


1 Introduction

Since the publication of the works by Bak, Tang and Wiesenfeld [1], critical Abelian
sandpile models are in the focus of comprehensive studies, see, e.g. [2, 3, 4, 5]. The
stochastic evolution of a sandpile naturally leads to a state of self-organized criticality
{SOC), which is characterized by correlations with power-law decay in space and time.
As the spatial aspects of the SOC are similar to those of a'critical state in statistical
mechanics, the program for studying the structure of SQC states essentially parallels
the one for the usual statistical models like the Ising or the Potts models. Besides the
evaluation of bulk critical exponents, an important item in this program is the deter-
mination of different surface exponents describing the behaviour of correlations near
a boundary. In the two-dimensional case, finite-size analysis [6] and conformal field-
theory [7] establish relationships between surface and bulk properties of the models,
which lead to a complete description of the spatial structure at criticality. Thus, find-
ing a correspondence between the observables of a sandpile and an appropriate model
in statistical mechanics at different boundary conditions seems an attractive task.

The number of distinct recurrent configurations of the Abelian sandpile model on
an arbitrary lattice has been expressed through the number of spanning trees on the
same lattice [8, 9). The statistics of spanning trees obeys the Kirchhoff theorem and
can be, in turn, related to the ¢ = 0 limit of the g-component Potts model {10, 11]. In
drawing a further analogy, however, one encounters the difficulty of identifying local
sandpile observables as site variables in the Potts model. The natural formulation of a
sandpile model is given in terms of integer height variables z; at each lattice site ¢ € £
and toppling rules. The stable configurations in the SOC state of the Abelian model
are sets of heights {z;,¢ € £}, where z; € {1,2,3,4}. Majumdar and Dhar [12] have
calculated the probability P; of finding the value z; = 1 and the correlation function
P11(r) for two sites of unit height at a distance r apart. In the two dimensional case,
the result Pyi(r} ~ r* with £ = 2, has been obtained for large r, which provided
grounds for suggesting [9] that Py, (r) is the counterpart of the energy-energy correlator
in the zero-component Potts model. For the Potts model, besides the bulk exponent
z = 2, the surface correlations decay exponent is known too, #)'= 2, in the case of free
boundary conditions [13, 14]. The value of the surface exponent z, in turn, is related
to the amplitude A of the inverse correlation length ¢! = A/L, which controls the
exponential decay of pair correlations along an infinitely long strip of width L. Namely,
the amplitude-exponent relations [13]

A= { Tz , Ireeb.c (1)

2zr , periodic b.c.

follow from finite-size scaling [6] and the conformal properties of the model [14].

In this paper, we consider the behaviour of the probability Py and the correlation
function Pyy(r) near the boundary of the Abelian two-dimensicnal sandpile model [8}.
The toppling rules are specified by the matrix A with elements A;; for sites i, 7 in the
bulk of the lattice given by

4 i=j
Ay=4¢ -1, li—j|=1 (2)
0 , otherwise



Here |i — j| denotes the distance between sites ¢ and j.
To formulate the toppling rules at the boundary L of the sandpile, we use three
standard boundary value problems for the Laplacian on a finite lattice L.

1. Open boundary conditions ( or Dirichief boundary conditions), when A = 4 for
i € L, and, therefore, the sand particles are allowed to leave the system through
the boundary.

2. Closed boundary conditions ( or Neumann boundary conditions), when Aj; = 3
for 7 € 8L, and the sand particles cannot leave the system through 8L.

3. Periodic boundary conditions, when A; = 4 as in case 1, but now the lattice is
wrapped on a torus and ji — j| is the distance along the surface of the torus.

Obviously, if all the boundaries are closed or periodic no steady state of the sandpile
is possible. Therefore, in considering the strip geometry, we start with a rectangular
shape of the lattice £, impose open boundary conditions on the vertical edges of the
rectangle and boundary conditions of one of the types 1,2 or 3 on the opposite horizontal
edges. Then, we let the horizontal size of the rectangle tend to infinity. -

The following results are reported here.

1. In the case of half-plane geometry, the probability P;(0} of a height z = 1 at the
boundary is obtained:
for open boundary conditions

9 42 320 512
’P;(D)=§—?+37r;-9?2010382, (3)

for closed boundary conditions

Py(0) = % - % 2 0.11338 . (4)

On moving inside the sample, the probability Py({) at a distance [ from the bound-
ary tends to its bulk value Pi{oo) = 2/7* — 4/ according to the law:

1

P = Pi(oo)(1 £ i

+) (3)
where the upper sign is related to the open boundary conditions and the bottom sign
to the closed ones. )

The two-point correlation function Py;(r) at the surface decays according to the
law: :
for open boundary conditions

_ N (97 — 32)2
Pulr) = 4P O s g s oty T (©)
for closed boundary conditions
b 16
Pulr) = -Pi0) 3+ . M
2

2. In the case of an infinitely long strip of width L, the leading exponential deca,i'
of the pair correlations Py;(r) along the central line of the strip is obtained.
(a) For both open and closed boundary conditions

) 4
Pulr;L) = —Pf(L/z)%e-“'fL o, (8)

where bthe finite-size correclions to the probability P1(L/2) in the middle of the strip

are:;
2

PI(L/2)=1>1(00)(1¢£E+---) : @

Here the upper sign is related to the open boundary conditions and bottom sign to
the closed ones.
(b) For periodic boundary conditions the pair correlations take the form

PualriL) = ~PE) Sy (10)
where s
PAL/D) = Puleo)(L = T+ ) - e

The above results can be compared with the predictions of the conformal field-theory.
Thus, from (6,7) it follows that z; = 2, and from (8) one has A = 2, which is in
agreement with (1). For periodic boundary conditions equation (10) yields A = 4=,
and the butk exponent z = 2 has been obtained by Majumdar and Dhar [12], which is
again in conformity with the prediction (1). '

Thus our results confirm the hypothesis about the correspondence between the
unit height in the Abelian sandpile model and the energy in the zero-component Potts
model. As far as other observables are concerned, e.g. heights 2, 3,4, sizes of avalanches,
their duration and perimeters, we lack at present convincing evidences of their relation
to observables in the Potts model. A short discussion of that problem is given in the
final section. ’

2 Correlations and Green functions

The main tool for evaluation of height probabilities and correlations between them is
a mapping of the set of sandpile configurations onto the set of spanning trees. Dhar
[8] has shown that the number Ay of sandpile configurations in the SOC state, as well
as the number of spanning frees, is given by the sinple expression

Np=detA . ) (12)

The different height probabilities on a lattice £ can be related also to the enumeration
of certain types of spanning trees. In pariicular, the number of sandpile configurations
with z; = I at a given site ¢ of £ equals the number N}{) of spanning trees on the same
lattice £ which have just one leaf attached to i and pointing in a fixed direction {9].
Following Majumdar and Dhar [12], one may construct a new lattice £7, such that the
spanning trees covering £ contain the fixed leaf. To this end, one just cuts off all the



bonds attached to site ¢ in £, but the one containing the given leaf. As a result, a new
toppling matrix A® for the sandpile on £} is obtained. Note that the defect matrix
B = AW — A has non-zero elements only for the site 7 and its nearest neighbours but
one. Thus the probability of finding the value z; = 1 is given by the formula

_ det At
L7 Tdet A

where 1 is the unit matrix and G' = A~! is the lattice Green function. For example, if
1 is far away from the boundaries, B;; = —3 and B;; = —1, Bi; = By = 1 for j being
the left, right and lower neighbour of . In this case P; is independent of the choice
of site 7 inside the bulk of the lattice £. The pair correlation function Py;(r) can be
defined in a similar way by constructing a new toppling matrix AU for the lattice,
L67) with defects of the above described type placed at a distance r apart;

= det(1+ GB) , (13)

det Ali)
det A

where By, is the compound defect matrix.

Thus, the problems we have formulated in the Introduction can be reduced to the
calculation of the lattice Green functions for different boundary conditions and finite-
size analysis of the determinants (13} or (14) for the specified defects.

The eigenvalues and eigenfunctions of the discrete Laplacian A on a finite square
lattice of the rectangular shape under the considered boundary conditions are well
known. For a lattice of size M x I with open boundary conditions on the vertical
edges of length L and open, closed or periodic boundary conditions on the horizontal
edges, the lattice Green function G'(L"A)l {ny,m1; g, M) takes the form

Pu(r) = = det(1 + GBy) , (14)

1 r _
Gi?{(nlaml; g, My) = Z Z vIST)(nl)vél)(ml)i)‘(ﬂ Y0 ng ](nz)vq(l)(mg) . (19)
2 q

p=1 g=1

Here n = 1,2,....,L labels the row and m = 1,2,...., M labels the column of site
i = (n,m) € L; y,(n) are the eigenfunctions and A, are the corresponding eigenvalues
of the one-dimensional discrete Leplacian under boundary conditions (7),7 = 1 {open),
2 (closed) and 3 (periodic). For the veriical direction one has the following explicit
expressions (p=1,2,....5; n=1,2,...,L):

for open boundary conditions

Tp ‘ 2 . TpR
A(l) = 2(1 — cos m) v,fl)(n) = ”'m sin 77 (16)

for closed boundary conditions

,\1(32) = 2(1—cos ?), U;Z)(n) = ) . (17)
JEcos [ilp-D(n—3/0] L p=20 L
for periodic boundary conditions

A = 31— cos 22, o n) = Lexp 2T (18)

Passing to the limit of an infinitely long strip, M — oo, we first redefine the Green
function (15) as follows.

(i) Shift the origin of the column number m and the row number n to the center,
i.e. for an odd integers M, L we set m =m' + —"’— ,n=n'+ & where m;,n, labels
the columns and rows from the central ones (w1t.h my=0,m = 0)

(i1} Shift the value of the Green function by a constant term to remove the diver-
gency which appears as M — oo, even at finite L when periodic boundary conditions
are imposed on the horizontal edges. Evidently, such a shift does not affect the value
of the determinants (13,14).It is convenient to set the shift term equal to the value of

o
GQ{ at coinciding sites in the center of the lattice. Then, in the limit M — oo we
obtain
- Gy, miy; g, my) =
. - L+1 M L M+1
=A}'Eanm{Gin)4( m + == 1+%;7"12+ S my + ) —
+) L+l M+1 L+1 M+1
G }=
Z f 7 )5, ) costmt =~ mi)o— o EDTOEY
A 4201 - cos ) ’
Considering correlations along the central row of the strip it is convenient to rep-
resent the resulting Green function as a sum of two parts: an even, C{”), and an odd,
§7), with respect to each of the arguments n] and nj:
. G'(Lﬂ')(n.:l ¥ %’m;;.n2 L+1 2) —
= COV(m, myimy — m3) + ST, ngym) —m)) (20)
& In the remainder, referring to the strip geomnetry, we shall drop the prime superscript

of the row and column numbers, remembering that they are counted {rom the center.
Explicitly we have:
. for open boundary condilions

CF)(nlaHZ;m) =

1 (L-1)/21], cos [x (2041 n, /(L41)] cos [r(20+ 1Iny /(L +1)] cos ma— 1

L+l m 2—cos (7(2[4+1)n J(L+1)]—cos

da, (21)

/'51n[27rfn1/(L+l)] sin [?‘nnhrz;.f(L+1)]cosmﬂrA1 1 (22)

cos 2nif{L+1)]—cosax



for clpsed boundary conditions

1 7 cosme — 1
C(2J IR =
2 (1, m2im) 2zL 1—cosa @ +
[

}fL_l}lzlj cos(2ming f L) 008(211'!721/[1) costna—1
L I

2—cos(2rl/L)—cosex . doc (23)

=1 0

S,(,z)(”h ﬂz;m) =

o] /‘sm[‘.'r(Ql L)ny /L] sin[#(2{—1)ny /L] cos mad a4
L i 2—cos[m(2— 1)/L]ﬁcoso: ’ ()
for periodic boundary conditions
Cis)(n],ng;m) =
cos(2xiny /L) cos(2nlng /L) cosma—1
2L Z _[ 2—cos(2nl/L) —cos da (25)
o
S_Ea}(nl:n?;m) =
sin(27in, /L) sin(2ring /L) cos ma

2L Z f 2—cos{2nl/L) —cos o da (26)

In the case of a half-plane geometry, one may start with expression {19) and take
the limit L — co, thus obtaining up to unimportant constant the Green function for a
half-plane with open boundary,

G{U(nl,ng;m) _ 1 smnlﬁsmngﬂcosmadadﬁ , 97
00

2—cos f—cosa

and closed boundary

GO (ny, ny;m) // cos(n, — 1/2)8 cos(ny — 1/2)3 cosma— ld g . (29)

2—cosff—cosa

3 The strip geometry
We consider the correlations between two unit heights, one at the center of the strip,

7y = 0,m; = 0, and the other at a distance r apart, at site ny = 0, mq = r. If we label
the rows and columns of the 8 x 8 matrix Byi(r), associated with the corresponding
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defects, in the order (—1,0),(0,-1),(0,0),(0,1),(—1,r),(0,r — ) (0,r),(0,r + 1), it
takes the block-diagonal form

"B 0
m=(% 5) (29)
where B, is the 4 x 4 matrix
-1 0 1 0
0o -1 1 o
B = 0o 1 -3 1 (30)
0 o0 1 -1

The restriction G, {r) of the lattice Green function (19) (for simplicity of notation,
in the remainder of this section we omit the superscript (v} indicating the specific
boundary conditions) to the corresponding set of defect sites is an 8 x 8 matux with

the block structure: . ©) A
Gm={ ° S 31
( ) ( AL(#T) AL(O) ) ( )

where, using the representation (20), A, (r) may be written as the 4 x 4 matrix
C(L 1L +8, (1,57 C.(1,0r—1) C,(1,05r) C,(1,0;74+1)
C.(0,1;7+1) C.(0,6,7) C.{0,0;7+1) C.(0,0;7+2)
C,(0,1;7) C,(0,6;7-1)  C,(0,0;7)  Cy(0,057+1)
¢.(0,1;r—1) ¢, (0,0;7=2) CL(0,0;r=1) C,(0,057)

A, (T) =

and A,(0) is given by (32) at r = 0.
According to (14), the pair correlation function Py(r; L) is

Puslrs 1) = det [1 + G, () Bu()| - PHL/2) , (33)
where _
: PHL/2) = lim det [1+ G, () Bu(r)] (34)
is the square of the unit height probability at the central line of the strip. Thus the
problem reduces to the evaluation of the determinant -

B A (B
det [1 + G’L(T)Bn(r)] = det ( 14+ A,(0)B L(r)B: ) , (35)

AL (_T)Bl 1+ AL(_T)BI
Using the explicit form of B; and the symmetry properties of the even and odd

components of the Green function (20), after obvious transformations, we obtain the
expression

det [1 + éb(’")Bil(r}] = 1‘5 { [% -5, (g, 1?0)]2—55(1, 1;1")} det (RTQ(T) Rg-) ) ,

(36)



where @ and R(r) are the 2 x 2 matrices (R” is the transpose of ),

- -G, (0,1;0) C,(0,0:1)~C,(0,1: 1)
C(0,0,7)=C,(0,1:7)  C,(0,0574+1)~C, (0,137 +1
Rir) — ( | 1=C( ) ( )—Cu( )) 38)
C.{0,0;r—1)=C,(0,1;7r 1) CL{0,0;m)—C,(0, 1;0)

"The r-dependent terms in equations (36),(38) are readily evalualed as r — oo at fixed
L > 1; their leading asymptotic form depends on the boundary conditions:
1. Tor open boundary conditions

5.(1,1r) =~
CL(0,057) — C,(0,L;r) & rexp(—rr/L) ; (40)
2. For closed boundary conditions
S.(L,Lr) ;-exp(—ﬁr/L] (41)
C.0,07) — C,(0,1;7) ~ frexp(~2nr/L) ; (42)
3. For periodic boundary conditions
27 ‘
S.(1,1;r) & Lrexp{—2nr/L) (43)
C.0,0r) — C(0,1;r) = Lizexp(—err/L) ; (44)
By substitution of (40)-{44) in expressién (36), see also (33), one obtains that the
exponential decay of correlations is governed by the correlation length £ = L/2r in the
cases of open and closed boundary conditions, and £ = L/4x in the case of periodic

boundary conditions. The finite-size corrections to the unit height probability P,(L/2),
see (34),

1
PUL/D) = 1+ G, (0,020 +20,0, 5,015 - 5,0.5,00)  (49)
can be obtained by using standard techniques based on the Poisson summation for-

mula, see e.g. [16). All the relevant terms can be expressed through four L-dependent
integrals ex(L), & = 1,...,4,

1] sing  §,(9)

- _ T -4
all) = Tt 142500 5L2 rouT) (46)
1 s 6(¢) ,, T D
ea(L) = — e T d8 = g+ O (47)

‘i;r exp( —2xr/L) (39) ‘

el) = \/HL #)dp = T+ O(L™) (48)
o 3
ell) = © \/1*"‘_1‘% $)dp = =+ OLY) (49)

where,

-1 .
§.(9) = [(sin ¢+ /1 +sin? )" — 1] . (50)
Thus we obtain: :

1. For open boundary conditions

2
CL0,02) = —1+=—45(20+2) — des(2L +2) (51)
C,00,1:1) = —%+252(2L+2) (52)
1
$,(1,1,0) = é‘;—gas(zmz)fgeq(zufz) (53)

2. For closed boundary conditions

C,0,0:2) = 1+ f—r - 4ea(2L) + 4eq(2L) (54)
C.(0,1;1) = -% —2e,(2L) (55)
SULLO) = 3~ +26,(0) + 2(20) (56)

3. For periodic boundary conditions

C,(0,0;2) = —1+%—453(2L)+454(2L) (57)
C,(0,1;1) = 4%7254(211) ~(58)
$,(1,50) — %—%-253(%)_254(%) : (59)

The final results for the strip geometry are summarized in equations (8)-(11), see
the Introduction.

4 'The half-plane geometry

With the aid of expressions (27)-(28) for the Green functions, one can use the determi-
nant formula (13) to obtain the unit height probability at a site i which belongs to the
lattice boundary @L£. In this case, the modification of the lattice consists in cutting
off the two bonds which are attached to i and belong to the boundary. If we label the
defect sites in the order (—1,0),(0,0),(1,0), the matrix associated with the defect is



the 3 x 3 matrix of the form:
for an open boundary

-1 .1 0
B=[ 1 -3 1 , (60)
0 1 -1
for a closed boundary
-1 1 ¢
B=| 1 -2 1 | . ' (61)
6 1 -1

A direct evaluation of the corresponding determinants leads to expressions (3) and
(4}, given in the Introduction.

Of course, one could construct a different defect matrix which leads to the same
results, for example, by preserving one of the boundary honds and cutting off, instead
of it, the bond which starts from ¢ and points inside the lattice.

To obtain a more detailed information about the spatial structure of the sandpile,
we have studied also the asymptotic behaviour of the unit height probability P;(I) at
large distances from the boundary, [ 3» 1. In this case, the defect matrix is the same
as in the bulk, see [12]. The asymptotic behavior of the boundary Green function
at large separations, for both open and closed boundary conditions, is most easily
obtained with the aid of the method of reflections. Then, one needs to know only the
asymptotic expansion for the bulk Green funétion at large separations (r > 1):

v _3m2 1 43
2 4w 247xr?  480xrd

ka(0,0;r) = —ilnr— + - (62)
where «y is the Fuler constant.

By using the discrete Laplace equation to generate a setjuence of recurrent relations,
one may obtain the asymptotic expansion for Gy.(0,n;r), where n = 1,2, --- Next,
by subtracting (in the case of an open boundary} or adding (in the case of a closed
boundary) the Green function for a fictitious source; placed symmetrically with respect
to the boundary, one can easily find the asymptotic expansion for the Green function
which corresponds io the considered boundary problem. Thus for open boundary

conditions we obtain i ]
GO(0,0;7) = — o (63)

xri  2rrd

and for closed ones

1 "3In2 1 17 -
D0 0 ) = ——lppo L 2B&__*
GH(0,07) e fnr T 2r  6wr? 24074

(64)

The defect matrix used in the calculation of the unit height correlations at the
boundary, in the representation when the defect sites are labeled in the order: (—1,0},
(0,0, (1,0), (r —1,0), (r,0}, (+ +1,0), has the block-diagonal form

B, 0
Bll = ( 0] B] ) 1 (65)

where the 3 x 3 matrix B, is given by one of the equations (60),(61).
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The restriction of the boundary Green function to the set of defect sites can be
written in the block form

] A,(0) Ay (r)
c;(r)':( ) , : 66
A=) A,(0) - ®

Finally the evaluation of the determinants (14) leads us to the results (6),(7) [;resented
in the Introduction. :

5 Conclusion .

In summary, we have calculated the leading asymptotic form of the correlation func-
tions for the unit heights, Py(r}, in the strip and half-plane geometries of the Abelian
sandpile model, under three different boundary conditions. The results confirm the sug-
gestion that the unit height behaves like the local energy operator in the g-component
Potts model at ¢ = 0. Unfortunately, the above conclusion cannot be directly extended
to the case of heights 2; = 2,3, 4, although correspondences between these heights and
spanning trees still exist. In [17] it has been shown that z, = 2 corresponds to such
trees (in addition to the trees yielding z; = 1), in which none of the paths, starting
from three nearest neighbours of site ¢ and ending at the open boundary, pass through
i. In the case z; = 3 this property must have the paths starting from two of the
nearest neighbours of ¢, and if z; = 4 - from one neighbouring site. Thus, the heights
z = 2,3,4, being local sandpile observables, happen to be connected with nonlocal
properties of the trees. For the enumeration of configurations with these heights one
has to consider clusters of subtrees with increasing size. It has been established [12]
that such cluster expansions are slowly convergent, which makes difficult the evaluation
of the correlation functions P,.(r) for z = 2,3,4. In principle, the above mentioned
features could lead to a different from r—* power law of decay.

Finding a correspondence between observables in the Potts model and character-
istics of the avalanches is not an easier task either, because of the nonlocal nature of
the avalanches. The solution of these problems needs further analytical and numerical
studies.

6 Acknowledgements

This work was supported in part by the Bulgarian National Foundation for Scientific
Research, Grant No. MM-74/91.

11



References

(1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); Phys. Rev.
A38, 364 (1988).

[2] L.P. Kadanoff, S.R. Nagel, and 5.M. Zhou, Phys. Rev. A39, 6524 (1988).
[3] T. Hwa and M. Kardar, Phys. Rev. Lett. 62, 1813 (1989).
[4] S.5. Manna, J. Stat. Phys. 59, 509 (1990).

[5] S.P. Obukhov, in Randem Fluctuations and Pattern Growth: Erperiments and
Models, edited by H.E. Stanley and N. Ostrowsky, NATO Advanced Study Insti-
tutes, Ser. C, Vol. 157 (Kluwer, Dordrecht, 1988).

[6) V. Privman, in Finite Size Scaling and Numerical Simulations of Statistical Sys-
tems, ed. V. Privman (World Scientific, Singapore, 1990).

{7] J.L. Cardy, in Phase Transitions and Critical Phenomena, edited by C. Domb and
J.L. Lebowitz, Vol. 11 (Academic Press, London, 1987}, p. 55.

[8] D. Dhar, Phys. Rev. Lett. 64, 1613 (1990).
[9] §.N. Majumdar and D. Dhar, Physica A185, 129 (1992).
[10] F.Y. Wy, Rev. Mod. Phys. 54, 235 (1982).
[11] C.M. Fortuin and P.W. Kasteleyn, Physica 57, 536 (1972).
{12] S.N. Majumdar and D. Dhar, J. Phys. A24, L357 {1991}.
fi3] J.L. Cardy, Nucl. Phys. B240, 514 (1984).
[14] V.S. Dotsenko, Nucl. Phys. B235 [FS11], 54 (1984).
[15] J.L. Cardy, J. Phys. A17, L385 (1984).
[16] S. Singh and R.K. Pathria, Phys. Rev. B31, 4483 (1985). Physica A166, 1 (1990).

[17] V.B. Priezzhev, Preprint DIAS-STP-92-10 (Dublin Institute for Advanced Stud-
tes, 1992).

Received by Publishing Department
on February 17, 1993.

12



