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1 Polynomial and rational approximations 

Surmise that considered Dauach space (B; /1 · Jl) over the field of 
real or complex uumbers has following row of properties. Let in­
finite system {g,}:'."=o of linear independent elements of the space 
exist. Let linear envelope L of all these vectors have the structure. 
of commutative algebra, where g0 is the unit of one. Describe mul­
tiplication properties in the following terms. Name linear envelope 
of first n + 1 vectors· from the shared out set by subspace of not 
greater n degree polyuomials, that- is P, = L(g0 , . •. , g,), where de­
gree fJP of nontrivial polynomial P f- 0 is defined as the greatest 
value of index of vectors 9k with uonzero coefficient from linear com­
bination represcnl.ing this polynomial, O(ag0) = 0. The <.Iegree of 
two nontrivial polynomials product is the sum of co-factors· degr<•es 
fJ(P · Q) = DP + Oq. It. is possible to divide nontrivial polynomial 
by one with residual 

VHJ' E L, Of':::; DH, 3(.J,S E L: 

H = I'· q + S, OS:::; Of', Of'+ fJQ = DH. 

Let following property take place 

VQ E L, 3T = T(Q) > 0: Vt E (O,T), 

(g0 - t · Q)- 1 =go+ t · q + o(t) E B, 
where value JJ8(t)J/ = o(t) if Q is fixed. 

Define the uuion of rational functions of ( n, m) <.Iegree as the set 
of vectors from B, which cau be represented as ";product of a uot 
greater n <.Iegree polyuomial aud such clemcut from B that it is tlw 
converse one for a not greater 1n degree polynotuial, that is 

R,,m = {Ru,m = P,; · Q;-,/ E B : 

P, E P,, Qm E Pm, Q;;,i E B, qm · Q-;;,1 =Yo}. 
Designate the values of the least deviation of elemeut f E B from 
subspace P, and union R,,m hy corresponding equatious 

e, (f) = inf /If - P,, /1, 
Pr~EP"' r,,,(f) = iuf. /if..:_ R,,,JI. 

lln,mER.;,,m 
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In proofs the statement, that the best approaching element exists in 
any finite-dimentional subspace of the Banach space, is used. Sym­
bol Z+ is designated the set of integer nonnegative numbers. 

According to our designations, theorem 3 from the article (1] is 
formulated in such manner: let k be a natural number, ek_1(J) > 
ek(f) = e,(f) > en+I(f), then e,(f) > r,,,(f). Following theorem 
amplifies this statement. 

Theorem 1. Let element f E B, m, s E Z+, natural 
number k ;::: s be fixed. Suppose that e_1(J) = +oo. Let 
ek-s-I(J) > ek(f) = ~k+m(J) > ek+m+I(J), then ek(f) > 
rk,m+s+I(f). . . - > '• 

P R 0 0 F . Consider the construction of imxiliary rational function 

R = (Pk+t,· s) ;(do'~ { Q)~1 := P~+ t ·(S t }"k: q):+ o(t) ~-•·· 
==·(I,..ij'.Pk,ft·(Pk+~+h·Q)+o(t), . (1) 

where polynomials sand Q ar~selected so that they satisfy following 
equations 

Pk+m+ 1 = Pk -1{ S _T ,Pk' · Q '- ,· .· .. 
. . l!J ~ _fk//;, ~k(f), . /1] ~ PktmH/1 = e~+m+I(/). 

It is obvious that wemust deem k-s :S: DPk :s; k, fJPk+m+l = k+m+1, 
fJQ :s; m + s + 1, ?JS < k and; in common case, the degree of rational 
function R as (k, m+s+ 1 ). Then, using norm properties and·deeming 
that t E (0, 1), we xeceiv~ following relation~ . 

rk,m+s+I (f) :S: /If - R/1 = . _ _ , .· 

- 1/(1- t) · (!- Pk} + t · (J:... Pk+m+I) f o(t)/1:::; 

:S: (1- t) ·I!J- Pk/1 + t ·/If- Pk+m+I// t o(t) = 
-. U-: t) · ek(J) t t · ek+m+I(f) + o(t) = 

ek(f)- t · (ek(J) ~ ek+m+I(f)) + o(t). 

We have the inequality ek(f) :> e);~,;,+ I (f) from the theorem condi-. 
tiorf, and if we supposed that r,;,m+s~1(f) = ek(f),we would received 
a contradiction, completing the theorem. · · · . . . . · · · 

Corollary 1. Let elemetitfE B, mE Z.j., natural num­
ber k be fixed. Let ek-1 (f) > ek (f) = ek+m (f) > ,ek+m+I (f), 
then ek(f) > rk,m+ICf). .. - . . 
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Following result generalizes first statements of the theorems 3 and 
6 from the article (2]. 

Theorem 2. Let element f E: B, s E Z+, natural num­
bers m and k :2: s be fixed. Suppose that e_1 (!) = +oo. Let 
ek-s-J(/) > ek(f) = rk,m+s(f), then ek(f) = ek+m(f). 

P R 0 0 F . Consider the-constructions of auxiliary rational function 
(1 ), where polynomials S and Q are selected so that they satisfy 
following equations 

Pk+m = Pk +S +Pk · Q,. 

II!- Pk/1, ek(f), II/- Pk+;.,ll = ek+m(f). 
It is obvious that we mustd~em k --:·~ s.al1, s. k, a?k+m s. k +.m, 
fJQ S. m + s/ fJS < k and, in comm6h case; the 'degree 'or rational 
function R as (k, m + s). Then,' using no;m prop~;·ties and deeming 
that t E (0, n_, we receive follov;ing relations 

ek(f) -

-
< 
-

,, 
-

rk m+s(f) $. II/- Rll = 
11(,1 .:._ t) · ({':._ P;) + t· (j- Pk+m) + o(t)jJ $. 
(1 .:._ t): II!-= Pkll +.t ·II!- Pk~mll + ;(t) = 
(1 :.._ t) ' ek(f) + t · ek+m(f) + J( t) = . 
ek'(j) ~ t :(e~(f)c_ elc+m(f)) + o(t)._ .. 

''· 

' 

If we supposed ek(f) > ek.f-;,.(1), we would received a contradiction, 
completing the theorem. 

Corollary 2. . Let element f E B, natural _numbers k, 
m be fixed. Let ek~l (f) > ek(f) = rk,m(f), then ek(f) = 
ek+,;, (!). · ··· 

Remark 1. One cannot substitute value rk~m+J (f) by rk,m(/) in 
the corollary 1 and index k + m by k+m + 1 in the corollary 2, 
where m = 1, without complementary conditions. Actually; in. the 
final part of' this article it is shown that fo~ any natural number. k 
such function f fromthe Hardy sp~ce H2(D = {z: lzl < 1}) exists 
that for it the following relation takes place. . . 

ek'-l(f) > ek(f)' == rk,J(/) == ek+)(f) > ek+2(f). 
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Following result is a generalization of the corollary to the theorem 
3 from the article (1]. 

Corollary 3. Let element f E B belong to the closing 
of the linear convex of all degrees polynomials L too. The 
condition en(!) = rn,nU), 'Vn E Z+ can be satisfy only in 
two following cases: either f belongs to the space Po or it 
is such polynomial of k > 0 degree that 

eo(/)= ek-J(/) > ek(f) = 0. (2) 

P R 0 0 F . Suppose that in the sequence {e,;(/)}~0. there are 
such values e. (f) and es+m+l (f), s :2: 1, m :2: 0, that following rela­
tions are fulfilled e,_!(f) > e,(f) ='es+m(f) > es+m-i-J(f). Taking 
into account the corollary 1, one can receive the inequation e.(!) > 
r~,m+i(f) .. Hence es+mU) =e.(!) > rs,m+IU) :::: rs+m,s+mU). 'The. 
contradictory with the condition en(!) = ·rn,n(f),· Vn E: z+ proves 
the corollary: . . · · . . . · · .. · 

Remark 2. The form of the functions j, for which the equations 
e,;(f) = rn:nU), 'Vri E Z+ can be fulfilled, has be~nstudiedin some 
concrete Banach spaces previously. In the article [1] it has been 
proved that in the case of analyticin lzl < 1 and continuous in the 
closed unit disk functions f with the norm 

II/II== maxlf(z)l, 
lzl=l 

the condition en(/) = Tn,n(/), 'Vn E Z+ is fulfilled for and only for the 
functions f ( z) = akzk + bk. In the space of functions contiimous over 
a segment the same problem has been solved in (3]; The result is the 
representation these functions as f(x) = akTk(X)+bk, where Tk is the 
Chebyshew polynomial of k degree which is shifted to the considered 
segment. The case of f E Lp(r), 1 < p < :ci,,··where r is a rectifiable · 
closed Jordan curve in the complex plane h~ been' considered in (4]. 
The result is that only single value k == 1 can be in (2). That is in 
the space the function /, for which the condition en(!) = rn,n(/), 
'Vn E Z+ is fulfilled, can be only linear functlm:i. This restriction 
can be received from the following st~tement ofthe article (4]: ·let· 
n E z+, f be fixed and rn,nU)>O; then rn;r.(f) > Tn+l,n-i-J(/). 

5 



For each natural number n designate the quantity of indexes m E 
[0, n], n ;:;.: 1, for which the values of the best polynomial of m degree 
and rational of ( m, m) degree approximations of the given function 
f E B are equal, by the symbol N(n). Next result is an analog of 
the corollary to the theorem 3 from the article [2]. 

Corollary 4. Let element f E B be fixed. If the finite se­
quence { r m,m(f) }:;.=O is strictly monotone then the following 
inequation is held 

N(n)~2+log2 n. (3) 

Rernark 3. It should be noted that the strict monotonicity of 
the sequence {rm,m(/)}:;'=0 anq fulfillment of the equation rm,m(f) = 
em(!) for some values of the index m E. [1, oo) are realized, for exam­
ple, in the space Ij2(D). In fact, in the article [5] it has bee~ proved 
that there existehtire functions J, for which e1(f) = rj,1(!). ·· . 

Remark4. It is of interest to compare the inequation (3) vvith the 
result of Dolzhenko Ye. P, which has been proved in the article [6]. 
There exist such continuous over a segment functions that following 
equation takes place 

lim N(n) = 1. 
n-Hx> n. 

2 Approximation by rational functions with fixed 
"denominator" 

Turn to considering of approaching of elements from B by the sub­
spaces of rational functions with fixed "denominator" Qi 

R~(Qi) = {Pn · Qj1
: Pn E Pn}. 

Designate the amount of the least deviation of the element f from 
this subspace by th~ symbol · . · 

. ' . . 
r~(f;Qj}= inf llf-Pn.·Qj1/l, 

. PnEPn · . . · 

where the top index."*" denotes that we consider the subspace of 
rational functio~s withfix~d "de~ominator'', and Qiis this "denom­
inator". Introduce usefur' designation of the best approaching vector . 
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for f from considered subspace as P,~ . Qj1, that is 

r;.(f;Qj) =II!- P~ · Qj 1ll- (4) 

Next result is an analog of the theorems 1 and 2 in the considered 
situation. 

Theorem 3. Let f E B, reversible polynomial Qi of 
j ;:,: 1 degree, s E Z+ and natural numbers k ;:,: s and m ;:,: j 
be fixed. Suppose that r-:_ 1 (!; Qj) = +oo. · 
(i) Let rk-s-l(f;Qj) > rZ(f;Qj) ='. rk+m:_j(f;Qj) > 
rk+m-'j+l(f;Qj), then ric(f;Qj) > rk,m+s+I(f). 
(ii) Let rk-s-IUi Qi) > rk(f; Qi) = rk,in+~(f),. then 
rk(f; Qj) =rk+m-j(f; Qj). . ' : 

P R 0 0 F . Consider the construction of auxiliary rational function 

R = (P2 + t. U)· (Qi- t. V)-1 = 
- (P2 + t · U) · (g0 - t · St1 . Qj1 = 
- P2 · Qj

1 +t· (U +pg ·S) ·Qj1+o(t) = 

- (1- t) · P2· Qj
1 +t · (P2 + U + P2 · S) · Qj 1 + o(t). (5) 

(i) PolynomialsU and V are selected so that they satisfy following 
equations 

P2+m+l-i= P2 + U + P2 · S, · · V =' Qr S. 

It is obvious that wemust deem k- s ~ oPg ~ k, 8P2+m+I-i = 
k + m + 1 - j, aS ~ m + s + 1 - j, 8V ~ in+ s + 1 and, in common 
case, the degree of rational function R as (k, m +s + 1). Th<:n, usi1ig 
norm properties and deeming that t E (0, 1) and introduced.in (4) 
designation, we receive following relations 

rk,m+s+l (f) :s; I If - R/J = 

- 11(1-'- t) · (! -P2 ·Q-:- 1) + 
' . '. +t · (!-:- P2+m+I-i · Qj 1

) +o(t)ll ~-
< (1-t)·llf-P2·Qj1ll+ 

+t.·IIJ- P2+m+l-j 'Qj 1fl + o(t) = 
= (1 - t) · r'j.(f; Qj) + t · rk+m+I-j(f; Qj) + o(t) = 

= r'j.(f; Qj) - t · (r'k(J; Qi) __: r'k~m+I-Ni Qj )) + o(t). 
~ 



We have the inequality ri,(J; Qi) > rk+m+I-j(J; Qi) from the theorem 
condition, and if we supposed that rk,m+•+I(J) = rjJJ; Qj), we would 
received a contradiction, completing the point. 

(ii) Consider the construction of auxiliary rational function (5), 
where polynomials U and V are selected so that they satisfy following 
equations 

o · o· o s pk+m-j = Pk + U + Pk · ' V = Qi ·S. 

. It is obvious that we must deem k - s :::; 8J1 :::; k, 8Pf+m-i :::; 
k+m- j, as :::; m+s- j, av :::; m+s and, in comrrion case, the degree 
of rational function R as (k, m + s). Then, using norm properties 
and deeming that t E (0, 1) and introduced in (4) designatio~, we 
receive following relations 

rj.(J; Qj) .;, rk,m+s(J) :':: /If- R/1 = 

- 11(1- t) · (f'- Pf. Q-:-1) + 
. } . 

+t · (J- Pf+m-j' Qj1
) +O(t)jj :':: 

:::; (1- t) · ri,(J; Qj) + t · rk+m-j(J; Qj) + o(t) = 

- ri,(f; Qi)- t · (riJf; Qi)- rk+m-j(J; Qi)) + o(t). 

If we supposed ri,(J; Qi) > rk+m(J; Qj), we would received a contra­
diction, completing the theorem. 

Corollary 5. Let f E B, reversible polynomial Qi of 
j ;?: 1 degree, natural numbers k and m ;?: j be lixed. 
(i) Let rj,_1(J; Qj) > ri:(f; Qj) = ri:+m-j(J; Qj) > 
rk+m+l-j(J; Qj), then ri,(J; Qj) > rk,m+J(J). 
(ii) Let rL 1(J;Qi) > ri,(f;Qj)= rk,m(J), then rj,(f;Qj) = 
rj,+m-N; Qj)· . 

3 Necessary condition for the best approaching 
rational function 

For the next theorem we need additional property of the space B: 

VQEL: Q-1 EB, VUEL, 3T=T(Q,U)>O: 
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Vt E (0, T), (Q- t · Ut 1 = Q-1 +t· U ·Q-2 +8(t) E B, 

. where value lio(t)il = o(t) if Q and U are fixed. Designate the Banach 
space possessing this and. all prevorious characteristics by B+. 

If for the element f E B+ the best approaching rational function of 
some degree exists, it realizes global minimum of rational functions 
of the some degree deviation from f; In the space L2[a, b] necessary 
conditions for local minimum have been given in [7]. In the article 
[8] the case of rational functions of complex' argument with poles 
outside of fixed compact has been considered. For convex nonnega­
tive functional o:p. this set necessary conditions for rational function, 
which realizes local minimum, have been proved·. In our situation of 
the Banach space B+ we r~ceive . . . . 

Theorem 4. Let element f E B+, natural nu~bers nand · 
m be fixed. 'Suppose that there exists the rational function 
Pk · Q;1 f= 0, which realizes the best approaching in the · 
unity of rational functions of ( n, m) degree, that is 

rn,m(f) =II!- Pk · Q;111,. 

where polyiwmials Pk and Q, are relatively prime. Let 
8Pk = k:::; n, 8Q, = s:::; m, .>, = max{n+s, m+k}; 
then the. f91lowing equation is correct 

rn,m(f)= rt(J;Q~). 

P R 0 0 F . Designate rational function, which realizes the best 
approach in the subspace Rt(QJ) (see the definition in prevori~us 
paragraph), by the symbol H>. · Qj2, that is for which the following 
relation is fulfilled 

rt(f;Q]) =II!- H). ·Qj2ll· 
For enough small t > 0 the following rational funCtion exists in the 
spaces+.. . . . . 

Rn,m = (Pk+t·Vn)·(Q,-t·Umt 1 = 

- (Pk +t· Vn) · (Q;' 1 +t· Urn ·Q;2 +8(t)) = 

- pk . Q;1 + t. Wn. Q. + pk . Urn) . Q;2 + o(t). 
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Taking into account that polynomials h and Q, are relatively prime 
and using the reasonings which are an analog of the proof of the 
final lemma in the article [7), one can be convinced that there exist 
polynomials V,. E P n H Qrn E P rn fulfilling next equality 

H~ = Vn· Q, + Pk ·Urn+ Pk · Q •. 

So wereceivefollowing equalities 

• Rn,rn = (1 - t) · Pk · Q;1 + 
. . . . . . . . 2 

+t · (Vn · Q, + Pk ·Urn+ Pk · Q,) · Q; + o(t) = 
. . . . 1 . . . 2 '• .. ' . ' • 

= (1- t) . Pk. Q; + t. H;, -Q; + o(t). 

In this way consider next row i>f relations 

r~(f; Q,). = rn,rn(f) ::; II/- Rn,;,ll = 
= 11(1- t) · (!- Pk · Q;1) + t · (!-' H~ · Q;2) +o(t)ll::; 

::; (1- t) ·II!- Pk · Q;1ll +t·llf -H~ · Q;2ll+o(t) = 

- r~(f; Q,)- t · (r~(f; Q,)- r),(f; Q;)) + o(t). 

If we supposed r~(f; Q,) :> r).(f; Q;), we would received a contradic-
tion. Hence the theorem is completely proved. · 

Corollary 6. In addition to the previous theorem con­
dition suppose that 8Pk = n or 8Q, = m, then rn,rn(f) = 
r~+rn(f; Q~). 

Remark 5. It is not difficult to show that the degree of the 
best approach rational function is achieved either in"numerator" 
or "denominator" if rn-1,m-1(f) > rn,rn(f). For different spl>Ces the. 
situation has been proved in the articles [7), [4], [9). 

In the interest of impossibility of approach improving on account 
of "numerator" degree increasing, we receive 

Corollary 7. In addition to the previous theorem condi­
tion suppose that m+ k > n + s, then the following equality 
is correct 

r~(f; Q,) = r';,+k_,(f; Q,). 
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4 On a possibility of the coincidence of n degree 
polynomial and ( n, 1) degree rational approxi­

,_q 
mations in the space H2('D) 

Remind that the Hardyspace H2(D) are made up by analytic in the 
unit disk D = {z: lzl < 1} functions which have nontangentiallimits 
on the boundary 8D,;, {z: lzl = 1} almost everywhere. The norm 
II · II is generated by scalar product 

(!,g)= 2~/wf(z}· g(z).·ldzl = 
2
:}wf(z) ·Mdz, 

It is known that polynomials zi, where j is a nonnegative integer, 
form the orthonormalized basis in the space, and for any element 
f EH2(D) the following equation takes place 

. .. . .. 
II!W = f lhl2, where fi =(J,zi) = f(i)~O) 

j=O J. 

aie the coeffiCients of the power series f(z) '= L:~o /jzi, zED. 
Theorem 5. For any natural number n such function 

f EH2(D)\Pn exists for which the equality en(!) = rn,1(f) 
is correct. 

P R 0 0 F . Fix natural number n and the function!( z) = L:~n fizi. 
For each c E D\{0} consider the subspace which generates by ratio~ 
nal functions of (n, 1} degree with fixed denominator 1- cz. Let the 
element 

r(z) = S(z) 
1- cz 

is the best approaching one for the funct.ion fin considered subspac~ . 
.Take into aecount interpolation properties of th~ function r. ([10), 
pages 224-225), precisely the following eq\rations . · 

r(k)(O) = j(k)(O), . k = 0, 1, ... , n- 1, r(c) = f(c). (6) 

Write t.he k degree. derivative of the ~ational function, using knmvil'. 
formula of the product derivative .. 

,. 1 •' 1 . 
r(k)(z) = (S(z) · --. f)= S(k)(z) · --+ .• .. ,• 

1-cz· l-cz 
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r(k)(O) = sCkl(O) + ... 
Increasing the value k from 0 to n - 1 and taking into account that 
f(O) =" f(O) = ... = f(n- 1)(0) = 0, we receive relations for deriva­
tives in zero 

r(O) = f(O) = 0 ===? S(O) = 0, 

r'(O) =J'(O) = 0 ==* S'(O) ~ 0, 
... ... • • • • •••• 0 . 

r(n-1)(0) = j(n-1)(0) =0. ==*. sCn-1)(0) = 0. 

Hence S(z) = sz". In this way the least equation from. (6) takes the 
following form 

, - n . ·· S(c) _ ~-. 
f(c) = , c.: 1~12 - 1 - lcl2 

Using orthogonality rand J.:... r; pr~perties of the scalar prod~ct and 
the least relation, we receive the following row .of equations 

2 z" 
(r~(J; 1- cz)) =II/- r]l2 = (J,J- r) = l.lfW- 8· (J(z)~ 

1
_ c)= 

;, 11!11
2

- s ~ ~(:) = IIJW - 1 ~.l~12 lf(c)l2 .·, 

00 

= 11!112 ~· (1- lcl2) ·II: fn+ic ir · 
j=O 

In particular, for g(z) = zc;l .9jZj we have 

2 . . 00 "2 (ri(g; 1- cz)) = II.9W- (1- icl2
) ·II: .91+ic 11 . 

. i=O 

Select .9I+i = fn+iforj E Z+, then 11.911 = lifll and, according to the 
least relations, we receive· the equality 

rn,I(f) = rl,l(g). 

Obviously en(J) = e1(g), Taking into account that in the article 
[5] it was proved that there exist the functions g EH2(D)for which 
e1(.9) = r1,1(.9) > 0, we receive th~ existence off EH2(D)\Pn, for 
which en(!)= rn,1(f). Hence the proof is complete~ · 
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Corollary 8. For any natural number n such function 
f EH2(D) exists for which following relations are correct 

en-!(!)> en(J) = en+1(J) = rn,I(J) > en+2(J). (7) 

P R 0 0 F. Consider g = z = zc;,3 gizi, j(z) = z"+"Lc;,n+2 fizi. 
According to the results of [5], we can receive the function looking 
for if the Teylor coefficients of it satisfy the inequality 

" 00 " 1 
I: lfil ::; -. 

j=n+2 2 

Foll~wing f~nctionscan be concrete .e;camples for. (7) c• . . .... 

zn+2 
f(z) = z" + -

2
-, f(z) = z"-1 sin z, f(z) = z". (ez- o) 
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HasapeHKO M.A. 
CoorHOIIIeHH51 Me%.ll.Y pa~HOHMhHhiMH H nOJIHHOMHa.JibHhlMH 
annpoKCHM31l.HSIMH B 6aH3XOBbiX npocTp3HCTB3X 

E5-94-145 

B pa6oTe HsyqaJOTCl! yCJI08lll!, )1310JIJ,He pa8eHCT8a l!Jlll crporne HepaBeH­
CTBa Me)K.Ay BeJIHliHH3MH H3HMeHhiiiHX paU.HOHaJibHbiX H nOJIHHOMHaJibHbiX 
yK!loHeHHH B 6aHaxoshlx npocrpaHcrsax. ,ll.nll onpe)leneHHoro K!lacca 6aHaxo­
BbiX npocrpaHCTB Hail)leHbl OrpaHH'!eHlll! Ha B03MO::I(H0e KOJlH'!eCTBO 
HerpHBHaJibHhlx cosna)J.eHHH nOJIHHOMHaJihHhiX H paU.HOHaJibHhlX ann­
poKCHMa!<HH pasHhiX creneHeil. PaccMoTpeHhl npH6JlH::I(eHHl! no)lnpocTpaHCT­
saMH pa!<liOHaJlbHhiX QJyHK!<liH C QJHKCllpoBaHHhiM "3HaMeHaTeneM.". IloJly'le­
Hhl Heo6xo)IHMhle yCJioBHl! Mll pai<HOHanbHOil QJYHKI<HH Hal!Jly'lmero 
npH6JlH::I(eHHl!. B saK!l!O'IliTe!lbHOil '!aCTH )IOKasaHa B03MO::I(HOCTb cosna)leHHl! 
He pasHhlX Hy;uo BeJIH'lfHH HaHJiyllmHx nOJIHHOMHaJlbHhiX creneHH n H 
pauHoHanbHhlx creneHH (n, I) npH6nmKeHHil 8 npocrpaHCTse Xap)IH H 2 (D). 

Pa6oTa 8hlnonHeHa 8 Jla6oparopllll Sl.!\epHbiX npo6neM OH:.$111. 

npenpHHT 06be)l.l1HCHHO!'O HHCnnyTa ll.)J.CpHbiX HCCJIC,.!1.0BaUJ1H. )l.y6na, 1994 

Nazarenko M.A. 
Relations between Rational and Polynomial Approximations 
in the Banach Spaces 

E5-94-145 

Conditions which give equalities or strict inequalities between rational and 
polynomial deviations values are studied in the Banach spaces. The author has 
found the limitations for a possible number of coincidences in polynomial and 
rational approximations in determined class of ones. Rational function with 
fixed "denominator" forms subspaces which are applied as approaches for this 
case. Necessary conditions for the best rational functions approximation are 
achieved. At the last section the author has proved a possibility of the best 
nonzero n degree polynomial and (n,l) degree rational approximations 
coincidence in Hardy space H 2 (D). 

The investigation has been performed at the Laboratory of Nuclear 
Problems, JINR. 
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