


I; Int‘roduction

Over 400 years ago Robert Hooke tried to explain the planet motmn on
the basis of forces with the linear dependence on the distance. Lately, this
idea was covered by the greatness of the Isaak Newton’s discovery.

Now, we can say that Hooke was not far from truth, because the trans-
formation manifesting the Coulomb-oscillator equivalence exists. The most
general form realizing this concephon is known as the Hurwitz transforma-
tion [1). :

The Hurwitz transformation (H Jisa ma.ppmg

H: E%uy,...,ur) = E%(zq,...,24)
with the following properties: -

a. H is a bilinear, i.e. '
zi = Hyup = Wiugu ()

b. There takes place the Euler’s identity

2t =ut,

'.ffor

z = (ch + a2 + 2} + 23 + 2},
and T |
u=(ul+ul+ul+ u?, +ud ol 4 ud 4 ud)?

For the u-spaces with dimension more than eight it is impossible to conserve
the Euler’s identity due to the Hurwitz’s theorem {2]. The reduced cases of
the H-tra.nsfonm.tmn for the maps E* — E? and E* — E® were introduced
by Levi-Civita [3] and Kustaanheimo [4] for regularization of the equations of
celestial mechanics. The remarkable peculiarity of the Levi-Civita (LC) and
Kustaanheimo-Stiefel (KS) transformations consists in the fact, that after
regularization, in both cases, we arrive at the harmonic oscillator
problem. This opened the way for fruitful interaction between the theory of
oscillations and the methods of celestial (classical) mechanics. Particularly,



N
in the oscillator representation the perturbations to the Kepler’s motion can
be calculated with a better accuracy [4]. ‘

LC- and KS-transformations were introduced in quantum mechanics too,
in the context of hydrogen atom [5]. KS-transformation was applied in quan-
tum chemistry [6], quantum field theory [7] and functional integration (8].

The general consideration of the algebraic structure for H-type trans-
formations was made in [1], the Lie algebra under the constraints connected
with these transformations was found in [9, 10]. The arising Hopf’s fiber bun-

dle [11] and corresponding analysis through the spinor representation [12] °

were performed too. At last, the structure of the generelized Cayley-Klein
parameterization {13] and the geometric quantization procedure [14] were
considered as applied to the investigation of the H -transformation structure.

IL. The problem -

l.
The H-transformation may be written in the following form;:

Cwo=ugFufbud bl — el - ulul g2,
$1=32#$3=0, ' -
. ) :V Ty = 2(1‘0‘”4 —’ulug - Usllg - u;u-,r) R
s = 2ugus + Urug — Uptiy + uzug) ,
Zg = 2(uoks + urtr + ugtty — uzls)
‘z7 = 2(uour — uyug + upus + uau-i) s

(2)

~ (with qdn-éssént_ial change in the notation:
. (30,7.11,2';37,373,324) - (%0,0,0,0, z4, :cs,'ze,n:})).
For the following, it is suitable to denote ‘
Uy = (g 4 Ul b o ),
wn = (] +u 4 ud + ud)2,

It must be stressed that the H-transformation, in the form (2), determines
the connection between C ar t e s i a n coordinates.

T cause:

Now, let us suppose that coordinates u;. are expressed through the hy-
perspherical coordinates (u and seven angles additionally). In the general

. case, (2) determines z; as functions of r = z = u® and the above-mentioned

seven angles. However, it is possible that the exprgssiox';s for i, do not -in-
clude s o m e angles. Angles may "shut” due to, for example, the follo?vmg :

a- atp . a=9p
sina_-;‘bcpsazi'b-}—cos 5 sin 2?=smc.t )

L:at us consider LC- and KS-transformations in this context:

a. In the case of the LC-transformation, {2} reduces to (u; = 0,e.9.5 = -

- 1,2,3,5,6,7) '
Cgo=ul-ul
T4 = 2uqug, ' ) (4)
z,-=0,j=1',2,3,5,6,7? _ ~

Let us introduce polar coordinates in u-spaces

8 .
= UCOS =, Uy = US|
Up 9 4 )

Then it is obvious that
Uzo=rcosd, x4 =rsinf,
So, as a.result, we again arrive at the polar coordinates. :-

- b In the case of the KS-transfofmation (u;,-‘= g, é.g.j =2,3,6,7):

2o = ultul-ul—ul,

Ty = 2(u§u44u1u5), . ' )
zs = 2uous + vius),

z; = 0,j=1,2,3,6,7.



The situation here is not so simple as in the precéding case. Firstly, in
E*, there exist three possible types of the hyperspherical coordinates,
instead of one. But, only o n e remains hyperspherical after the KS-
transformation. Namely, if we have take the following coordinates

B g = ucos-g CosSW, Uy= ursingco-sga,

(6)

RS 1 =ncos§sinw, g = usinff,—sintp,

(0280 7,0<w< 2r), from (4)-(6) we can be obtain

Zg=rcosl,ry = i‘sinﬁsin(go —w),zs5 = rcos 9'cos(<p —w).

. So, we see that the angles § and v — w form with r = u? a spherical

map in E3.

It is important that in the H-transformation case the connection between

angles in E® and E° is not easy, as in examples a. and b. [13]. Furthermore,

- this connections defire by thetranscendent a 1 equations in general

case. Practically, it is impossible to operate with these equations (except for
the special case considered in [17)). , I

~ In this paper we propose an approach that is free from the transcen-

dental connections. In brief, the ides consists in refusalfrom the H-

transformation in the known formulation. Is it possible to derive the H-type
transformation which does not generate difficulties with the hyperspherical
coordinates? Below, we will prove, that two equivalent variants of the choice
 of the transformation exist, which conserve the two above-mentioned prop-
erties. As will be clear from the following; we have achieved the aim through
the refusal from bilinearity of the H-transformation. ‘As aresult, the devel-
oped scheme allows us to determine, in sec. IV, the geometric structure of
the H-transformation. =~ ‘ :

IT1. Left and right A-matrix

Let us substitute the following hyperspherical coordinates

. g B
u0=u003‘:'COS§COSW ‘U.4=USII'I.§COS%COSW
- : - ) ) '
u1=ucos%cos§smw 1{5?”511’15(108%'3111&)

!

I . N T E’ ; (7)
ugzucosg'singcos’ga ug = usin Z sin & cos ¢
Uz = u,cos%singsiutp. Uy = usin%sin%—sintp’,
into the transformation (2), then
Te=rsind cos g €os %' cos{w + w’) —sin g sin '(;— cos(ip — ga')]
- ) . . . . . v . ', ' ' ! .
zg =‘r§in9 cos % cos % sin{w + w') + sin g-sm %— sin(e - )] @)

ze = rsind. cos g sin %' cos(p’ — w) + sin'§ cos & cos{p + ' )]

‘zy=rsind iC(lJS g-sin %: sin(p’ —w) + sin :f- cos %: sin + w')]

It id- evident that t/he' relations 8)do not _def'ine the'h).(perspl.leric:l _
‘coordinates in E®. For another choice of hyperspherical coordu_xates_ in E3,
the expressions for z;(i = 4,5,6,7) aré too more comph?a.ted: ‘ N

" The expressions (8)(with accounting z,) may be rewritten in the following
8-dimensional matrix form: ) -

fzg\' ( " reosd \
0 1.

-

0
0. - : 0 . _
“ean| e | @
z = Ar rsinﬂcos%cosw i : !
o s ' rsiuﬂcos%sinw
‘z6 rsinﬂsin%coﬂga
\31) B \rsinﬂsiﬂgsimp‘}
" where



i
. Ap =
R=10
Th r
€08 ";— cosw'
» i
cos %‘- sinw!  cos % cosw’

Qr=

H ! ] B L 7
sin % COos s % SHI @@

. L I . i ’
sin§sing' —~sing cos

The matrix Qg action is a four-dimensional rotation because

)
Qr /)’

- 8o fod 1
cos ) Sin W sIn ) COos

Y
--sm%sm(p'

1]
cos %— cosw'

r .
cos %— sinw’

* QrQgrT =1,DetQp =+1

OBviously,

0
0
0

rsinfcos E sinw
rsin 8 sin g Cosyp .

[ | lrtl:bsé? \

rsiﬂﬂcosgcosw ,

' \ rsmﬂsm‘gsmqp /

%)

0
0
0 .

Zy
xs

Ty

3 d - '
—sin %- sing

. - .
— CO5 T Sin W

\er /

(10)

Thus, the action of A% after the H—tra.nsfounatlon allows us to obtain
hypersphenca.l coordmates (10) from hyperspherical coordinates (8) with

simple connectlons between the angles. Furthermme this can be done in two - '
- \

24
Ts

\=)

equivalent (left and right) manners:

(%)
0

| \rsmﬂsm——smap )

0
0
0
rsind qos_-‘;—' cosw'
- rsinfcos Q'- sinw'

rsin fsin E— cos ¢’

( ‘ rcos § \

; (11) .

Let us turn back to the Ca.rtesia,n representation for making the consid-

T4 U4

&5 =9 Us-
Tg Ug -
. z7 : ur
A -
or
T4 f Yo
Ts . =9 Ty
Tg - Ua

z7 o\ uz

—Us —Ug

Uy —Uz
ur | Uy
—usg Us
-y —u
Ug U3
—Uz Ug
Uz "“1

U7 Up ’UQ
. [ u

v 'l =2urQe| P | (12)
—Us Uz JUg

Uy Uz Ug
—ug \ fwa ) o f ua 7
- U - ) Us ;

Yz . s = 2uLQL (13)

LY Ug 1 Us

Up Uy

- eration universal, i.e. independent of the choice of hypersplllerica.lv map:

Asa consequence, We can reverse (12) (13) and obtain - ;

-(“0\

\ s /
(3‘:\
\ v /

v - .$4_\' .
P 7| s
=2_—‘QR e
If)
. -’54\
_ 1 QZ s |
_.271, L Tg
2/

(19)

- (15)



The relations (14}, (15) allow us to reconstruct the complete structure of
‘hyperspherical coordinates in E® from the structure of hypersphenca.l €o0t-
dinates in E®, :

Now, let us consider the matrix form leading to (2):
{ Up U Uy Uz —Ug “';is ;Us —~lUz \

!

U —Up Uz —Up ~Us Ug Ur —Ug
Sy —ig ) —Up U3 —Ug Uy U4 Us
' Uz Uy -y —Ug —Ur U5 —Us U4 e
Ho| ¥ o (16)
Uy "'u‘g —Ug —Ur Uy —U; —U —U3

Uy U4 ~U7y Ug Uy Ug Uy —Uz
Ug U7z Uy U5 Uz Uz Uy Y
h : \‘u? “—tg Us U4 Us Uz —U; Yo )

| It will be easy to check the orthogonality of this matrix _
HH? =4 an

' ‘(Thls property validates the Euler s identity. )
Consider the matrices ‘

HL_ARH HR..A,,H ' . (18)

If the matrices Ay and Ay are orthogonal

. ALAT = ARAT =1, - (19)

. then the matrices Hp and H; will sati.%fy the condition (17). .
In agreement with (19), :

UL _ Xe U, X\
HL(UR)—}}R(XE) HR(UR).'_A”(XJ'%) (20)
' where Uz, Ur, Xg and Xp are

Up Uy -

Lo . E7Y

. Uy _ Us _ 0 _ ' Ty
Ug= ua yUr= e X = o | X = 24 (21)

Uz Uz C 0 7

Now, it is easy to see from (20) and (21) that the matrices Hy, and Hg

transform E* into 5-dimensional Euclidean spaces, which we denote by Ej:
\ (). . (U
L\ _ L :
(YR)_HL(UH) | - ®

() -m(%)

where Y1, YR and Zy, Zg deﬁne sxrmha.lly X1, XR in (21). Instead of (2),

andE}

Weobta,m
P D R R F R S v
N = p=y=0 - (24)
¥ = 2ud+ul+ul+ud)u;,i=4,56,7 '
and .

zo = ujtuitujdud—uf—u-ul-ul .
n = m=z=0 S (25

 Zipg = 2(u4+u5+u5+u7)‘/’u,,]—0 1,2,3

Partlcula.rly, for the hyperspherical coordinates (7) discussed at the beglmng
N of III, the relations (24) and (25) are written as

Yo = rcosd _

y+ = rsinfcos % cos w'

ys = rsinfcos %i sinw! - (26)
‘y¢ = rsinfsin %'.coé 4

yr = rsinfsin %‘ sin g’



‘or :
. ‘zg = rcosl
B

24 = rsinfcos g cosw .
25 = rsinﬂcosgsinw ] 7 (27

2zg = rsinfsin g cos¢ .
_ 7 = rsinﬂsingsincp _
.We conclude that the transformations (24) and (25 arenomn-bili

near;in distin_ctidﬂ to the H- transformation (8). We can introduce the

hyperspherical coordinates
. (uig.aL,ﬂL,’r:L,aR,ﬁn,“/R)
in E? as follows: L _ : :
u-:—-.{ ucos %f,-(aL,ﬂL,jL),j -—‘-0,1,2',3 - (28)
usin § fi(ar, Bra1R), 7 =4, 53 6,7 '
with the evident constraints ‘ N
BrR+f+f=1,

. (29)
AR+ fF=1

Here (0 <0 Sl x) and tanges of values for remainding angles are deter-

mined by the functional form of f;. If we substitute (28) into (24) and (25)
we obtain ‘ . L

y; = ugin ofj(dﬂ, ﬁR,fYR),j =4,5,6,7
i . ‘
' ze = ulcosf

Zipa = u#?sin 9fj(d[,,ﬁ[,,‘u),j = 0, 1,2,.3. .

PR )

Thus, choosing in E?, the class of hypefsﬁherical_coordina.{;es determined
by (28) and acting with Hy, and Hg on them, we obtain in Es two classes of
the hyperspherical coordinates (30) and (31). :

10

Resﬁming, it is to be noted, we can use on the decomposition of E® in
agreement with the scheme
EB - E4 ® E4

¥ . . - )
in the approach developed here. Jiist the same decomposition corresponds

to the hyperspherical coordinates (28). Other decompositions (for example,
E® = E®® E°) are out of our consideration, :

IV. The geometric sfructure of the
H-transformation \

We can ‘develop_connections between H, H; and Hy from somewhat
general position, For this aim it is convenient to use the following diagram

E} ~

From the latter the structures of the H;- and Hp-transformations are
clear. So, as the matrices A7 and Ap are orthogonal and unimodular, they
realise the rotations. Therefore, the maps E? — E} and E® — E} are
equivalent to compositions of maps E® — E° — E} (E® — ES — E}).

The Af- and Ag-rotations "switch off” the dependence of the coordinates

in E® (z- space) on the angles parameterizing two corresponding subsets of
vatiables and lead to (26) and (27).

11



.Now, let us clarify the geometric structure of the H-transformation. It is
- 'easy. to obtain that the matrix (16) is a product of three matrices

H=AlH A7, S (32)

where A7 is a transponent miatrix of Ay, Afis an orthogonal matrix that
is the "skew” transposed matrix of 4x4 - blocks of Ar:

o . 0
AIS-:.(%F I)’

H& is a "spaced H - rﬁ_at}ix” and has the fo_llo'wing'foi‘n}: f

( Uz, 0 0 0 —Uqy —Us —Ug “ur\
—ur 0 0 —us wuy  ur -—ug ¢
0 0 —ur 0 —ug —u;r uy g
0 0 0 —uyp —uy Usg —Us " Uy :
Ho= Uy —uUs <ug —ur wuy O 6 0 : ,(33)
us Uy —~ty —ug 0 wuz 0 ‘ 0 '
u-r. Uy '.'-T.l.,r, 0 0 TUr 0
0

\ur "_'us Us Uy

0 0 u /

H, , as H, satisfies the otrhogonality condition
' HGHO = 1?
The sequence of the maps (32) gives -

UL‘_’_T U'L_TYL_XL).

- where
. uy, Yo o Ye
' 0 0 Vs
- - = .
rslo Y= o] Yr= ]y,
0. 0. yr
12

and Uy, Ug, X; and Xg are dgtermed by (21).

‘Now, we can represent the structure of the H-

tra.nsforma.tion through the
diagram

Eg

E® E®

H

So, the H -ina.f:ping is equivalent to the following three steps:

A] - rotation, in essence, coinciding thh the Hopf s mapping ( the so-
called ”quatermomc fibration” [16]),

Hy - local scale transformation, a stra.xghtforward genera.hza.txon of the
‘ Levi-Civita matrix (4),

" AT -‘rotation that v1ola.tes the regular hypersphenca.l map of Ef! and
leads to (8) o

~

From this pomt of view, the transformat.lon Hp is the following composition:
" HyAf. ‘ ’ ' :

13



"‘Resume

The versions Hy, and Hg of the H-transformation v1ola.tmg the bilinearity
" are suggested. We show the following -

1. Hj and Hp conserve three important properties of the H- tra.nsformatlon:

they are orthogonal realize the reduction E® — E®,

2. The relation of the HL a.nd H 'z with the H- tra.nsformat:on is estab- -

lished.

‘ 3. The Hy and Hp transformations acting on the 8-dimensional hyper-

‘spherical coordinates with the 4x4 - structure (28) project them onto
the 5-dimensional hs-coordinates (30) and (31) with the 1x4 - struc-
ture. The seven hypersphencal angles may be sorted into three groups

(9)= (al'n ﬁLw 'TL)? (aR: ﬁRa 7R)
Hi(Hgr) tra.nsforms u— u? and 8/2 — 8, conservmg ( or shuttmg) L
and R angular triplets, respecttvely

4, The geometric structure of the H-transformation is revealed.
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