallel transports there 

exists one important difference. Namely, the S-transport along 

r: J----?M does not use the natural order of the real numbers which 

defines a definite orientation on the interval J, while in the.de­

finition (4.1) of an S-parallel transport this order is used expli­

citly (asb). The last·fact is the_ reason for the appearance of two 

different cases (sst and s~t) in (4.2). This fact also reflects the 

difference between (1.6) (or (4.4)) and (4.5) (see below proposi­

tion 4.2). 
Proposition 4.1. If 11.,_: {a}----?{m), ·aER and rna EM, then 

'P =id 
'lll n:- 1

(111 ) 

(4.3) 

• 
Proof. (4.3) fol_lows directly from (4.1) for b=a and (1.3) 

(see also [2], definition 2.1).• 

Proposition 4.2. 

diffeomorphism and the 

Let 7):(a,b]~M, -r:[a' ,b']~[a,b] be a 

s-transport s 71 along 71 be invariant under 
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the c-hange 't' of the parameterization of -n, i.e. (cf. (1.6)) 

ro-r r [ ' b' ] Ss--+t=S't'(sl----?'t'(tl s,te a, . ( 4. 4) 

Then, for the S-parallel transport 1/l, corresponding to S, there 
holds 

'P-no-r=~p71 , for -r(a' )=a, (4.5a) 

'P110 _;=CIP1i)- 1
, for -r(a' )=b, ( 4. Sb) 

i.e. the S-parallel transport is invariant under orientat-ion pre­

serving change of. the parameterization (cB.s~ (4,-5a)), but when this 

change does not preserve.- t}le orientation it is ·replaced by its 
inverse map (case (4.5b)). 

find 
Proof.- Usin9 sUccessively (4.1),: (4.4)· ~and. (4·.2)· for. r=lJ, we 

"' -s 71 o-r -s 71 -{ .,..7)0't'- ."''~b'~ 't'_(_~,)~'t'(b 1 )-
9" 

( . ) -1 

9" 

for -r(a')s-r(b') 

for -r(a' )~-r(b' ). 

which, due to that 't' is ·a diffeomorphism, is equivalent to (4. 5). • 

Proposition 4. ~· Let 7)_: =7)o't'~ be .the canonicalt'y i_nverse path 

to 7):[a,b]----7M, i.e. 't'~ :[a,b] ~(a,b]. <<s):=a+b-s, sE[a,b] (cf, 

Sect. 1 and [38,39]).· If (4.4) holds for changing the orientation 

maps -r for some S-transport, then for the _corresponding to it s­

parallel transport 'P there holds the equality 

( 
-1 9._= •,> . ( 4 •. 6) 

Proof. This result is a corollary from (4_.1), (4.4), (1.4) and 

the inequality <-r:>- 1 (a)~(-r:)~ 1 (b) .as, by d~finition ~~changes the 

orie~tations. Eq. (4.6) also f~llows from (4.5b)-for -r=-r~.• 

·Proposition -4. 4·. Let 11
1 

7)
2 

be ~h~ (canonical) Product- of the 

paths 7)1'1:[0,1]----?M, h=1,2, 7)
1

(1)=7)
2
(0) (see Sect. 1). If an s­

transport defining the s-parallel transport ~ satisfies (4.4) for 

preserving the orientations -r· and (1. 5) ;· then:· 

~ · =rp orp • 
'111)2 ~2 '11 

(4.7) 

Proof. Putting -r
1
(s)=2s; se[0,1/2] and -r

2
(s)=2s-1, sE[1/2,1] 

and using sequentially (4.1), ·(1.2). (1.5) and (4.~),- we get: 
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7J1l)2 • - s 
"ll1112 0~1 

"ll1"ll2 7)1112 (11l"ll2) jll/2,11 
=S oS =S o 

t/2 ---u o~1/2 1/2~1 

C71
1

7J
2

) 1 1o, 1/21 
0 s = 

0~1/2 

" ,, s 2 2 0 
1/2~1 

11 t l"l'tt 712 
s = s 0 

0 ---?1/2 "t2(1/2)---7"t2(1) 

"• 
o s-rt <oJ----+-r1 < t/2) " " =S

2 oS 1 
0-----71 0---?1 

1/)0!p •• 
11:a 7)1 . 

In propositions 4. 2, 4. 3 and 4. 4 one essentially uses the 

acceptance for the- validity of (4._4). This is not random as the 

equality (4.4) express_es the inv~riance (under certain conditions) 

under the changes of parameterizati.on of an S-transport' s path, and 

all (parallel) transports. (see Sect. 2} known to the author and 

Used ·in the mathematical and- physical -literatUre possess this prO­
perty. 

From. the above-said it is clear that under· sufficiently gene­

ral and "reasonable" conditions an S-parallel transport satisfies 

all basic (functional) conditions characterizing the parallel tran­

sport when it iS axiomatically described (see Sect. 2.2). Namely, 

this is the ·reason for calling the map (4.1) an S-parallel trans­

port-: it is a "parallel traitsport" acting in the tensor spaces over 

a differentiable manifold and it iS·generated by derivation of the 

tensor· algebra over the manifold.- More precisely, from the above 
results and ·definitiOn 2. 6, we derive 

Proposition 4.5. The S-parallel transport generated by a~ S­
transport along paths satisfying along them (1.5) and (1.6) iS the 

~xiomatica11y defined parall€1 transport. 

The next propoSition expresses some properties of the s­

paral!el transports which are specific ·of them as "parallel trans­
ports". in tensor bundles. 

Proposition 4.6. Any S-parallel transport "'l1 along a path 
l):[a,b]----+M possesses the properties: 

a) Linear:ity::. if A' ,A"eR and T'and T" are tensors. at 11(a), 
then: 

IP
71
(A'T' +A"T")=(A' )IJ'

71
(T' }+(A")IP7J(T"); ( 4. B) 

b) Term by term action on tensor products: if A and B are ar­
bitrary tensors at ,(a), then 

18. 

•"(A®B)=(•"(A))®(."(B)): ( 4. 9) 

c) Commutativity with the contraction operator C: 

IJ'l1oC-CoiP7)=0; (4.10) 

d) An identical ·action on sc~lars: if AER, then 

•"(>.)=>.. (4.11) 

Proof. fqualities (4.8)-:--(_4.11) follow directly from definition 

4·.1 and, respectively, the properties (2.3)-(2.5) and (2.13) of [2) 

of the s-t_ransport.s. ;: 

5. CONCLUS;t:ON 

The main result of this work is that the theory of transports 

along paths in fibre bundles is sufficiently general and iricludes 

as its special case the theory of parallel transports, and also, 

consequently, the co_nnection theory. An __ essential role, as we saw, . . 
in comparing these theories was played by _the additional condition 

( 1. 6). The transports along paths satfsfying it depend in fact not 

on the path of transport r: J --)B but on:. -the. curve of transport,· 

i.e. On the wh.ole _class __ of paths {ro"t}- in :Whicl:l " is 8. i: 1- map of 

IR-intervals onto J. Because of the ·practical i_inportance· of ( 1. 6), 

we shall consider it below in the most used Case, the one of linear 

transports in vector bundles [3]. 
_Let L be- a linear _transpo~t in the·vector bUndie (E,n,B) [3]. 

If -r:J"~J is 1:1 map, then eq. (1.6) reads·· 

L70" '-L7 t J" s~t.- "t($)~'t-(t.)' S, E • 
( 5. 1) 

Let a field of bases in E be ·fixed along 7: J ~B in which 

H:(s,t;r)~H(s-,t;r), s·,tEJ and r (s).:=(aH(s,-t;r)/at)l be,· res-r - t=s . 

pectively, the matrix and the.matrix of the· coefficients of i. [3]. 
Let tp7 b~ i.hJ 1 g~·nerated by L derivation· alorig ·:,. a·~d (1lq)(s)~:1:l0' 
for a c 1:·se\::ii6n 0' of· (E·,·n,B) (See (3], · eqs. (4.2.}._·8nd·_ (~.3)-·). .. 

'ProPositlori'"-s.L·'·The_ coTidition '(5._1L i"S ·~qui\ial.ent" to' at:y or· 

the following three equalities: 
' 
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H(t,s;ro~)=H(~(t),T(s);r), s,teJu, ( 5. 2) 

r (s)= d<d(s) ·r (<(s)). 
ro~ s 7 

SEJu, (5.3) 

7 o~_ d~(s) .'[)7 
1 

seJ". 
Vs - ds ~Is) ( 5. 4) 

Proof. The equivalence of (5.1) and (5. 2) is a corollary of 
the definition of H (and the linearity ·or L; see [3) 

1 
Sect. 2). _ 

Eqs. (5.3) and (5.4) are equivalent because of the connection (4.7) 
or (4.14 1

) from [3] between r (s) and v7 . . ' 
So, it rema,ins to prove the equivalence between ( 5. 2) and 

(5.3). 

Differentiating (5.2) with respect 

:=(aH(s,t;r)/at) 1,.,• we get (5.3). On 

holds, then using the same equality, the 

=F- 1 (t;r)F(s;r) for some matrix function 
2.4) and dF- 1 /ds=-F-1 (dF/ds)F- 1

, we easily 

d . -t 
~[H(<(t),<(s);,)H (t,s:.•<)J as . 

to ·s and usina r (s):: - . 
the contrary, if (5.3) 

representation H(t,s;r)= 

F. (see [3] I proposition 
obtain: 

= H(<(tJ.<(s):r) [ d<~~) ·r,<<(s)J r (s) H- (t, s;ro~) = 0. . ] I 
ro~ . . 

From this, due to H(s,s;r)=O (see [3], eq. (2.12)) and (t=s ~ 
<(t)= =<(s)), we de>ive (5.2).• 

If B is a manifold, evident examples of linear transports 
along paths satisfying (5.3); and hence (5.1), are the oneS charac­

terized by the coefficients given by [3], eq. (5.1) and, in parti­

cular, the parallel transports generated by linear connections. 

The de-finition of ·a parallel transport in· principal or asso­

ciated· fibre bun.dles by the map ri----7Q-
7

EG (see ~ubsecc 2.1) is 

widely used in the physical literature devoted to gauge theories 

[13,14, 29-32,43-45]. In them, the parallel transport is given glo­

bally through an· ordered (called also ~-. T-, or chronological) 

exponent [14,40,45] along r, i.e. rJ---+Q-
7
=PexpJA

1
dx1

, where Ai are 

the components of. the connec·tion· form (or, 
the gauge potentials). So, locally along a 

1 . . 
in physical, language, 

path 7. connecting the 
infinitesimally near, points x and x+dx it is defined by 'the. expan-
sion 'II =I+Adx1 [11~43]. . . 

7 X~JC+d:K l 

If 7 is a closed path (a -eontour) passing through xEB (in the 
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physical literature such a path is called a loop), then the quan­

tity W(7,X):=PexpfA
1
dx 1 is called a Wilson loop [29-32] and in 

r 
accordance with the above considerations it uniquely defines the 

-1 -t parallel transport from n (x) onto n (x), i.~. of the fibre over 

x onto itself. The importance of Wilson's loops is in that their 

set {W(7,x): 'l:[a,b]------+8, 'l(a)=r(b), XE'l([a,b])}, which is a non­

abelian gro1:1p and is a representation of the group of loops, 

contains all the information for the considered gauge theory [13,29-

32, 43-45]. 
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l-L1neB B.3. ES-94-16 
flepeHOCbl B)\O!Ib ITYTCH B paCC!IOCHlll!X. 
II. CBl!3ll c Teopneii CBll3HOCTeii n rrapan!IC!IbHbiX rrepeHOCOB 

PaccMOTpCHbi napan.ne!IbHhiC rrepeHOChl B pacC!loCHHhiX npocrpaHCTBax. 
Hsy<~eHbi CBl!3ll Me)]{)(y nepeHOcaMn BI\O!Ib rryTeii n napa!I!Ie!IbHhiMll nepeHoca­
MH B paCCJIOeHHbiX npoCTpaHCTBaX. llOK333HO, liTO BTOpble SIBJUUOTCSI ti3CTHbiM 

c.ny<~aeM rrepBb!X. 

Pa6oTa BhlrrO!IHeHa B Jla6opaTopnn TeopeTn'!ecxoii <!>nsnxn llM. H.H.Boro­
mo6oBa QH5!Vi. 

Coo6u~eHHe 06-be.D,HHeHUOfO HHCTHTYTa SI.D,epHbiX HCCJie.D,OB3HHH. Jl.y6Ha, 1994 

!liev B.Z. ES-94-16 
Transports along Paths in Fibre Bundles. 
II. Ties with the Theory of Connections and. Paralic! Transports 

The parallel transport (translation) in fibre bundles is considered. The 
connections between transports along paths and parallel transports in fibre 
bundlesare examined. It is proved that the latter ones are special cases of the 
former. 

The investigation has been performed at the Bogoliubov Laboratory of 
Theoretical Physics, JINR. 
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