


1 Polynomial and rational approximations

Surmise that considered Banach space (B; |1+ 1I} over thie ficld of
real or complex numbers has following row of properties. Let in-
finite system {92124 of linear independent elements of the space

exist. Let linear envelope L of all these vectors have the structure

of commutative algebra, where o is the unit of one. Describe mul-
tiplication properties in the following terms. Name linear envelope
of fitst n'+ 1 vectors from the shared out set by subspace of not
greater n_degree polynomials, that is Pr. = L{go,..., gs), where de-
gree 9P of nontrivial polynomial P # 0 is defined as the greatest
value of index of vectors g, with nonzero coefficient from linear com-
bination represenling: this polynomial, Hage) = 0. The degree of
two nontrivial polynomials product is the swm of co-factors degrees
NP Q) =8P+ 0Q. It is possible to divide noutrivial polynomial
by one with residual

VH,PeL, OP<d8H, 3Q,ScL:
H=P-Q+8, 35<dP, dP +9Q = 6H.

Let following property take place

‘ VR eL, IT =T(Q) > 01 Vi e (0,T),

Go~1-Q) " =g +1-Q+5(t) € B,

where value |{6(t)]| = o(t) if Q is fixed. _

Define the uuion of rational fauctions of (n,m) degree as the sot
of vectors from B, which can be represented as & product of a not

greater n degree polynomial and such clement from B that it is the
converse one for a not greater m degree polynomial, that is

qu,m = {Ru,m = I)!i ) Q;;ll €B:

PnEPm Qm'EPm,jQ;;IEB: Qm'Q;l=gU}-
Designate the values of the least deviation of element f € B from
subspace P;, and union R, ;n by corresponding equations

eﬂ(f) = P..lél]gn ”f - I),,”, rrr,m(f) = 2 ”{E{; _ ”f - Rn,m”-

n,mE .

2

In proofs the statement, that the best approaching element exists in
any finite-dimentional subspace of the Banach space, is used. Sym-
bol Z, is designated the set of integer nonnegative numbers.-
According to our designations, theorem 3 from the article [1] is
formulated in such manner: let k be a natural number, e;_;{f) >
er(f) = ex(f) > eni1(f), then e,(f) > Tna{f). Following theorem

amplifies this statement. .
‘Theorem 1.  Let element f € B, m,s € Z4, natural . .

number k > s be ﬁxe_d. Suppose that e_.j(f) = +oo0. Let

€k-s-1(f) > e(f) = erym(f) > erime1(f), then ex(f) >

rk,m+s+l(f.)-. R T T
PROOF. Consider the construction of auxiliary rational function
R = (B8 (6o~ Q = Pt t- (St B Q)+ a(t) =
o= (1= t)'-f_’,c_.j-,tr,- (P + S+ B QY+ 6(8), - S -(1_-)
where polynomials § and Q aie selected so that they satisfy following
equations I

s Been=R4StR.Q,
TN =Bl =elf), I = Pesmisll = etmir (F)-
It is obvious that we must deem k—s < 0P < k, OPrpmay = kb1,
0@ <m+s+ 1, 88 < k and, in common case, the degree of rational
function R as (k, m~+s+1). Then, using norm properties and'deeming
that ¢ € (0,1), we teceive following relations - : R
en(f) S IF<RI= o
= 0= (- B+ (P Prm) £ 500 <
S A=0-lf = Bll+1-1If = Poymarl) + o) =
= (A =t)-e(f) + 1 errme(F) +o(t)= ..
= alf) =t (@) - ek () +olt).
We have the inequality ex(f) > eginii( f) from the _f']:ieor"érri; cqndi-,
tion, and if we supposed that rk',m_;‘us-;i‘(f ) = e (f ), we Would_ re'(.:eiye‘d_r_

Il

a contradiction, completing the theorern. ' L o
Corollary 1. Let element f € B, m ¢ Z,, natural pum-
berk be fixed. Let e,_1(f) > ex(f) = epym(f) > ekyme1(f),
then ex(f) > rimi1(f).
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Following result generalizes first statements of the theorems 3 and
-6 from the article [2]. _
Theorem 2. Let element f € B, s € Z,, natural num-
bersm and k > s be fixed. Suppose that e_,(f) = +oo. Let

ek—s—l(f) > ek(f) = l;k,m+s(f)= then ek(f) = ek-i-m(f)-
PR O OF . Consider the constructions of auxiliary rational function
(1), where polynomials S and Q are selected so that they satisfy
following equations - : .

Pk.,_m—Pk-l-S-}-Pk Q..

Hf Pkll—ek(f),r IIf - Pk+m||—-ek+m(f)

It is obvmus that we must deem k — s < BPk < k BPHm < k + m,
Q@ < m+ §/ 08 < k and, in common case ‘the degree of rational
function R as (k,m + s5). Then, using norm properties and ‘deeming
that te (O 1), we receive following relations .

e(f) = timis(f) <[ - Rl = :
NA~0)-(F=P)+t-(f- Piym) +5(8)]] <

li

-ll IA

=y ek(f)+t “erym(f) + o(t) =
ek(f)—t (ek(f)“ek+m(f))+o(t)

Il

If we supposed er(f) > erim(f), we would received a. contra,dlctlon &

completing the theorem.
Corollary 2, Let. element f E B natural numbers k
m be fixed. Let ek 1(f) > ek(f) = I} m(f) then e(f) =
ek-i-m(f ).
Remark 1. One cannot substitute value Yemt1(f) by rpn(f) in
the corollary 1 and index k + m by k+m+ 1 in the corollary 2,
where m = 1, without complementary condltlons ‘Actually; in the

final part of tlns article it is shown that for any natural number k-
such function f from the Hardy space Hg(D ={z 1 |z] < 1}) exists

that for it the followmg relatlon takes place . _
er-1(f) > ex(f) = ria(f) = ersi(f) > epsa(f).
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A=) lf = Rall +2-[1f - ae+mu+oe)~_;khh

Following result is a generalization of the corollary to the theorem
3 from the article [1].
Corollary 3. Let element f € B belong to the closing
of the linear convex of all degrees polynomials T too. The
condition e,(f} = r.n(f), VYn € Z, can be satisfy only in
two. following cases: either f belongs to the space Pg or it
is such polynomial of k > 0 degree that . ' :

) = ef) > e(f) = 0. e

PR O O F . Suppose that in the sequence {e;(f)}o2, there are
such values e f) and es+m+1( )y s> 1, m >0, that followmg rela-
tions are fulfilled -1 f) >e.(f) = es+m( f) > €omy1( f) Takmg
into account the corollary 1, one can receive the mequatlon es( fl>
rs m+1(f) Hence es-l-m(f) = es(f) > rs m+1(f) > rs+ms+m(f) The
contradictory with the cond1t1on en( f) =TIy n( f) Vn € Z+ proves
the corollary: : _
Remark 2 The form of the functlons 7, .for Wthll the equatlons
ei(f) = Fan(f), Vi € Z can be fulfilled, has been studIed in some
concrete Banach spaces previously. In the article [1] it has been
proved that in the case of analytic in |z] < 1 and contmuous in the
closed unit disk functions f with the norm

Al = maxf(2)], |

the condition en( Hy=roa(f),Vn e Z,is fulﬁlled for and only for the
functions f(z) = azz* +br. In the space of functions continuous over
a segment the same problem has been solved in [3]: The result is the
representation these functions as f(z) = a;T}(z)+bi, where T} is the
Chebyshew polynomial of k degree which is shifted to the considered
segment. The case of f € Ly(T"), 1 < p'<'co, where I is a rectiﬁable )

| closed Jordan curve in the complex plane has been considered in [4]

The result is that only single value & = 1 can be in (2). That is in
the space the function f, for which the condition en( f) = r,”,( I8
Vn € Z, is fulfilled, can be only linear function. This restriction
can be received from the following statement of the article [4]: Tet
n€Zy, fbe ﬁxed and 1, ,(f) >0, then Tan(f) > I'n+1 wi1(F)
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For each natural number n designate the quantity of indexes m €
[0,7), n > 1, for which the values of the best polynomial of m degree
and rational of (rm,m} degree approximations of the given function
f € B are equal, by the symbol N(n). Next result is an analog of
the corollary to the theorem 3 from the article [2].

Corollary 4. Let element f € B be fixed. If the finite se-
quence {Tmm(f)}req 15 strictly monotone then the foHowmg
inequation is he]d

N(n)<2+‘1og2n g i (3)

‘Remark 3. It should be noted that the strict monoton1c1ty of
the sequence {ry ()}, and fulfillment of the equation rm,m(f) =
em( f) for some values of the mdex m € [1, c0) are realized, for exam-
ple, in the space Hp,('D) In fact, in the article [5] it has been pljoved
that there exist entire functlons [, for which el( f) = r1 A(f)- '

Remark 4. It is of interest to compare the inequation (3) with the
result of Dolzhenko Ye. P, which has been proved in the article [6].
There exist such contmuous over a segment functlons that foHowmg

equatlon takes pla,ce
Ny
- Jim

ﬂ—*oO'n‘

2 Approximation by rational functions w1th fixed
“denominator”

Turn to considering of a,pproa,chmg of elements from B by the sub- |
spaces of rational functions with fixed “denominator” Qj

(QJ) ={P.-Q;': P eP.}.
Designate the amount of the Ieast dev1at10n of the eIement f from
this subsPace by the symbol '

n(f QJ)_ inf IIf P -Qj lll

where the top mde)é ok denotes that we conszder the subspace of
rational functlons W1th fixed “denommator” and @ is this “denom-
inator”. Introduce useful des:gnatzon of the best approa,chmg vector .
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for f from considered subspace as P - Q;i, that is
(@) =If - P - Q). {4)

Next result is an analog of the theorems 1 and 2 in the considered

situation.
Theorem 3. Let f € B, reversible polynomial QJ.. of

J 2 1 degree, s € Z, and natural numbers k > s and m > i
be fixed. Suppose that r* (J; Q_,) = +400.
(I) Let rk—s—](f QJ) > rk(f QJ) = rk+m—_;(f1Qj)
i (F5 Q). then T3(,Q5) > T miena ().
(1) Let ri_, (f;Q;).> rk(f Q]) = T m+5(f) theﬂ
rk(f QJ) =Tiym_;(f; Q).
P R OO0OF. Conader the construction of aux1hary rational function
R = (P,?+t-U)-(Q,-~t V)'
= (B +t-U)-(g—1t-5)! Q‘ o
P+t (U+P° 5)- Qi+ 6(t) =
= (1-8)-BQ +¢- (P°+U+Pk -5)- Q! +o(1‘) (5)

(1) Polynomlals U and V are selectéd so that they satlsfy followmg
equatlons ; T

Bumiy =P+ U+ B8, V=8

It is obvious that we mist deem k—s < (9P0 <k, BPL Cema o =
k+m+1-34,08< m+s+1—3,0V<ints+1 and, in common
case, the degree of rational function R as (k,m+s+1). Then, using

norm properties and deeming that ¢ € (0,1) and mtroduced in (4)
designation, we receive following relations: c

Trmtst1(f) < [|f — Rl =
sleo-goRghy
(= Bl Q) o0l <.
(1=)-llf-F-Q ,-TI||+ |
N = Pl Q5 4 o(t) =
(I—t) ri(f; QJ)+t rk-{»m-i-l J(f Qi) +o(t) =
= T =t EHQ) Lm0

IA
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We have the inequality rj(f; Q;) > Tismi1—; (f; @;) from the theorem
condition, and if we supposed that ry m4.41(f) =1} i(f;Q;), we would
received a contradiction, completing the point.

(ii) Consider the construction of auxiliary rational function (),
where polynomials U and V are selected so that they satlsfy following
equations

Pk+mj—Pk+U+P]c S VEQJS

It is obvious that we: rnust deem k — s < oR < k, OP) ey <
k+m—j, 38 < m+s—j, 8V < m+sand, in common case, the degree
. of rational function R as (k,m + s). Then, using norm properties

and deeming that ¢ € (0, 1) and mtroduced in (4) des1gnat10n we.

receive following relations

ri(f;Qy) ‘='rk,m+s(f)<l|f R|| = |

(1 —1)- (f P-Qih+

e (f = Peym; - Q1) +6(1)]| <

< (U=1)-¥(f; Q) +1- Tipmej (£ @5) + o(t) =

= 1l Q5) =1 (Fi(£5Q5) = thomo; (i Q1)) + o(2).

If we supposed r}(f; Q;) > rp . ( f, Q;), we would received a contra-
diction, completing the theorem.

' Corollary 5. Let f € B, reversible po]ynom:al Q; of
J 2 1 degree, natural numbers k and m > j be fixed.
(1) Let rlc l(f) QJ) > rk(f: QJ) = I‘k+m—_; (f: QJ) >
rk+m+1 J(f QJ) then rk(f QJ) > Ty m+1(f) .

- (i) Let rp_(f; Q) > ri(f; Q5) = tm(f), then ri(f;Q;) =
rk+m J(f: QJ)

i

3 Necessary COl‘ldIthl’l for the best approachlng
rational function
For the next theorem we need additional property 6f the space B:
YQEL : Q'eB, VUEL, IT=T(Q,U)>0:
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Vte (0,T), (@-t-U)"'=Q ' +¢t-U-Q2+6(t) ¢B,

- where value ||6()]| = o(¢) if Q and U are fixed. Designate the Banach

space possessing this and. all prevorious characteristics by B.

If for the element f € B™ the best approaching rational function of
some degree exists, it realizes global minimum of rational functions
of the some degree deviation from f. In the space Lola, b} necessary
conditions for local minimum have been given in [7]. In the article
[8] the case of rational functions of complex ‘argument with poles
outside of fixed compact has been considered. For convex nonnega-
tive functlonal on this set necessary conditions for rational function,
which realizes local mlmmum ha.ve been proved In our, sﬂ:uatlon of
the Banach space B we receive '

Theorem 4. Let element feBt, natural numbers n and;“a
m be fixed. Suppose that there exists the rational function
P - Q7' # 0, which realizes the best approaching in ‘the *
unity of rat:ona] functions of (n, m) degree that is

D=l =P QL
where polynomzals P, and Q; are relatjvely prime. Let

0P, =k £ n 0Q, =s < m, A_max{n+s m+k}
then the foﬂowmg equatzon is correct ..

In m(f) - rk(f Qz)

PROO F De51gnate rational functlon, which reallzes the best
approach in the subspace Rj(Qz) (see the deﬁmtmn in prevormus
paragraph), by the symbol H, - P QJ °, that is for which the followmg
relation is fulfilled L

B =1 - B -2||
For enough small ¢ > 0 the following ratxonal functmn exxsts m the
space B*.
Rom = (Bt t:%)-(Qu—t- Uyl =
| (Pett-Va) (@7 +¢-Un- Q2+ 6(2)) =
= P Q7+t (Vi Qo+ P - Un) - Q72 + 6(2).
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Taking into account that polynomials P and @, are relatively prime
and using the reasonings which are an analog of the proof of the
final lemma in the article [7], one can be convinced that there exist
polynonnals Vi € P "G, € P fulﬁlhng next equahty

HA =V, Q3+Pk U +Pk Qs
So we' recelve followmg equahtles |

R = (-1 B-Q7+
N Qs+Pk Un+ P Qi) Q;F +0()_
= (1-1)-BQ7 ity -Q 2+o(t)

In this way consider next row of relations”

. (f;Qs) = tom(f) S If = Rumll = - S
= [l0-0-(f =B Q) +t-(f = Hy- Q71+ 6(1)]] <
S A= =P QT If ~ By Q7%+ oft) =
= :';(f'Qs) ¢ (r (f,Qs)—r,\(f Qz))+o()

If we supposed r¥(f;Q,) > ri(f; Q?), we would received a contrad:c—
tion. Hence the theorem is completely proved. -
Corollary 6. In addition to the previous theorem con-

dition suppose that P, = n'or 8Q, = m, then r, m(f)- =
r;+m(f; Qg)

Remark 5. It is not dlfﬁcult to show that the degree of the :

best approach rational functlon is achieved either in “numerator”

or “denominator” if ry_s ;_1(f) > Tpm(f). For dzﬁerent spaces the .

situation has been proved in the articles [7], [4], [9].

In the interest of impossibility of approach improving on account
of “numerator” degree increasing, we receive
‘Corollary 7. 'In addition to the previous theorem cond:-

tion suppose that m+k > n + s, then the foHowmg equality
is correct .

r,(fQs) = 1"3;+k;5(f;Qs)-
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4  On a possibility of the coincidence of n degree
polynomial and (n,1) degree rational approx1—
mations in the space Hy(D)

Remind that the Hardy space Hy(D) are made up by analytic in the
unit disk D = {2 : {2[ < 1} functions which have nontangential limits
on the boundary 8D = {z 1 |2] = 1} almost everywhere. The norm
-1 is generated by scalar product

(1,9)= 5= p (2) -5 ] = 1 /de

It is known that polynomials 27, where j is a nonnegative integer,
form the orthonormalized basis in the space, and for any element
f GHg('D) the followmg equat1on takes pIace

: : '(J')
IIfII2 = BI0 b gy =79 = %fﬂ
j::U szj, z eD.
Theorem 5.  For any natural number n such function
f €Hy(D)\P,, exists for which the equality e,(f) ="Tp1{f)
"~ I correct.
PR O OF. Fix natural number n and the function f(2) =R, f;2!
For each ¢ € D\{0} consider the subspace which generates by ratio-
nal functions of (n, 1) degree with fixed denominator 1 — cz. Let. tho
element

are the coefﬁaents of the power series f (z) =

7(z) = Toez

—cz
is the best approa,chmg one for the function f in considered subspace.

Take into’ account interpolation properties of the functlon r. ([10]

pages 224-225), precisely the foHowmg equatxons
rO0) = f90), k=01...,n-1, r@=f@. (©

Write the k degree derivative of the ratlona,l func hon using l\nown_'_
formula of the product denvatzve
) = (5() - 1) = SO) -

11
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9(0) = S9(0) +

Increasmg the value & from 0 to n — 1 and takmg into account that
fO)=f(0)=...= f("'"l)(O) = 0 we recejve relations for deriva-
tives in zero

r(0)=f(0)=0 == S(0)=0,
r'(0) =f0)=0 = () =0

RS )_f(n_i'}('(')) _.O- A %:g(;zwl)"("d)-.

~ Hence 5(z) = sz”. In this way the least equation from (6) takes the

folIowmg form ' .
' S@) st
1= |c|2 1- |c|1

1@ =

Using orthogonahty r and f ~r, propertles of the scalar product andr ‘

the least relation, we receive the following row_of equations

it =ca) = Wf = rif = (7. = 1) = Ui -5 (f(z),_—z—c;) =

[T f(c)—nfnz | H'C' P =

= 171P = (5 Ief) sz Frge i
In particular, for g(z) X%} 9;7° we have
(F3(g;1 - e2))? = [lglf = (1 = |¢})- f§ 9155 .

Select giy; = fay; for'j € Zy,; then lall = Il a.nd accordlng to the
least relations, we receive the equahty :

ra1(f) =1 1(9)-

Obv1ously e.(f) = ei(g). Taking into account that in the article
[5] it was proved that there exist the functions g EHg(’D)for wh1ch :

ei{g) = r1,1(g) > 0, we receive the existence of f EHg(’D)\P,,, for
which e,(f)} = rn,1(f)- Hence the proof is complete. -
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Corollary 8.  For any natural number n such function
f €Hy(D) exists for which following relations are correct

en—l( ) > en(f) = en-i—](f) :Vrn,l(f) > en+2(f)' . (7)

PR O OF. Consider g = z = %3 9527, f(z) = 2" + £, ;27
According to the results of [5], we can receive the function looking
for if the Teylor coeﬂ"lments of it satisfy the mmequality

<

j=n+2

Followmg fﬁnétibnégtaﬁ;’l be éoﬁci‘éfé e;{ampr_l_esl‘fqrd_ (7)” B

n+2 n z____,-
f(z)=zn+22+, f(z) = 2" lsinz, f(z):z (;e ~).

The author is grateful for docent Vjacheslavov N. S. (Moscow State
University) for argument of setting the problems and methods of its
solving and Proff. Zinov V. G. for friendful and stimulating discus-
sions.
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