


1. INTRODUCTION

In the work [1], we have considered certain aspects of the ge-
neral theory of transports along paths in arbitrary fibre bundles
without investigating its ties with the ones of parallel transports
and connections, which is the aim of the present paper.

Sect. 2 contains a review of the theory of parallel transports
in fibre bhundles adapted to suit our purposes. At first, are consi-
dered parallel transports generated by connections,  after which
attention is paid to the axiomatic approach to the concept of pa-
rallel transport., The main restlt of this paper, proved in Sect. 3,
is that any parallel transport; axiomatically defined or generated
by a connection, is a- transport along _paths satisfying certain
additional conditions. Also some other ties between parallel.trans-
" ports énd'transpofts along paths are investigated. In:Sect. 4 it is
shown how linear transports along paths generated by derivations of
tensor algebras [2] can be regarded as (axlomatically defined) pa-
‘rallel transports.’ ’ N .o

In this paper, we shall use the following notation.

By (E,n,B) we denote an arbltrary fidre bundle with a base B;
bundle space E and projection 7:E ——B [25 37,17].. The fibres

(x), x&B are supposed to be homeomorphic. . . -0

An arbltrary real interval and a path in B are denoted res-
pectively, by J and y:J—B. If B is a manifold, the tangent to ¥
vector field is written as 7. The path 7:J——E is ahliftingkof
7:J ——B (resp.. through uen '(¥(J))) if noy=y (resp. and‘§(J)9u).

By M, Tx(N) and (T(M),n,M) we denote, respecpively, a diffe-
rentiable manifold, the tangent to it space at xeM, and the tan-

gent bundle to M, T(M):= v Tx(M);
xEH . .
Now for reference purposes, we shall summarize a certain mate-

rial from [1].
A transport along paths I in (E,n,B) is a map I:73——I%, where

¥, ¥ : .
I .(s,t)kv—els__et. g#,ted in whleh the maps

1] i (o) —n (), o (1.1)

satisfy ‘the equalltles (1dx is the 'identity map of the set X):

¥ R § N
S SAINCE SO SRR P B _ S (1.2)



¥ i (1.3)
1 =id , S€J.

§ ——E 11.'-1(3'(3)} .

It is easily seen that
|1 s i (1.4)
[Is —n) “Ig —s " . .

Important special classes of transports along paths are selec—l

ted by one or both of the conditions

71 g7 . s,tel’, (1.5)
F s 4. s—3t ] '

. Ia.°.r. _17_ s, t.GJ” . 7 (1;6)
———)t, ’t(ll)'“'—)'r(tl R

where 7|J‘ is the restriction of 7 on the subinterval J’ of J and
z:J¥ —3J is one-to-one map. from the interval J“cR onto J.-

As ;- for.the transperts along paths the types of the inter- -

véls J, J'- and J” are insignificant, in' this work, for purposes
which will be cleared. up later, all real intervals are supposed to
be closed, i.e. of type [a,b] for some a<b, a,beR.

if the fibres =n.'(x), x€B are differentiable manifolds (e.g.
when (E,r,B) is smooth [40]),_0ne can consider the class of smooth
transports along paths obeying the condition .

7 epifrG (), w0, sited, (1.7
s——) R

where Diff{M,N) 1is the set of diffeomorphlsms from the manifold M
on the manifold N.

Any path 7»:[0, 1] —B is called canonical (canonlcally de—
fined). Its inverse path is g_:=yetr., whére < :[0,1]-—[0,1]
given by zf(s)::i—s;,se[o.i] [38,39]. The (canonical) product of
the paths 7,,7,:{0,1] —B is the path 7,7,710,1) —=B such that
(1112)(5):=71(2s) for se[0,1/2} ~and (w?vz)(§)=72(2s—f) for
se[1/2,1) 138,39].

2. REVIEW OF PARALLEL TRANSPORTS IN FIBRE BUNDLES

This section contains a brief review of the concept "parallel
transport" in fibre bundles. It will be a basis for comparison of
the parallel transport with the transports aleng paphs studied in
[1-3]. ’

A common feature of most of the works [4,5,6-8,12,15-18,21-35]
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dedicated to that problem is that in them as a basic object is
taken the connection (in corresponding fibre bundles) and with its
help the parallel transport is defined. In connection with this,
one can distinguish the works {9-11,13,14,19,20,36] in which as an
initial (axiomatically given) object one takes the parallel trans-
port which, in its turn, defines (and sometimes-is identified with)
the connectlon. It has to be noted that in these works in contrast
to our con51deratlons in [1-3]. main attent:on 1s paid to the de-~

pendence of the parallel ;ransport on‘the purve (path) along which
it is made.

2.1. PARALLEL TRANSPORT IN DIFFERENTIABLE .
FIBRE BUNDLES‘ENDOWED_H;THVCOQNEQTIOH:—

Let (E ®,B) be locally trivial dlfferentiable and smooth (of

.class ¢’ ) fibre bundle [17,25) 373 The f1bre 7 H{n(u)) through ueE

is a manlfold the tangent space ‘of which at’ u is denoted by T (E).—
=T (n (n(u))) Ev:dently T (E)CT (E). By deflnltlon T (E) con-
s:sts of vertical vectors [5, 25 38, 40] ’

Definition 2.1 (cf. [5,35,40,413). h”cbnnéctfon {(of general
form) in (E ®,B) is a smooth (of class ¢') d1m(B) dzmens;onal Ais-
tridution T" (E):E——=T(E) such that the image ™ (E) ur—aT (E} of ueE.
lies in T (E) and is a direct complement of T (E) in T, (E). i.e.

TY(E)eT”(E): =T (E), : R C R

where ® is the diréct sum sign. By definition T:(E) consists of ho-

rizontal {with respect to the connection T"(E)} vectérs )
Definition 2.2 (cf. [5,21,3%£,40,41]). The smooth (C') path

7:J—5E is horizontal (w1th respect to the connectlon T" (E)) if its

tangent vector field 7 is horizontal, i.e. if w(s)eT “(E)}.

L ris]
Remark. In th1s deflnltlon ‘and below ‘we speak about smooth

(or dlfferentaable). of class C' paths as the correspondlng gene-
ralizations for partlally "smooth paths are trivial.

Def;n;txon 2.3 (cf. [5, 21 35 40, 413) The lift yr—a7: J——eE of
13J——+B '(fesp 'through ueE) is horlzontal (w1th respect to the
connection T" (E)) if 7 is a horizontal path (resp. through u}.

~For defining the concept “parallel transport” in differen-
tiable fibre bundles, of primary importance is the question of the

existence of a unique horizontal lift of a given path from the base
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in the total space of the fibre bundle through any point above it.
As has been pointed out in {401, p. 607, lemma 2, a sufficient con-
dition for this is the fibre = '(b) for some beB to be a compact
manifold. (Because of the local triviality, if this is so for some
beB, the above property will be valid alse for every beéB.) The
- existence and uniqueness of the lifting mentioned are automatically
fulfilled in principal fibre bundles (G~fibre bundies) {5,35,40,41)
where they are assured from the additional requirement for the con-
nection (called often a G-connection) to be invariant under the ac-
tion of the structure group G of the principal fibre bundle. (More
strictly, if R :E—E is the right action generated. from g&G, then
the connectlon T"(P) of the principal fibre bundle (P,n,B,G) is de-
fined by the following three conditiéns: 1°. T“(P)eTu(P)=Tu(P).
ueP; 2°.  T.(F) must depend = differeniiabiy  on uef; 3°.
R, ()= (p), where R is the differential of R [5,10,40].)
Another case for the ex1stence of a unique horizontal lift of any
path from the bases through every lying above it point is when the
fibres of the f1bre bundle are discrete {see [17}. Pp. 75- 76 and
[38], chapter IIT, lemma 15.1). The above po1nted problem is consi-
dered from a general point of view in chapter III of the,book [38]

(see e.g. sections 12, 13, 15, and 16 from it), where, in particu-

lar, are given the corresponding necessary and sufficient condi-
tions for the existence of (maybe unique) lift of the pointed above
form.

Let there be given a smooth fibre bundle (E,w, B) with connec-
tion T"(E) such that for every c’ path'z'Ju—aB and every point
uern (7 (IY) there exists a unique hor;zontal 1ift y+—%_  of 7

through u, i.e. 7 .J—-aE, ney =7, uer {J} and 7 (s)eT (E), sel.
i} u -Tu 7‘)

(We will note that this assumption for the connection, without
being mentioned, is unexplicitly wused in the considerations in
sections 1 and 2 of [9].) Let J=[a,b}, a=b. Let us note that the
considered below connections (and parallel transports) will be of
Ehresmann’s type (see [25], vol. 1, p. 314). ' a _
Definition 2.4 (cf. [5,7,15-18,21-25,35,40~42]1). The parallel
tranéport _(genefated by TM(E)) of the fibre aY(y(a)) onto the
fibre n"(r(b))'along the path ¥:[a,b]—B is a diffeomorphism

9,1 (7(a))—w " (7(D)), : (2.2)

such that if uen '{y(a)), then wy:uk—awy(u):=§u(b), where
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;u:{a.b]——aE is the unique horizontal 1ift of ¥ in E through u.

. Definition 2,5 (cf. [5,9,40]). The parallel transport defined
by the connection Th(E) is a map ¢ from the set of c! paths in the
base B into the group Morf(E,n,B}) of the bundle morphisms of
(E,n,B), such that if y:[a,b]—B, then PIT I €
eDiff(n '(¥(a)),n "(#(b))}), i.e. the image w_ is the defined ‘gy
Th(E) parallel transpert along 7, which is anvelement of the group
Diff(n '(¥(a)),n (#({b))) of diffeomorphisms between the fibres
7 H(a(a)) and 7 (¥(B)). :

‘Proposition 2.1. The parallel transport ¢ has the following
three basic properties:

- &) Invariance -under or1entation preserving parameter changes,
i.e. if 7:[a,b)—B and 7:[c,d]—fa,bl, c=d, asb is an orientation

preserving qlxzeomorpnlsm. then .

o %9?:?7. ,- f : R - @3
b) If 1 t[0,11—B is the (canonical) 1nverse to- 7.{0 1]-—43
path, i.e. (s)-w(l s), se[o 1], then " -

v1=(w7) . R ' ' 7 O (2.9)

€) If 7;,7,:[0,1]—B, 7, (1)=7,(0) and v, is the (canonical)
preduct of 7 and 7, (see Sect. 1), then '
v, . =0, %9 . ' : (2.5)

¥ T Y

Remark. Because of (2.3) it is enough to consider (2.4) and
{(2.5)," as well as any other property of the parallel transport,
only for canonically defined paths in spite of the fact that they
are valid also for arbitrary ones.. .

Proof. The proof: of this proposition can be found; for exam-
pie, in [5,7-10,13,14,18,401.m’ .

Here we shall drop the generality of the above considerations
and till the end of the present section we will deal with the spe-
cific case of principal fibre bundles [5,15, 21—24]

. At first, let us note that in princ1pal fibre bundlés the para-
11e1 transport [ along y commutes thh ‘the r1ght action: R ' gEG of
the structure group G on the total space of the fzbre bundie
[8,15], i.e. v, °R =R ¢9  for arbitrary path v and eVery gea,

on the other hand, in these fibre bundles the parallel trans-

~ port can be defined uniquely also by ‘the right action of G (see

e.g. [40], p. 632, theorem 1 and [9]). In.fact..let y:la,b]—B and
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uen (#(a)). Then, due to the local triviality of (E,mn,B) {see e.g.
[43], p. 48}, there exist a neighborhoed U of y(a)=={u) ani a dif-
feomorphism yim {U)—sUx@, w(uw):=(n{u),x(u)), where x:m  (U)—mC
is right invariant, i.e. x(Rgu)=x{u)g. ge@, and hence

(Rpow ) (m(w), 2(@)) =R =" (m(Ru), x(Rw) =97 ((W),2(W)g).

Denoting by e the unit of G, we find:

o (0) = (po97)(a(a).x(u)) = (pov )(a(a),ex(W) = (B oR, o
- - _ ‘o -1

W g(a),e) = (R, ee v )(a(a),e) =(R,,ev7 ) (a(B).q,),

where in the last equality we have used the fact that
(o oy Y)Y (x(a),elen" (1(b)) and consequently there exxsts a unlque
q.eG. which does not depend on u and is- such that (w oy’ )(r(a) e)=
"¢ (7(h),q ). So, in principal fibre bundles the’ parallel “trans-
port v, along y 1is given by the equality y {u)= (erm
oy )(1(b),q ). Hence, the definition of a parallel transport '3 is
equlvalent to the definition of a. map ¢ from the set of ct paths in
B onto G such that q.gk—aq .- e -
Proposition 2,2. The map g gk—aq has the propertleS'

C(2.8)

QZ°T=97'

s, =(37", (2.7
(2.8)

9, . =3 9 .,

?172 ?‘ ?2'

where. 7, T, ¥, 7“; T, and ¥,¥, are defined in proposition 2.1.
Proof. The equalltles (2 6)-{2.8} follow from the def1n1t10n
of %y and, respect;vely, the equal1t1es (2.3)-(2. 5) ne s
Let us note that in some works, e.g. in.{11,17,19, 26; 36 40],
the th;rd property of a parallel transport is expressed not through
the equality (2. 5). but by - ‘ - Tt
@ =y, °¢ ’

L PLPURE PR

whiCh,”generaliy. i not trie when,usingfthe.acqépted"by'us'nof
tions: as. ¢ acts 3 on
(2.57). For’ (2 §-) to be valid, as pOIDtEd out ‘in {17], p. 76, onhe

" (2.5%)

has:teo change the orientat1ons of Ty x ) and 1 7 He in fact from

(2 5) and. (z 4) 1t follows “that - :H-”'.- L

oo, )72 oCo, ) =0, _;.;
‘p(rlvz)_- ?17-2)‘ "("’2 o) ("’a'l)- ("°) I CR T C AN
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the "left, then (2.5). is valid but not.

-the map w:vk—ﬂa.

11, 19 20, 36 39 40} 1n which thls questlon is. set

Plar) TP ) (2.9)

S0, if we make the change by, =(¢ ¥, (2.87) win be valid but

not {2.5).

Such is the case, for lnstance, in the works f10, 11,19,
20) in which the parallel transport ;s defined as the map
w':vk——%¢7.~ y ,(W(D))——an (¥(a)), for which, due to (2.9},

(2.5") is true.
As regards the property (2.8) (in principal fibre bundles) in
its right hand side the terms are written in a needed order as q -
acts. on  the right but not on the left as. Oy
At the end of this sectxon we shall stregg the £

tre the fact ©
properties (2.3)-(2.5) of the parallel. transport ¢ express their
dependence on the cyrve of- transport. From this viewpoint, there
naturally arises the question of the “continuity" or "differentia—
bility" {(the "smoothness") of that dependence. The author knows two
approaches to_ that pfoblem. First, in the set of smooth: (of class
c! ) paths a topology is Antroduced (see e.g. [14) and [38), p. 104)
which, in particular, may be generated by some metric (for a case
of closea paths see {13]), which is used to study the smoothness of
-And second, a (generaliy multidimensional) smooth
deformation of y is made and the dependence of ¥, on that deforma-
tion [9] is investigated i.e. the class of homotopic with y paths -
connecting ¥(a) and 7(b) is considered and the dependence of a pa-
rallel transport along these pPaths on the parameters of the used
homotopy is 1nvestlgated {38].

2.2. AXIOHATIC,APPROACH TO THE PARALLEL TRANSPORT
IN LOCALLY_TRIVIAL FIBRE BUNDLES

The axiomatic definltlon of a parallel transport in locally
tr1v1a1 fibre bundles is based on the idea of a (diffeomorphic)
mappzng of the fxbres of  a g1ven flbre bundie one onto _ancther.
More preczsely. 1n the known 1o the author 11teratnre [9-
1t is put in the
following way. Let (E,n, B) be a 1oca11y trlvxal fibre bundle and .
X X eB To any path ¥: J—B, where J=[a,bl, in the base B connec-

ting X, and_xa, i.e. for whlch 1(a)—x “and y{b)=x o 8 map (diffeo-
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morphism) ww:w't(xl)——an'i(xa) is put inte correspondence and the
dependence of e, on 7 is axiomatically defined. Namely, on £, are
imposed two kinds of restrictions. Firstly, these are conditions of
a functional type defining the "change" of £, when with the path ¢
some operation is made (e.g. changing its orientation or its repre-—
sentation as 'a product of other paths). Secondly, in an appropriate
way the_“smoothness" of the map 7F—ﬂ% (conditions for smoothness)
is defined. We shall note that the defined in this way parallel
transport is sometimes called a global or an integral connectlon in
the fibre bundle [9,19}.

A scheme for solving the stated above problem for an axiomatic
definition of the parallel transport in leocally trivial fibre
bundles has been introduced, maybe for ihecfirst time, in the work
f19], -after which, with little changes (following the context or
using some features. in.different special cases (e.g. in principal

or homogeneous (associated) fibre bundles)), - it" is repeated “in

other publications of the. same author [10,11,36].

The above question, but in the "infinitesimal" case (the:

points Z,.and x,.are infinitely near in’ a coordinate sense), is
investigated in the works of G.F. Laptev (see [20] and the given
therein references of the priﬁted'works of G.F. Laptev).

Ref. [9] contains a more general consideration of the problem,
which iz analogous to- the one of Subsect. 2.1, but in [9] a more
general concept for- connection (“infinitesimal nonlinear" connec-
tion) is used which is due to the replacement of the tangent sbaces
to the corresponding manifolds with the Grassmanian manifolds con-
sisting of their one dimensional (linear) subspaces.

In {40), part II, sect. 24 the above question is described
but, in fact, only a construction of a parallei transport by the
method described in Subsect. 2.1 is made.

In the above sense, the defined in [39], sect. 3.2'transport
along paths in an assembly of groups (a'(flét)utopological fibre
bundle, the fibres of which are groups) is also a parallel trans-
port. ‘ : S . : c . 7 .

Form here till the end of the present subsection we shall make

comments on the axiomatic definition of the parallel transport 1n:

the mentioned above references and, 1n connectlon wzth our purposes

attention will be paid mainly to the condxtlons of functional cha—;

racter.
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Before going on,.let.us note that in the.cited literéture_
instéad of an arbitrary closed interval J=[a,b] the unit interval .

I=[0,1] is used, i.e. I=J|a=mb=1‘ This 'is not important because of
the invariance of the parallel transport under orientation preser-
ving changes of the parameter of the paths along which it acts (see
below eq. (2.11)).

Let (E,n,B) be a locally trivial smooth fibre bundle, J=[a,b],
xl,xaeB, ¥:J—B be a c! path, r(a)=x1 and 7(b)=x2. The parallel
transpert in (E,n,B) is a map ¢ from the set of c! paths in the

‘base B [(38] onto  the group Morf(E,m,B) of bundle morphisms of

(E,n,B) [17,22,25]), such that-

v:rn—wienifm'_‘_(a;a)')Ln“(w(b))). o (2.10)

The first group of restrictions imposed on ”7 usually. eoo-
tains (2.3)-(2.5), i.e. it is wanted ‘that ;

: L (2.11)
'V’,‘,o,c-%,. 7 ‘
o Sl (2.12)
rp_’_- (9’?) » - . . B -
o - (2.13)
¥y v "% °v7 '

where 7, %, T, T, and 1 7, are deflned in proposltlon 2. 1.

The condztions (2 11) -{2. 13), which generally are 1ndependent
are postulated, for example, in [10,11,19, 361, where 1nstead of w
g :=r(r). ‘is used, as a consequence of whlch (2 13) is wr:tten

in the form {2.57) (with o instead of Ppr and, besides, -the paths
¥ and y':i:=yetr are called’ equ1va1ent which is denoted by 7.7', and
(2.11) is written as 67-u7 for 7.7°).

In [40] the restrictions (2.11)-(2.13) are mentioned but, in
fact, they are not used for an axiomatic construction of parallel
transports. ’ S ‘ .

In [9], attention is paid uniquely to the condition (2.13)
which taken together with the corresponding condition for smooth-
ness defines therein ¢ as an lntegral connectlon of the fibre
bundle. As in this work the fuil proofs of the stated there propo-
sitions are not given, part of which are not correct (e. g the ex1-
stence of a unique lift is supposed (see Subsect. 2.1),'someth1ng
which generally is not true {see e.g. [38, 40])), the author of the
present text was not able. to re-establish them to an end, so it is
not clear whether {2.11), (2 12) or some other restrictions on @

are used unexplicitly in [26].



Usually, as a consequence of other restrictions (resp. inde-
pendently)'(see e.g. [11,19,20]) ¢ satisfies (resp. on ¢ is impo-
sed) the restriction

¢ =id - . ra:{a}——e{xa}, % €B, aeRw, (2.14)

i.e. to-the degenerated into a point path there corresponds (resp.
to correspond} the identity map of the fibre over that peint.

For example, in [14%,19] » =7|[0 t], te[0,1] is put to be the
restriction of ¥ on [0,t])c{O, 1] and it is requlred that lim ¢

. t.—)D t
=id . {a functional condition) and that the princxpal part
miyto)y . L L. C. .
of the deviation of ®y from id should depend smocthly. on

. 13 = Ttriony
7, and ét (condition for smoothness) from where, evidently, follows
(2.14). On the contrary, if (2.14) is taken as a base, then the
first of these restrictions will be a consequence from the condi-
tien for smoothness (which, in fact, needs a concreﬁe and sirict
formulation (cf. [S1)).
Definition 2.6. The map PITr—P,, where Oy satisfies (2.10)-
(2.14), is called an ax1omat1ca11y deflned parallel transport
Remark, In [40], p. 608 ¢ is called an abstract connection.
From the descrlbed “here ‘approach to the parallel transport a
little aside” are the 1nvest19at1ons of G.F. Laptev (see [20] and
‘the references in it) due to their coordznate and local (or strict-
ly - infinitesimal) character. As a consequence of this, the func-
tional conditions and the conditions for smoothness (differentiabi-
lity) of a parallel transport are given in a unified way (sée [20],
p. 46-4T7}, not sharply separately as in our text or in [9].. Fronm
the above conditions in [20], p. 47 (see therein condition ¢)} only
(2.14) is given, but (2.11)-(2.13) therein are a censequence~from
the explicit coordinate and infinitesimal form of a parallel- trans-
port Besides, in [20] w is used instead of w

As has already been sald above. the second gréup of Testric-
txons xmposed on the map (2. 1) ‘are the conditions for smoothness.
They are deflned Ak L as a continuous or d1fferent1able (from
some class c X=1,...,, w) function of y. : : ’
In the approach used in [20] these conditions are reduced to

the requirement for analyﬁicity'of the principal linear part of an
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explicit coordinate expression for the transport from the final
peint of a transport (see [20], p. 47, condition d)).

In the works of U.G. Lumiste [10,11,19, 36} the question of
smoothness of Py, is, in fact, replaced w1th the requ1remenp

for contlnuous d1fferent1ab111ty (smoothness) of the map th—ew .
t.
tel0,1], 7, —7![0 t] with, maybe, some modifications depending on

the concrete case under consideration, as is, for example, in [36],
p.206, condition ¢3 where the_concfete properties of the homoge-
neous fibre bundles are used. This condition for smoothness may be.
pﬁt in the first of the types-described at the end of Subsect. 2.1
as it uses the topolegy of the real 11ne (instead of the one in the
set of smooth paths in B)Y.
we‘snall-espec1aily mention the work [9j where the important
role of the conditions foi smoothness is stressed and they them-
selves, in the considered there cases, are formulated strictly and
clearly. T o -
At the end of this section we shall only mention that there_
also ex1st a thxrd group of cond1t1ons which somet1mes are’ 1mposed
on the map (2. 1) and whlch are 'connected with the concrete struce
ture of the 1nvestlgated flbre bundles. They usually define the
"intercommunications® of the map (2.1) with the (structural) group
of transformations acting in the fibre bundle. Typical examples of

‘this are the conditions o2 and ¢4 from {36], P, 205-206 which

concern homogenecus fibre bundles and the condltlon w OR =R oa.par for
commutation of wv with the right action R ., geG of the structure
group G in the case of principal fibre bundles {8,15]). T

3. THE AXIOMATICALLY DEFINEP PARALLEL TRANSPORT
AS A SPECIAL CASE OF TRANSPORTS ALONG PATHS

_ Before comparing a parallel transport with transport along
paths we have to note the following. The axiomatically defined pa-
rallel transportr is considered- usually, along canonically given
paths #:[0,1]—B, which is significant when defining explicitly
the canqnicelly inverse path ¥_ and the canronical product of two
paths (see Sect. 1 and [1]1, Sect. 3). Because of the invariance
under parameter changes of the parallel transport (see Subsect.
2.2), this restriction is not essential and it is a question of
convenience and easiness in the corresponding investigations. This
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circumstance shows that the parallel transport must be compared not
with the general transport along arbitrary paths, but with trans-
ports along the 7:J—B, where J is a closed interval, i.e.
J=[a,bl.. The importance of this restriction comes from the fact
that, in the general case, the transports aleng paths are not inva-
riant under parameter changes, i.e. they do not satisfy (1.6}, so
they can explicitly depend on the path of transport.

' Let I be a transport along paths in the fibre bundle .(E,n,B)
and y:fa,b]—B. To I we assign a map L2k L WP ‘defined by

0 =1 in (3(a)) o (3(B)) - ' -3

Lemma 3.1. If I7 is a transport along r satisfying additional
conditions (1.5) and (1.6), then the map piy —, defined by (3.1}
satisfies the equalities (2.11)-(2.13) and

17 = o(p ), s,ted=la,b]l, : ' (3.2)

where T, .[a b}—-)[a s], s€[a,b] are for s>a arbitrary orxentatmn

preser\rlng dlffeomorphlsms dependlng on ¥ through the interval J.
Proof. Firstly, we ‘shall prove equality (3.2). Using sequr_en—

tially (1.2), (1.4), (1.5), (1.6) and (3.1), we get:

)-1 le[a t! [f”la's])-l:

s ¥ 17 T 7
1 =I el =1 O(I Amm———}s a—3t - a———3g

s——t a—t e 1 a—t

=Ia’|h'” o[I’I[a’” }-l=I?UTt 0[1101: ]-1=<P (o )_1.
‘l:':ta)-——-—)‘r.’:(b) ‘t:(a)-—-—-—)‘I:(b) arTIh | amb ',ro'ti z’o‘l:: .
The property (2.11) follows frém the equality (1.6): if
i [e,d]l—f[a, b] is an orientation preserving diffeomorphism, which,
in particular, means z(c)=a and t(d)=b, then from (‘1 6) and (3.1),
ve get 'pg'o't—I:-:i-)d- z'te)——-m;n AI':’———m:‘”a-' '

The property (2.12) is a consequence of (1.8} in which, because
of y_:=zyet®, 7:[0,1] —B, we have to put t=7° (see Sect. 1):. Under
tﬁese“assumptions. from (3. 1), (1. 6) and (1 4) we get o '

oy =1 =Irc T e _If—ao"(“’)

- T_40)——T_ (1) i
The property (2.13) is a consequence of [1}, prioposition. 3.4
(see therein eqg. {3.4)) in the case of a canonical choice of a pa-

rameter x, i.e. (see Sect. 1 and [1]) for. x=x°:=(0,1;1/2;1:,t:).

with 'c::sr-——)ZS, sel0,1/2] and 'r:-:ss-->2.s-1.. se[1/2,1]. (It should be
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noted that the proof of proposition 3.4 of [1] essentially uses the
condition (1.5).) Then, from (3.1) and eq. (3.4) from [1], we get
¥ ¥ 7 7 7
@ =Ilz=Iz 0]:l =Iz DI‘ =p_ op ,
¥

¥.¥, 0=t TO0——T (1) T {(0l—n 0—31 00—t Py
12 2 ST 2 ‘1

with a' 3’ '"(r 7, )

Lemma 3.2. The defined by (3. 1) map ¢: 7!-—)qp for any transport
along paths I has the property (2.14).
" Proof., If 7,:{a}—{x}, x €B, aeR, then from (3.1) and (1.3),

¥

- a —_ T

wg get 2, -Iil a-l.d . =id . N |
a E ('J ta)) n (x )

Theorem 3,4, If I is a smooth transport along pat‘hs, i.e,
S AR eDn‘f{n Hat@)), a0, J—)B, J=la,bl, . (3.3)

having the properties (1.5) and (1.6), then the defined by (‘3;1)
map go:w---m is an axiomatically defined paraliel transport. Vice
versa, if ¢ is an ax:.omatlcally deflned parallel transport then
the map (3.2), 'in which -c + I ——fa, s], ‘sel are arbltrary orlenta-
tion presermng dJ.ffeomorp‘hlsms and y:J —B, def:.nes a smooth
transport aleng paths I: 7:—-—)17 17:(s, 1) |—>I7
additional conditions (1.5) and (1.6).

Remark, If ¢ is an axiomat.lcally defined parallel tfanspért,
then, because of the properties of ‘t:, sejJ, we can replace in
(2.11) » with »[[a,s] and put in it 'r='c:. In this wéy.' we obtain
=p as (',;r[[a,s])o'r:=3'o‘|::. Therefore, (3.2)

. satisf)-ring the

3

v =p
7]ta,si (r[ts,snroe’ yor
N 5 5

is now equivalent to

¥ _ a0 . .
Is—-}t_w'llla.tio(w?lla.s}) s S,teJ=(a,b}." . ‘ (3,4)

Proof. The first part of the theoi‘em is a consequence of

lemmas 3.1 and 3.2, definition 2.6 and the fact that now (2 10} is,

due.to (3.1), another form of (3.3).

On the contrary, let ¢ be an ax1omat1ca11y defined parallel
transport (see definition 2. 6). : : '

If in theorem 3.1 of [1], ‘we put Q—u (1(&))‘ and FZQ

=[<p J]' i (ar(s))—_en"(w(a)) ('c (a)=a,” = (b)-s), We see that
voT - N -
the . map {(3.2) is a transport along 7y from s to t. So, Iiy—17,
¥
where I7:(s,t) I ! is a tran;port alt»ng paths. _
The smoothness condition (3.3} follows from (2.10) and (3.2)}.

To prove the equalities (1.5) and (1.6). for the. transport

13



along paths‘ I, we shall use the following ‘lemma which will" be
proved below after this proof.
Lemma 3.3. If ¢ is an axiomatically defined parallel trans-

port, then the maps .(3.4) (or equivalently (3.2)) admit the repre-

sentation
7 - €is,t)_
Is —-)t._(wvl[min(s.ti,max(s,t))),
, for sst :
= q’a'lls t] , (3.5)
)'1. for szt o

7|{t =)

where é(s.t) +1 for sst and (s, t) —1 for s>t (or szt).
From (3.5), because of (¥|J')|J'=r{3" for any subinterval
J’sJ. it immediately follows
17 _ITIImln{!.t),maxts t1 - . (3.6)
s —t 8 —t ) i
which by {1], propos1tion 2 3 1s equ:valent to (1. 5) -
If ©:J” —J is an orlentation preserving diffeomorphlsm, then
{zoz) |ir,s)l=(2|[z(r), 1(3)]or for every r,s&}” such that rs=s. Combi-~
ning this equality with (3.5), letting s,tel”, A:=min(s,t} and u:=
:=max(s t).rand using (2.11}, we get: '

)Cts,t) )C(S,L)

Ivot L =(p

s — ey [IA, =(¢

rftTan, Tynet

)Cts,t) )CKT(S),T(t))_ g

=(w(7[It(A),ﬂml) =(w(7ll1'(?().'t(j.l))) TTTs) —aTIL)

as r=s leads to w(r)=v(s), r,s<l”.n

The proof of lemma 3.3 is based on

Lemma 3.4. If ¢ is an axjomatically defined parallel transport
and y:J ——B, then -

= r=sst, r,s,ted. - (3.7
“lts, 01 % | tr, a1 Oy tr, 00 TOF AL

Proof. Let 11:[0,1];-3[r.s] and 12:[0,1]———e[§,;] be orienta-
tion preserving diffeomorphisms. Evidently, a1§o_§uch is the map
2:{0,1] —[r,t], defined by ©(A):=7,(22) for 2ae[0,1/2] and
1’(A):=1:2(27«—-1) for ae[i1/2,1]. Using {(2.11), the definition of the

(canonical) product of paths (see Sect. 1), and (2.13), we find:
@ oq;ll. %

Yrite, 0 x| ir, 0" vot - 10t2=

Proof of lemma 3.3. Combining (3.7) and (3.4) for asssts<h, we

14

"’(-.,-»-rl ) (ro-rzaz"?}o-t:'pwl tr,tl

Is —)t.:“,?i[a,tlo(

get

¥ = . -1
I ™% 1,1 Py a0

= -1_
-w7|!5-‘1°¢7|[a-=!°(w?|la,sl) hw?][s,t]

and for ast=s=b, we obtain

¥ )—1

“r[1a,0 ) =(¢?|Et.s;)-l'. :

=v7|ln,tl°(¢?llt,s]°¢7fla,t)

Theorem 3.1 is a strict expression of the statement that the
axiomatically defined parallol transport is a special. case of tran-
sports along paths in fibre bundles, and that any transport along
paths -satisfying certain additional conditions, namely (1.5) and
(1.6), defines an axlomatlcally defined parallel transport. Thls
theorem also expresses a one-to-one correspondence between axloma—
ticaily defined parallel transports and . transports along ‘paths
obeying the cond1t1ons (1 5) and (1.6). Speaking more freely, we
can say that accordlng to it a transport along paths is an axioma-
t1ca11y def1ned parallel transport 1f and only 1f it sat1sf1es the
addltlonal condltzons (1.5) and (1 6). . ‘

Propesition 3.1. If a transport along paths I (resp axiomat@—
cally defined parallel transport ¢) defines through (3.1) (resp.
(3.2)) the axiomatically defined parallel transport ¢ (resp. trans-
port along paths I), then the generated by ¢ (resp I) by means of
(3.2) (resp. (3.1)) transport along paths (resp ax1omati£ail} de-
fined parallel fransport) coincides with the initial transport
along paths I (resp the axlomatlcally def1ned parallel transport
¢).

Proof, Let ‘I (resp. ‘¢) be the génorated by ® (resp 1) tran-
sport along paths (resp. axlomat:cally defined parallel transport).
Using (3 1) and (3.2);, we find . :

o PTY o - . -

‘17 =0 . oy J=I:ii:6bo[ :-jiéb] ]=IvJ‘ -3 e

_ TL8) =T (1)

ox, - , ___Ia'M_MBI‘.»'_“)=Iar_)t
T b ——o7 ) ° SRR R

{resp. '¢_ =17 =0 og” ! =p eid )

— =g ).
v e ¥ yer! yer 7 tirian)

¥
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4. THE GENERATED BY DERIVATIONS OF TENSOR ALGEBRAS
TRANSPORTS ALONG PATHS AS PARALLEL TRANSPORTS
IN TENSOR BUNDLES i

In this section. by n we denote a c! path in the manifold M

such that n:[a,b]—H for a definite a<bh, a,beR.
" Let S be an S- transport along paths (in the tensor algebra

over M) [2]. :

Definition 4.1. The S-parallel transport associated with the
S-transport S is a map ¢ from the set of ct paths in M into the set
- of bundle morphisms of the . tensor bundles over these paths such
that : ’ ‘ ’

o1 50 1 =87 T £y 3T MY aaeh L ta.1)
AT, am—ab” Ttad M T iy ¥ T VEe S

where T (M) is the tensor algebra at’ xeM The map w w111 be called
an Snparallel transport along {the path} . ’ ’
Lemma 4.4. If 9 is the S-parallel transport generated by an
S-transport S, V.J—~4M and s,teJ, then
- (4.2)

¥ 0 » m=y|[s,t] for s=t
=t

(wn)_’{ n=rflt,s] for szt

Proof, (4.2) follows from (4.1) and (1.4), as any S-transport

has this property (see [2], eq. (2.10) and also [3], Sect.-2}.m
. Between the S-transports. and ES-parallel transports there

exists one important difference. Namely, the S-transport along
7:J—M does not use the natural order of the real numbers which
defines ardefinite‘orientation on the interval J, while in the de-
finition (4.1) of an S-parallel transport this order is used expli-
citly (asb). The last fact is the reason for the appearance of two
different cases (SSt and szt) in (4.2)., This fact also reflects the
difference between (1.6) (or {(4.4)) and (4.5) (see below proposi-
tion 4.2). '

Proposition 4.1. If na:{a}——a{ma}.'aem and maeH, then

(4.3)

Proof. {(4.3) follows directly from (4.1) for b=a and (1.3)

{see also [2], definition 2.1).m
Proposition 4.2. Let +3u:[a,b]l—M, =:[a’,b’)—[a,b]l be a
diffeomorphism and the S-transport s along # be invariant under
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the change v of the parameterization of %, i,e. (cf. (1.6))

s?“"# _S'a'

s—3t Tls)—T(L)’ s.tefa’, b’ ]. (4.4)

Then, for the S-parallel transport g, corresponding to S, there
holds '

o= for z(a’)=a, (4.5a)

ﬁ(w 1!, for t(a’)=b, : (4 5b)"

i.e, the S-parallel transport is invariant under orientation pre—~
serving change of the parameterization (case (4. Sa)). but when this
change does not preserve: the - erientation it is replaced by 1ts
inverse map (case (4.5b)). .

Proofr,U51ng succe551ve1y (4.1) o (4.4},andr(4;2)-for-r=n. we
find ‘

’ “ o 4 o ‘I
oo Sn?f_ﬁb s7 - - vn 7 for,t(a J=z(b )
L] 2 f(a VT’ '(w')-‘ for t(a’ )Ef(b y

which, due to that T is a dlffeomorphlsm, is equ1va1ent to (4. 5) .
" Proposition 4. 3. Let 3 :—not be the canonically 1nverse path
to m:{a,b}—sM, i.e, ° :{a,b] —{a,b], < °{s):=atb-g, ‘se[a,b] (cf.
Sect. 1 and ([38,39]). If (4.4) holds for changing the orientation
maps 7 for some S-transport, then for the correspondlng to it 8=~

parallel transport » there holds the equality
n =% )7 o N C 3

Proof. This result is a corollary from (4 1). (4. 4), (1.4) and
the inequality (1 ) (a)e(t )"(b) as, by defxnltion t changes the
orientations. Eq. (4.6) also follows from (4.5b) for T‘T N

‘"Proposition 4 4, Let n.n, be the (canonlcal) product of the
Paths LN [0, 1}—~4H, ‘h=1,2, n, (1)-n (0) (see Sect. 1), If an S-
transport defining the S—parallel transport v satisfies (4 4) for
preserving the orientations r and (1.5), then:

nn

o =p_ep_ . " o (4.7)
1 . . oL : B

Proof, Putting 7,(s)=2s, se[0,1/2] and < (s)=2s-1, | sel1/2.1]
and using sequentially (4.1), -{1.2). (1. 5) and (4 4), we get:
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b Sn,nz - Sn1n2 o, Sﬂ,nz i} S(n1n2)|!1/2.11 .
nm, 0—1 172 —1 o——31/2 1/2—31
(nlnz)]lo.llzl_ n,etT, . 7,01, _ snz
0—31/2 T Pisz—n 0 —ts2" T, t1r2)—% (1)
n n 3 .
1 ] 1 _
Sti(o)utéfltilzJ = S ® Sy, = wn2° ¢n1"

In propositions 4.2, 4.3 and 4.4 one essentially uses the
acceptance for the validity of (4.4). This is not random as the
equality (4.4) expresses the invariance (under certain conditions)
under the changes of parameterization of.an S-transport’s path, and
all {parallel} transports. (see Sect. 2) known to the author and
used "in the mathematical and physical literatire possess this pro-
perty. .

From the above-said it is clear that under sufficiently gene-
ral and "reasonable” conditions an S-parallel transport satisfies
all basic (functional) conditions characteriziﬁg the parallel tran-

sport when it is axiomatically described {see Sect. 2.2). MNamely, .

this is the reason for calling the map (4.1) an S- -parallel trans-—
port: it is a “parallel transport" actlng in the tensor spaces over
a differentiable manifold and it is- generated by der;vat1on of the
tensor’ algebra over the manifeld. More precisely, from the above
results and definition 2.6, we derive o '

Proposition 4.5, The S-parallel transpoft generated by an S-
transport along paths satisfying along them (1.5) and (1.6) is.the
éxiomaticélly defined parallé€l transport.

The next proposition expresses some properties of the S-
paral}el transports which are specific of them asg "parallsl trans-
ports™ in tensor bundles. .

Proposifion 4.6. Any S-parallel transport Oy along a psth
w:[a,p}—M possesses the properties: :

a a) Linearity: if A’,2"eR and T‘and T" are tensors at n(a),
then: :

¢W(R'T'+A”T”)=(l')¢n(T'J+(A”)¢n(T”);' ‘ B (4.8)

b) Term by term action on tensor preoducts: if A and B are ar-
pitrary tensors at n{a), then ‘
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= ; ' ' 4.9
wn(A®B)—(¢n(A))®(¢n(B)), ( )

c) Commutativity with the contraction operator C:

9,°CCop, =0; (4.10)

d) An identical action on scalars: if AeR, then
A)=A. : . : (4.11}
2,2 , , o _

Proof, Equalities (4. 85—(4 11) follow directly from definition
4.1 and, respectlvely, the propertles (2.3)-(2. 5) and {2.13) of [2]

= Lo e ek o = : S
the S-iransporis.s - . . T :

Q
g}

5. CONCLUSION

The main result sfiihis-ﬁb}k-is that the theéry of traqsports
along paths in fibre bundles is sufficiently general and includes
as its special case the theory of parallel transports, and also,
consequently, the connection theory. An essential role, as we saw,
in comparing these theories was played by the additional condition
(1.6). The transports along paths satisfying it depend in fact not
on the path of transport 7: J———eB but on the .curve of transport,
i.e. on the whole class of paths {701} in whlch ¥ is a.1:1 map of
R—lntervals onto J. Because of the - pract1ca1 1mportance of (1. 6),
we shall consider it below in the most used case, ths onerof 11near.
transports in vector bundles [3].

Let L be a 11near transpert in the vector bundle {E,m, B) [3]
If r'J”———aJ_ls 1:1 map, then eq. (1.6) reads’
steJ” e . (5

-

701.: ) ‘
L s—3t l‘-r(.sl—ntu'

K

Let a field of bases 1n E be fixed along 1.3——43 in whlch
H:(s,t;7) ——H(s,t;7), s,teJ and T (s) =(8H(s,t;7)/at) |/, be, res-
pectively, the matrix and the. matrlx of the coeff:czents of L [3]. )
Let 37 be the generated by L derlvat1on along K and (Iﬁa){s)- Dxu'
for a c- sectlon ¢ of’ (E ﬂ B) (see [3]. eqgs. (4. 2) and (4. 3))

Proposztxon ‘5.1% - The cond1tion (5 1) 1s equ1valent to’ any of

the following three equalities:
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H(t,s;7et)=H{T(t), v(s);7), s,tel”, ' (5.2)

o (s)= 2480 T (e(8)), sed”, (5.3)

p7°%s dels), D:‘), seJ”, (5.4)

Proof. The equivalence of (5.1) and (5.2) is a corollary of
the definitioen of H (and the linearity of L; see [3], Sect. 2).
Egs. (5.3) and (5.4) are equivalent because of the connection (4. 7)
or (4 14’) from [3] between T (s) and D’

S0, it remains to prove the equzvalence between (5. 2) and
(5.3). : o a

pifferentiating (5.2) 'with respect to s and 'ﬁsing ‘fw(s)}é
:=(8H(s,t;¥)/0t)|, _, we get (5.3). On the contrary, if (5.3)
holds, then using the same equality, the representatlon H(t,s;7}=
=F~ (t,r)F(s.r) for some matrix function F~ (see [3], proposition
2.4) and dF"/ds- F- (dF/ds)F . e easily obta1n:

H—[H(v(t) t(S).?)H (t,si700)) =

dT(S)

= H(t(t),t(s);w)[ By (r(s)) - r7ot(s)]ﬂfl(t,s;yor) = 0,

From this, due to H(s,s;r):ﬂ (see [3], eq. (2.12)) and (t=s <
(ti= =t(s8)), we derive (5.2).»

If B is a manifold, evident examples of linear transports
along paths satisfying (5.3), and hence (5.1), are the ones charac-
terized by the coefficients given by (3], eq. (5.1) and, in parti-
cular, the parallel transports generated by linear connections.

The definition of a parallel transport in principal or asso-
ciated fibre bundies by the map rr—aqweG (sée Subsect., 2.1) is
widely used in the physical literature devoted to gauge theories
[13,14.‘29-32,43-45]. In them, the parallel transport is given glo-
bally through an ordered (called also P-, T-, or chronolegical)
exponent [14,40,45] along 7, i.e. 7r—aqr=2expfA.dx'. where A, are

the components of the connection' form (or, i; physical language,
the gauge potentiais) S0, locally along a path 7. connecting the
1nf1n1tes1ma11y near points X and x+dx it 1s def1ned by the expan-
sion 4 | 'd!-I+A dx! [11 437,

If 7 is a closed path {a contour) pa351ng through x€eB (in the

20

physical literature such a path is called a loop), then the quan-
tity W(w,x)::Pexp§A dx'! is called a Wilson loop ([29-32] and in

accordance with the above cons;deratlons it unlquely deflnes the
parallel transpoert from m {x) onte =~ (x), i.e. of the f1bre over
% onto itself. The importahca of Wilson's looﬁs is in that their
set {W(y,x): 7:[a,b}]—B, ¥(a)=y(b), xer([a,bl)}, which is a non-
abelian group and is a representation pf the group 6; loops,
contains all the information for the considered gauge theoryr[13.29—
32,43-45].
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