


1. In the present letter we demonstrate the intimate interrelations between
two famous g-algebras: quantum groups (matrix pseudo-groups) [1, 2] with the
defining relations :

RTT=TTR (1)

and reflection equation (or braided) algebras (see [3]-[6]- and references therein)
with the commutation relations

RuRu=uRuR. 2

Here and below we use the R-matrix formalism [1] with slightly modified matrix
notation [7] to simplify the appropriate calculations. Namely, we use

T=T =T}, T'=T= 6T, :
uSu=ulfl, v'=vy=6v3, ' (3)

R= Rn = PR, , R’ = Rza = Pzaﬂzs ’

where T" uJ, v are quantum N x N matrices; R, R' € Maty x Maty are invert-
ible R- matnces Py, is the permutation matrix and indices 1,2, 3,... enumerate
matrix spaces. The Yang-Baxter equation for R-matrices in this notation reads

RizRi3Rys = RnaRisR1i; & RR'R = RRR'..

First of all we recall some known facts about the algebras (1),(2) to be used
below. Both algebras (1) and (2} are the Hopf [1] and braided Hopf [6] algebras
respectively. The structure mappings for them are:

AT) =Ti@ T = (TTY, S(T) =T, «(T) = 6 @)

A(u )—uk@u = (ud), Su) =u?, e(u,)-— (5)
where @, S(T'), ¢(T) are the operator tensor product, antipode and cz)unit (see [1]}
while ®, &(u), e(u) are the braided tensor product, braided antipode and braided
counit (for their definition see {4]-[6]) . The braiding for the algebra (2),(5) is
defined by the relations [4]-[6]:

R (1@u)R(u@l)=(u@1)R(1Qu)R & R "aRu =uRZR, (6)
which specify the braided tensor product ® in (5). The "braiding” for the quantum
groups (1),(4) is trivial {T}, Tf] = [T, T'] = 0. 7 ,

It is well known that the algebra (2) is a covariant comodule with respect to
the adjoint coaction of the quantum group (1),(4): ‘
u;'- — AA(u:-) = T,:S(T)j @ uf = (TuT! ; s (M.
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where we imply again in the last equality the "trivial braiding”:
[u, T = 0. : (8)

On the other hand, one can find that the algebra (1) is a covariant braided comod-
ule with respect to the left braided coaction of the braided Hopf algebra (2),(5):

- T = Ap(T) =ui@Tf =uT, 9

with the nontrivial braiding
Tuv' = RuR™'T. (10)

Indeed,. Ap(T) (9) satisfy the R-T-T relations (1) in view of eq.(10). Then, one
can prove that the comodule axiom

(A®id)Ap = (id@Ap)Asp (11)

and the relation (10) are consistent with the braiding (6) specific for the braided
Hopf algebra (2),(5). Thus, we have demonstrated the interplay of the quantum
groups (1) and the reflection equation (braided) algebras (2). Namely, in addition
to the general phylosophy that the algebras (1) and (2) are related by the process
of transmutation [5,(6], we have shown that these two algebras can be considered
as covariant comodules with respect to the (braided) coactions of one to another.

2. The main result of this letter is that an analogous interplay is inherited for
the differential extensions of the algebras (1) and (2). Here we consider the case
of linear quantum groups with the GL,(N) R-matrix: In fact, we need only the
Hecke condition for the R-matrix:

R'’=(g—¢ R +1. (12)

The differential Hopf algebra over GL,(N) (denoted as {24} with the generators
{T}, dT}} is defined by eq.(1) and commutation relations [7]-112]:

Il

R(JT)T' = T(dT)YR™, (13)
R(dTYATY = —(dT)(dTYR™. (14)

The corresponding structure maps are given by eq.(4) and (8],[12],[13]

AdT)=dT®T + T @ dT =dIT + TdT,
(15)
S(dT) = —T~'dTT"", ¢(dT) = 0.

To define the differential braided Hopf algebra over BMy(N) (denoted as Qp) we

have to consider in addition to eq.(2) the following relations [14]:

R'uRdu=duRuR,

(16)
RduRdu = —duRduR™},
and the extension of the comultiplication (5) is [15]:
Adu) = du@u+ v @du = du il + udi. §Y)]

Now our propositions are:
Proposition 1. The differential algebre Qg (2),(16) 13 a covarient comodule
algebra with respect 1o the following coaction (homomarphism) of the algebra 4

(1),(18),(14):
Aglu) = TuT?, (18)

Auldu) = dTuT7'+ TduT' + T;udf!"'_1 . - (19)
The braiding is triviel and defined by eq.(8) and

[du, T') = [u, dT"] = [du, dT"], = 0.

Proposition 2. The differential algebra Q4 (1),(13),(14) 35 & covariant braided
comadule with respect to the braided coaction (homomorphism) of Qp (2),(16):

Ap(T) = uT, (20)
Ap(dT} = duT +udl. (21)

. The braiding 13 nontrivial and given by eq.(10) and

dTw' =RuR7dT, Tdw' =RduR™'T,

dT du' = —R du R~ dT. (22)

The proofs of Propositions 1 and 2 are straightforward. For the illustration we
verify the homomorphism (20),(21) using, for example, the relation (13)

RAp(dT) Ap(T) = RduT o' T' + Rudlw' T’ =

=RduRu RITT+ Ru RuR!R'RJTT =
=uRAuRITTR '+ uRuR!TIT"'R™ =
=uT(du'T' + ' dTYR™ = Ap(T) Ap(dT")R™"

{underlining indicates the parts to which the next operation is to be applied}).
Analogous calculations for eq.{14} are in fact optional because their result can be
foreseen from the differentiating the equality just obtained.




The comodule axiom (11) and the braiding relations (22) are consistent with
the braiding relations for the differential algebra over BM_ (N) (this braiding and
the eomuliiplication (17) have been proposed by A.A.Viadimirov and published in
[15])

RI'éiRu=uR&R,

R'diRu=uR'diR,

R'iRdu=duRiR, (23)
R1diRdu=—-duR"diR .

It can be verified by the substitution T' — #T into the formulas (22).

In the papers [10],[12],[13],(16] it has been shown that the comultiplication
(4),(15) for the differential algebra 4 (1),(13),(14) leads to the relation

Au(Q) = TQT 4 dTT?, (24)
where Cartan's 1-forms Q = dT7T? satisfy
RORQ+OROQR' =0 (25)

and [{2, T’] = (. Then, one can introduce the noncommutative 1-form connections
A (transformed as in (24)) and the curvature 2-forms F = d4 — A? to formulate
the so-called quantum group covariant noncommutative geometry [12]. The same
procedure for the algebra 2,4, but with the braided coaction (20),(21), yields the
formula (cf. with (24))

Ap(Q) =uQu ' +duul. (26)

Here u~! ia a braided antipode introduced by Sh.Majid in [4]-[6] and one can
deduce from (22) the corresponding braiding relations:

QRuR* =RuRQ,

QRJuR" = ~-RduR~' 0 (27)

demonstrating the noncommutativity of the ”transformation group” elements u;-
and 1-forms {.. Now one can again substitute, instead of {2, the 1-form connections
A transformed as in (26) and satisfying relations (25),(27). Then the curvature
2-forms F = dA — A? are transformed homogeneously

Ap(F) = uFu™'. (28)
The braiding for the operators F and u is deduced from eqs.(27)
FRuR!'=RuRF, - (29)

FRduR™'=RduR™F, (30)

L

—z

and, as it was shown in [5],[6], the relations (28),(29) (for arbitrary R-matrices)
respect the cornmutation relations for the curvature 2-forms .

RFRF=FRFR. (31)

Moreover, relations (26)-(30) with substitution 2 — A respect the following cross-
commutator for A and F: '

RARF=FRAR.. (32)
Thus we have the following
Proposition 3. The algebra
RARA 4+ ARAR' =0, (33)
RARF = FRAR, (34)
RFRF = FRFR, (35)

(for the Hecke type R-malriz (12)) is a coverient braided comodule algebro with
respect to the braided coaction of Qp (2),(16) (differential eztension of BM(N)):

Ap(AL) = u (x7'); @ Af + duj, ()@l =(uAu); + (du u ), (36)

As(F) = ui (), @ B = (uFu ™). (a7)

The braiding is nontrivial:
FRuR'=RuR'F, ARuR?'=RuR™ 4, (38)
FRduR'=RduR'F, ARduR™'= -RduR' 4, (39)

end the comodule aziom (11) is consistent with the braiding relations (23).
Propositions 1 and 2 establish the closed relations between the differential exten-
sions of the quantum groups 4 (1),(13),(14) and the reflection equation (braided)
algebras f2p (2),(16). Proposition 3 shows that the algebra (33)-(35) is covariant
not only under the coaction of 4 (see [12]) but also covariant under the braided
coaction of g (36),(37).

3. To conclude this letter we would like to make some remarks.
A.) As it has been pointed out above, the algebra (33)-(35) considered in Proposi-
tion 3 has the geometrical interpretation when the generators 4, F are associated
via the relation ¥ = dA — A?. Namely, in this case, one can consider 4 as 1-form
connections while F as curvature 2-forms. Now we introduce the braided adjoint
co-invariants using the well known g-trace [1],[17]

Ca = Tr,(F*) = Tr(DF*), (40)



where the matrix D is related to the R-matrix (see e.g. [17],[3],[5],[11]):
D'; = R = Tre (Pu((R)™)")

and R = ((R}})~!)". By definition, the 2k-forms Cy; (40) are co-invariants not
only under the adjoint ceaction of the quantum groups (1) (see [12]) but also under
the braided co-transformations (37). Moreover, these 2k-forms commute with A
and F and, as it has been shown in [12], they are closed:

dCy = Try(AF* — F* A} =0. (41)

To prove the last equality in (41) one has to use the commutation relations
(34). Therefore, the central elements Cyz; could be interpreted as noncommu-
tative analogs of the Chern characters.

B.) One can generalize Proposition 2 in the following way. Let us consider the

differential algebra Q5 generated by {v}, dvi} (cf. with (2),(16)):
R vR 1y =R 1/R?
R'vR'd'=d'R7v'R, {42)
R'd&w'R'dv' = ~dv'R1dv'R.
This algebra is a differential braided Hopf algebra with the comultiplication

Av)y=v@v=vd,

A(dv) = dv@v + v @dv = dv § + v di, (43)
and braided relations (cf. with (23))
RiVR o' =o' R# R,
Rdi'R v =o' Rd0'R T,
RVR'dv =dv'R R, (44)

Rd¥R1dv' = —~dv' Rdo'R7L.

Then, we have the following:

Proposition 4. The differential algebra by (1),(13),(14) is @ covariant braided
" comodule with respect to the bratded coaction (homomorphism) of twe commuting
algebras Qg (2),(16) and Qg (42) ([Qs, Up|+ = 0). This coaction of Qg R can

be represented tn the form:

Aa(T) = uTo, (45)
Arp(dT) = duTv+udlTv+uTdv. (46)
The braiding is defined by egs.(10),(22) and

vT'=T'Rv'R™, vdT"=dT"RVR™!,

T =TRd'R™, dvdl' = —dT'Rdv'R™ | (47)

The proof of this Proposition is the same as the proof of Proposition 2.
Propositions 1-4 lead us to the natural conjecture that the differential algebras
Q4 (1),(18), (14) and Q5 (2),(16) are related by the process of transmutation con-
sidered by Sh.Majid in [18],[5),[6].
C. There are some arguments that the braided quantum group covariant noncom-
mutative geometry (briefly discussed in Proposition 3 and in the subsection A.))
could be associated with the global version of the ‘g-gauge theories proposed by
L.Castellani [19]. For example, the matrix elements uj—(generating ?gauge transfor-
mations” (36),(37)) do not commute with the "g-gauge fields” A and F (see [19]
and (38),(39)). It would be very interesting to trace these relations completely by
means of formulating the ”infinitesimal version” of eqs.(36),(37).
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