


1 Set-theoretic conventions

We will work here within Morse set theory (see [14]), with the uenal axiom added stating
the existence for any set of a universal set containing it.

All categories, presites, toposes, glutoses, etc. are supposed to be sets, so tha.t there
exists the legitimate 2-category of all categories, resp. presites, etc. (which iz a proper
class); similarly, (pseudo)functorial operations defined in several places below on _objects,
arrows and 2-arrows of 2-categories above are incorporating together to produce iegitimate
2-(pseudo)functors.

Here are assumed the definitions of [14] for ordered pairs and, more genera.lly, families
(= tuples in the terminology of [14]) so that for any universe ¢ (including the biggest
universe of oll sets} a family of subclasses of the universe Y indexed by a-subclass of -
the universe I is again a subclass of U and behaves well. In fact, it is just this choice

of definition for families which permits one to define the “big” 2-ca.teg0fiés=. above and
2-(pseudo)functors between them as terms of Morse set theory: e.g., a 2-category C is a
finite tuple {Co,C1,C2, . ..} of classes satisfying certain conditions.

2 Glutoses: definition

An elementary glutos is a kind of “generalized elementary topos” (not to confuse
with quasitoposes!): 1t is a category C, equipped with a suitable structure, given by
a subset (O of arrows of C (elements of which will be called open arrows of C), which
generates over any object X of € an elementary topos, namely, @/X . Here O/ X denotes
the full subcategory of C/X formed by all objects which are arrows of @. So that, in



gome sense, a ghutos is a topos locally {not to be confused with local toposes!). If one
grasps, metaphorically, a glutos as a family of toposes coherently glued together into
a single category C by means of a “glueing” structure O, then the term ‘glutos’ itself
can be thought of as an abbreviation for {GLUed bunch of TOposeS’. An alternative
interpretation of this term: in glutoses one can glue together finite families of objects
along open arrows (see section 6 below for details).

Exact conditions € must satisfy (“axioms of elementary glutoses”), are the following
ones:
(€31) O contains al} iso’s of C, 1s contained in the set of all pullbackable arrows of € and
is stable by composition and pulibacks;
(G2) fg € @ and f € O implies g € O
(G3) a) For any object X of C the category 0/ X 1s an elementary topos and b) for any
f:X — Y in C the functor f0]Y — OfX (which is defined, due to (G1), and is
ieft ‘exact) is an inverse image of some geometric morphism;
(G4) C has disjoint and universal finite coproducts, such that canonical injection mor-
phisms belong to O; for any finite family {0k —— X }ier of arrows of @ the colimit arrow
[, Vi — X belongs to &, h :
(GB) Any equivalence relation w,v: U2 X in C such that w,v € @, is effective and has
2 universal coequalizer in C which belongs to ©; any epi of C, which belongs lo O, is
effective; besides, if both fp and p belong to @ and p is epi then f belongs to O.

Tt is clear, that elementary glutoses are really models of some first-order theory, which
is an extension of the elementary theory of categories by some unary symbol O, with
corresponding translations of {((G1)-(G5) added as axioms.

Remark 2.1 Structures ¢ on a category C satisfying condition (G1) eccur so frequently
that deserve, in author’s opinion, to be christened somehow. Here it is proposed to
call them cloposes, whereas for its elements is reserved the name clopen arrows. An
argument in favour of this strange choice of names is that in the category of sopological
spaces both the class of all arrows isomorphic to inclusions of closed subspaces and that
isomorphic to inclusions of open subspaces satisfy condition (G1). The terms ‘closed’ and

: “open’ can then be reserved to denote something more special than simply elements of a
class of arrows satisfying condition (G1) (e.g- closed arrows of a closure operator [11] or
open arrows in the sense of [9] ! or in the {different) sense of the present work).

3 Examples

(0) Any topos s, canonically, a glutos (set O=C); vise verse, if a pair (C,C) is a glutos,
then C is a topos iff it has a terminal object (the latter condition is necessary as one can
see from example at the end of section 4), For another examples of glutos structures on
toposes (étale structures satisfying collection axiom of [9]) see Remark 5.2 in section 5
below.

1 am grateful to Prof.P.T. Johnstone who turned my attention to the preprint [9] sending me a copy

of it.

Archetypical examples of glutoses which are not toposes are:
{1) Topological spaces (Top) with open arfows being local homeomorphisms;
(2) Smooth manifolds (Man) with open arrows being local diffcomorphisms; f(;r a natural
number r the full subcategory Man, of Man consisting of all manifolds of dimension
n with the empty manifold §§ added, with open arrows as above. The glutos Mang
degenerates; evidently, to the topos Set of sets, whereas Man,, for n # 0 give examples
of glutoses withoui terminal objects; - ‘ '
{3} Locally trivial vector bundles over smocth manifolds (Vbun} with open arrows beiné
just those arrows, whose image in Man under neglecting functor is open; :
{4) Grothendieck schemes (Schem) or C*-schemes of Dubuc [5] (C=>-Schem) with, e.g.
open arrows in Schem being morphisms which locally are inclusions of open subscht’ames:
te., (u:l/ —-X) € O, if there exists a covering of U by open subschemes such that
the restriction of u on any element of this covering is isomorphic to inclusion of an open
subscheme of X.

It is, implicitly, assumed in examples (1)-{4) above that, say, all topological spaces of
Top are elements of some universe ¢, which, moreover, contains, for the cases (2)-(3) as
well as ('°*-8chem, the universe Iy of finite sets as an element. So that we will write
further, if necessary, Topy,, resp. Sety, eic., instead of Top, resp. Set, eic.. Y

4 The 2-category of glutoses

A morPhism of a glutes {C, ) into a glutos (€', ) is a functor F:C —— -’ between
qnderlymg categories, which respects the structures involved, i.e. satisfies the following
conditions below:

(MG1) F{O)C ¢ .a.nd F respects pullbacks of open arrows alorig arbitrary arrows of C;
(MG2) For any object X of C the induced functor F/X:O/X — (¥/FX (which is
defined and is left exact, due to (MG1)} is an inverse image of some geometric morphism.

Examples of morphisms of glutoses are: the string of neglecting functors
VBun — Man — Top — Set;

the tangent functor T: Man — VBun, as well it i
: , as the transition to base r fol ictor
B:VBun — Man; the functor nanifold fctor

spec:Schem — Top.

Be‘sides, all natural functors “inside” a glutos are morphisms of glutoses as shows the
following - '

l.jroposit]il(')n 4.f1.IFor any object X of a glutos (C, ), the source funclor dy:O/X— C
is @ morphism of glutoses; for any arvow f: X — Y of C the funet /Y 4
is & morphism of glutoses. - i g Junctor [ O == Of3




Of course, the toposes O/ X and O/Y above are considered as glutoses via canonical
glutos structure of example {0} of Sect.3.

Adding any natural transformations between morphisms of glutoses as 2-arrows one
obtains a 2-category Glut of glutoses.

Now, as is clear enough, the 2-category of toposes imbeds contravariantly to that of

glutoses “atmost fully” in the sense that any morphism of glutoses f:& — & between

toposes £ and £’ decomposes as
exenLen g,

which means that the “deviation” of a glutos morphism f between toposes from an
inverse image of some geometric morphism is just the difference between f1 and 1; the
imbedding above would be full if one permite for inverse images of geometric morphisms
not to respect terminal objects.

Nevertheless, the theory arising is not just generalization of topos theory but, rather,
a counterpart to the latter. An essential difference is that presites (=categories C,
equipped with a pretopology 7 ?) play for glutoses the same role sites play for toposes,
as will be seen in section 8 below. : '

We conclude this section defining a subglutos of a glutos (C,©) as a glutos (C )
such that ' is a subcategory of C closed with respect to composition with isomorphisms
of C, the set ¢ is a subset of O and, besides, the inclusion functor ¢! « C is a morphism
of glutoses; the subglutos (€', @) is a full subglutos of (C,O)if C"is a full subcategory
of C.
Example: Let £ be a Grothendieck topos (with respect to some universe U); let £~ be
the full subcategory of £ consisting of all pointless objects, i.e. those objects X which
have no global sections § —» X. Then the pair (£7,E7} is a full subglutos of the glutos
(£,€). If one chooses £ properly, the glutos (£7,€7) will have no terminal object (see
example 0 of section 2). :
Counterexample: If1{ is any universe containing some infinite set, then the topos Sety,
of finite sets is not a subglutos of the topos Sety, because the corresponding inclusion
has no right adjoint.

5 U-glutoses

- For any universe I there arise a counterpart of Grothendieck toposes {=l{-toposes by
terminotogy of [16]). Namely, call a glutos (€, ) an U-glutos, if C is an i-category, any
©/X is an U-topos and, besides, it satisfies the more strong condition (G4y) obtained
from the condition {G4) by replacing ‘finite’ by 2/-small’. By an U-category is meant
here a category with I{-small horn-sets which, besides, is naturally equivalent to some
category C' with MorC' C U (i.e. this definition is stronger than that of {16]).

Remark 5.1 One can show that p.b} of condition {G3) follows from other conditions for
the case of I{-gluioses.

2Note only that we will consider sinks in € and, in particular, coverings of T as elements of the set
ObC x P(MorC) (where P stands for power set), rather than indexed families of arrows of , though in
practice indexed families will be used as well, as representing, in an evident way, “real” sinks. The set
of all pretopologies on C forms then a closure systern (in the sense of [3]) on the set of all pullbackable
sinks of C.

-y

g

Examples (1)-(4)Dof section 3 above are examples of H—_giutoses; another example is
a funcior category C”, where D is If-small and (€, O) is an U-glutos, if one defines the
subcategory (" in 7 as follows: : . .

pF—s F'D— ¢
belongs to ¢ iff for any object D of D the arrow
pp: FD — F'D
belongs to ©. Note that O' is, generally speaking, bigger than O°,

Remark 5.2 Etale structures on an I{-topos £ satislying “collection axiom” in the sense
of {9], are particular case of glutos structures on toposes, as one can easily deduce from
Corollary 2.3 of {9]. Moreover, for any set Et of étale maps satisfying collection axioms .
the pair (€, Ft) is a full subglutos of the glutos (£,€). As to intetrelations of glutos
structures with étale structures, one can see that any glutos structure .on' an arbitrary
category C satisfies all of the conditions {A1)-(A8) of {9} excepting conditions (A3) and
(Aﬁ) {one can easily find counterexamples in the glutos Top); and even in the case when
C is an U-topos there was not discovered (up to now) any special relations (like “descent”
and “quotient” axioms of [9]} between glutos structures () on € and arbitrary epi’s of C.

6  Glueing in glutoses

In this section is studied what kind of pultbacks and colimits exist in.l{-glutoses {besides
those whose existence is declared by axioms (G1), (Gdy) and (G5)).

The general motto here is that in an U-glutos pullback of two arrows exists i it exists
locally and that one can glue Y-small families of objects along open arrows. The rest of
this section is devoted to materialization of this motto into precise stét‘ements.

It furns out, in fact, that the corresponding results are valid not only in U-glutoses
but, more generally, in any clopos, satisfying axioms {G4y)-(G5) of section 2 a,bg)ve. ,

“or any set I let T'T be the category defined as follows. Iis set of objects is just the
set of all non-empty words of length < 2 in the free monoid W(I) of I-words {which is
supposed to be chosen in such a way that I is a subset of W(I} and the canonical map
I — W(I) coincides with the inclusion of subsets). The only non-identity arrows of T'J

are arrows
. & g

ie—ij —j (hjel)

* note that ¥ is to be different from 4.

Given a diagram U:T'T ~— C we will write U, resp. Uy, resp. d¥ instead of U()
resp. U(45), resp. U(d7) omitting sometimes superscripts in the latter case; if U has ;;
colimit we will write U. for a colimit object and {u;.: U; — U.}ies for a colimit cone.

Call a diagram I/:TI — C glueing data or a gluon if the following “cocicle condi-
tions™ are satisfied:

(GD1) For any i,j € I the pair (d¥,d¥) is a mono source in C;
(GD2) For any 1,5 € I there exists an arrow 7;: Uy — Uji of C such that the equalities

T y .
domy =dy and di'm; = dy;




are valid (it then follows from (GD1) that ;7j = Id);

(GD3) For any i € I there exists an arrow s;: Ui — Uy of C which is right inverse to
both d¥ and dif; : .

(GD4) For any word ijk of length 3 in W (I) there exists an object Uyi of ¢ and the
arrows po: Uije — Usj, 2 Ui — Uy and py: Ui — Ujp such that all three squares of
the diagram ) Usjk

v [N
Uy Uik Usk
U; U_-, Uy
ave pullbacks (we will write further pgk, etc. instead of py in case of necessity).

It follows from the latter condition the existence of isomorphisms 0;5i: Usje — Ujii
which agree with projections po, p1 and p “twisted” by iso’s T;; and satisfy the “cocicle
conditions” arising both in algebraic and differential geometry in processes of glueing of
schemes, resp. manifolds along open subschemes, resp. open submanifolds.

One can see, on the other hand, that if the index set F consists of just one element
the definition above reproduces the definition of an equivalence relation.

Any family {u;: Ui — X }ies of pullbackable arrows defines, canonically, some glueing
functor if one sets Uy; = U; [[x U;, whereas for dif one chooses the cosresponding pullback
projections, C

Call a diagram in a clopos (resp. in a glutes) clopen (resp. open) if any arrow of
this diagram is clopen (resp. open}. One sces immediately that for any clopen gluon
in a clopos, morphisms 7;, po, M1 and p of (GD2), (GD4) are clopen. As to (the only
by {(GD1)) arrows s; of (GD3), they also are clopen if the clopos satisfies conditions
((44)-(G5) as one can see from the following '

(1}

Proposition 8.1 Suppose that a elopos (C,O) satisfies conditions (Gdy}-(G5) in the
definition of U-glutoses. Them:

(G4y +5) Any U-small clopen gluen U:TT — € has a universal colimit U. which,
besides, is effective in the sensc thet for any 1,7 € 1 the isomorphism

Uij = U‘HUJ
’ .

holds. The colimit come {U; — Ubigr consists of clopen arrows.

Tndications to the proof. Consider the diagram
do,di: [T U= 1L U )
el . el

where, say, dq is defined as (aidg),—,jeg with ¢: U; — [l Us being the canonical coprod-
uct injection arrows?. One is to prove that the diagram above is an open equivalence

3We e tound brackets instead of braces in order to distinguish between families of arrows and a
single {co)litnit arrow determined by the corresponding family.

relation; then it will follow trivially that the coequalizer

T HU,- — U
A i€l

of t;is diagram reproduces the colimit cone of the original gluon U if one sets u;. = g¢;
ot ote first that the families {r;;}¢jes and {s:}ies of {GD2) and (GD3) permit o;le
o] u1ld_ in a natural way the arrows 7:[[U;; ~— [[8 and = [[U; — [[Uy; the
VeI‘Iﬁf:&FlOIl of the fact that these arrows satisfy (GD2), resp:(GD3), is stra.ightfor»lvjz’trd

Similarly, one can construct three arrows po, pr and p from [[Uijx to [[Uss; eg tl.le

H i1 ey

arrow po: [] Uiz — ] Uij is defined to be the colimit arrow
vi* 4 .
(Ui = U == H Usiisrer

where t;; are canonical coproduct injection arrows.

In proving {GD4) for the dia i
. gram 2 above the following useful lem
which states that a square is a pullback if it is a pullback locally: e can be wsed,

Ee}mm.'z 6.?/ Let fy;’ — Zdimd g Y — Z be arrows of a category C; let {z;: X; —
et 1yt Y; — Yher and {20 Zi — Zlper are universel effecti ) ilies;
Surther, foranyi € I, j€ J and k € K a diagram fective cps Jamilies let,

Py

|
oy

, ®
is given such that four side squares of il as well as the “floor” squaves I, 2 and 3 are
es I,

pullbacks. Then the square § is a pullback iff fo 3 f
. I .\ - 7SS I
e e e ffforanyic I, jcJ andk € K the “cciling

Applying this lemma. to the case X =Y = [{U};, Z = [JU; and P = [[ Uiz with
the c.orresponding universal effective epi lamilies beinjg {e;: U —'—> 11 U}- ={k N
o})hams after simple diagram chase just squares of the di;gr:mr (1) as :‘Jcéi,fr:,si C-% 2?6
diagram (3) above, which proves {GD4) for the diagram (2). e
‘ At last, to prove (GD1) for the diagram (2) consider a pair of arrows f,¢: X = [[ U;;
:;:;:: tga; _boct{h dof = dog and dif = dig. Pulling a covering {L,':U,: ’—> —ﬁ{fi}i;;
{v"‘g}- of = og, Tesp. al(r)ngr dif = filg, one obtains two universal effective epi families
vV — X}ier and {¢}: V; — X},er such that f agree with g on elements of the
intersection” universal effective epi family {Vi[I; V/ — X}jes, which implies t]lat.‘

f=g =



Remark 6.1 One can find in the glutos Man a counterexample showing that not every
pair ¢, u: U2 X of open arrows of Man has a colimit, which means that the restriction

by open glueing date in Prop.6.1 is essential.

The following proposition describes sufficient conditions of existence of pullbacks in
cloposes satisfying (G4u)-(G5). :

Proposition 6.3 Let a clopos (C,0) satisfies conditions (G4 )-(GB). Let f:X — Z
and :Y — Z be arrows of C such that for some U-small epi families of clopen arrows
{Xi — X}ier, {¥Y; — Y}ies and {Zy — Z}rex there exists, for any 1 € I,jeJd .
and k € K, the pullback X sz Yi;, where, by definition, Xuy = Xil; 2 and Yy =
Zi[12Y;. Then there exists the pultback of f and g. If, besides, (C,0) is an U-glutos,
then the U-smallness condition for families above can be omitied. :

The archetype of the proof of Prop. 6.3 iz contained, for example, in the proof of
existence of pullbacks of Grothendieck schemes (see, e.g., 10]). :

Proposition 6.1 permits one to equip, canonically, any UY-glutos (C, O) with a structure
of a presite, but, before going into details, one needs to give some necessary definitions

and to state some elementary properties of presites.

7 Presites

Define first, for a presite {C, 7) the set Oy of arrows of C as consisting of just those arrows
which belong to some covering of 7. The set O, satisfies condition (G1) above (so that its
elements will be referred to as clopen) and one can define morphisms between presites
(C,7) and (C',7') as just those functors between underlying categories which respect
coverings and satisfy condition (MG1) above (with O replaced by O, idem for ). We
will eall such functors continuous (this definition is stronger than the corresponding
definition in [16) making emphasis on topologies and sites).

If F-C — (' is a functor and 7"is a pretopology on ', then a pretopology 7 on C will
be cailed induced by ' along F iff for any sink 5in C the condition F.S € 7' is equivalent
to Ser;ifsuch 7 exists it is the biggest pretopology on C making F continuous.

Proposition 7.1 For any presite (C,7) and any object X ofC there exists the pretopology
on O,/ X induced by 7 along the “souree” funcior do: O /X — C.

The category ©,/X will be considered, canonocally, to be equipped with this presite

structure; then:

i
Proposition 7.2 For any arrow f:X — Y of C ithe induced functor f:O0,/Y —
O, /X is continuous.

Now, a presite (C,7) will be called an U-presite if C is an U-category and, besides,
the following condition is satisfied (existence of local sets of topological generators):
(LTGy) For any object X of € there exists an I{-small subset G'x of objects of € such
that for any clopen arrow w: U —= X of C there exists a covering {u;: Ui — Ulier such
that any U; belongs to Gx. This condition is just equivalent to saying that any ./ X,
considered as a site, is.an U-site in the sense of [16].

Remark 7.1 It is convenient t.o include i itic
n the de : i
comdition (completammms ot in the definition of a pretopology the following
(PT4) If (X,5) is a sink of C such that S j - '
¢ C @; (such sinks will be called cl

.and t‘here exists a reﬁnement' of (X, S} which is a covering of X then (X ) 'it-csecl'? ie;ni
covering. Here a sink (X, 5') is said to be a refinement of (X, S} if for an}; sSes th\ -
exists s € § such that s" factorizes through s. h o .
" Intersection of pr.etopologies satisfying (PT4) satisfies (PT4) itself; if 7 satisfies (PT4)

en il. ;_)retopology induced by  along any functor satisfies (PT4) as well; besides, the
CO?I; (?thll of a pretopology 7 satisfying ordinary conditions (PTI)-(PTS) of [16] to,that
:a. tslymg (PT4}), does. not change neither the set @, neither the associated Grothendieck
‘opci ogyl, nor t};;a universal glutos of Theorem 8.4 below. ! That. is why' from now on
pretopology” wi . s g y . e oL
s L__presne’g.y ill mean “pretopology satisfying (PT4)’ with _suml;g‘ c!:ange in the meaning

Rfemark 7.2 V‘If one looks at the definition of elementary glutos, a na.turé.l tiesti
:.I‘IASCZ w(l‘g.{)v:gg;la‘ppen if one “iterates” the theory of glutose’s ré‘i)laéing,q rougﬁ?yc?g
xioms - “topos” by “glutos”? The i : : element.
glutoses is stable by this iteratioi, i.e., no new ?‘J‘lwi:iz:'lj tﬁlgt;lﬁiiﬁh:;g of elementacy
In more details, defining, in an evident way, morphisms of ‘cloposes'a,a; well as cl

structure induced along a functor, one obtains that for any object X of any clo oq. ECOIZ;S
the category O/X has a clopos structure @y induced along the func;;ogd;'. pa,rsro.\nr} 1'
Ox are all commutative triangles (i.e., arrows of ©/X) all three arrows of W]‘:tich belin(_)g

to @. Counterpart . LOWE, =
result: rparts of Props. 7.1 and 7.2 are valid for clopgses. as ‘well as the following
i

Proposition 7.3 For any clopen arrow U - X i a clopos (C,O) thé-ﬁt.nctor
do/(U = X): Ox J(U —+ X) —s OfU '

is ¢ notural equivalence.

) lﬂg:;, if one“-remove§ the axiom (G2? and one replaces in axiom {G3) “topos” by
glutos”, resp. “inverse image of geometric morphism” by “morphism of glutoses”, inter-
preting, mmulta,nequsly, O/fX, etc. not simply as categories but as cloposes via it;d d
structur.e, then one arrives to an elementary theory which turns out to b:ﬂ not w :I:e
but equivalent to the theory of elementary glutoses. This just follows from ‘Prop W:B er’

8 U-glutoses as l{-presites

Returning again to Z{-glutoses, one has:

f’éoposition 8.1 Let (C,0) be an U-glutos. Then:
8y) All epi sinks in C with elements in ¢ are univer. :

; : : sal effective and, hence, fo
some pretopology on C (denoted further 7). This pretopol i i Ce. the
associated topology is subcanenical); ) preopoeT S“bcanomf:al (he. the
gG'?u) The presite (C,70) ts an U-presite;

G8y) Any sink (X,5) wi : ]
m_ono') Y {(X,5) wztllz § C O factorizes as a covering of Tolfoﬂowed by an open



(G9y) (local character of open arrows) If foru: U — X therc ezists a covering {ug Uy —
[/Vier of o such that for any i € I the arrow uw; is open, then u itself is open.

(G10) For any object X of C the pretopology on C/X induced by 7o is the canonical
pretopology of the topos C/X (i.e. coverings of it are all epi sinks); morepver, the source
functor dy:CJX — C respects both coequalizers of equivalence relations and U-small

coproducts,

Remark 8.1 For an elementary glutos (C,0) let 7o be the set of all open sinks having
some finite open epi refinement. Then one has: (G8) 7o is a subcanonical pretopology
© on ; the counterparts of (G8) and {G9y) are valid as well if one replaces in (G8,) ‘Any
. sink’ by ‘Any finite sink’, '

The following proposition is a counterpart of Giraud theorem :
Proposition 8.2 A pair(C,0) is an U -glutos iff it selisfies conditions (GL)-(G2), (Gu)-

. {G5), (G6y)-(GTy) above (conditions (G4y) and (G5) can be replaced by conditions
(G + 3) and (G9)).

Now, a map {C,0) - (C, 7o) continues to the 2-functor imbed.ding fully i-glutoses
into U-presites, as shows the following

Proposition 8.3 Let (C,0) and (C', ) be U-glutoses and F:¢ — C' be a funclor.
Then F is morphism of glutoses iff it is continuous w.r-t. pretepologies 7o and Tor.

in other words, the 2-category Gluty of U-glutoses may be considered as a full 2-
subcategory of the 2-category Psitey of U-presites

G]llt“ ¥ PSitEu. ) (4)

- Remark 8.2 Let Glut., be the full 2-subcategory of Glut, containing any glutos which
is U-glutos for some universe U. Let the 2-category Psite. be defined similarly. The
above inclusion functor continues to the inclusion functor

Glut. — Psite. ,

but the counterexample
Sety, — Sety

of continuous functor which is net a morphism of g}utoses (see the end of section 4) shows
that this inclusion is net full.

The main author’s result states that the 2-category Gluty is reflective in the 2-
category Psitey. In more details:

Theorem 8.4 (a) For any U-presite C there exists an U -glutos C together with an arrow
Y,:C — C which is universal in the sense that for any U-glutes D the arrow

[V, DL: [, D] — [€,D) (o~ o¥c) (5)

is o natural equivalence having right inverse;

10

E)l;) oigz-e airroué Yc (or, rather, the underlying fﬁ_nctor)- can always be chosen to be injective
o ch s o.f ; if the pretqpo!ogy 7 of C is subcanonical, then the arrow Y is fully faithful;
p e umyersal arrow Ye reflects open coverings (see sect. 10 below for the deﬁnitioﬁ)J'
or every object X of C the set Gx of topological generaters of X (see (LTGy) in sect 7J
a(li)ove) can be chosen to belong to the set Y(C); . e
L )C ﬁ;i;ﬁj;;f t];et:nderiyingl category of C (denoted further C', by abuse of notation) is
-€ and the pretopology of C is subcanonical, then thc'fun‘ctor'}-’ has joi
: ¢ . A as | d
F:C — C (the global sections functor). Note that T need not be coﬁtinjdzf ‘ J"m_t

The proof of Th.8.4 is sketched in Appendix A.

R . i . .' -
] emarﬁ 8.3 It. fol%ows f}‘om f’.\ppendxx A that the 2-category of subcanonical Z{-presites
is as well reflective in Psitey, i.e. the universal arcow . ¥- decc’)’nipo’sés as

¥i - Y J—
[4 Coup
c C.sub st C:ub,

where C;y4 is a universal subcanonical -presite for C.

Now choosing for every L4 i i .
. - y U-presite C some universal arrow Yy and choosi
pair C, D as in p.(a} of Theorem 8.4 some arrow ¢ . for every

Iep:[C, D] — [C,D)
right inverse to the arrow (5), we will obtain for every pair €, ¢ of M-pl;esi:t'es si').me functor
.1 [E.C (0=7),

dbﬁ;;d by & := I.;(Yeo) on 2-arrows from [C,C7].
e correspondences ¢ — 7 just defined i i ' i
prcudofimetor (see [16]’[7]) ] efined are ‘incorporating together to give some

PSitE;_; N Glutu s

left quasiadjoint to the inclusion 2-functor (4); it differs from a 2-functor by some “twisting

by a cocicle” o(F, F); F' i oy .
be killed. (£ ') F'F — (F'F). The following theorem shows that. this cocicle can

%l};orer%_?j The correspondences C v C and F — F can be chosen in such a- way that
= (F'F) for every composable pair F and F' of morphisms of U-presiles.

Corollary 8.6 If F:C — ' and G: ¢ — 3 ;
- : :C C are contintous functors b - ]
such that F is left adjoint to G then F is left adjoint to G. Junctors betwoeen Uspresites

Exactness properties of universal arrows are described by the following

Proposition 8 {a) For any U-gh Jver —-— TESPE V
I —glut .
e Coting in - Y .g itos C the universal arrow Ye:C C respects all

%b) Efthas pullb.qcfks, resp. products, resp. finite limils, then so0 does C;
c) Let F:C —C" be morphism of glutoses and C has products, resp., pullbacks, resp.

finite limits, which are, besides
; ) , respected by the functor F. Then th F:.¢ ol
respects products, resp. pullbacks, resp. finite limits. : “finctor 116 =€
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Theorem 8.4 and Prop.8.7 show that glutoses are “invariants” of presites in just the
same way as toposes are “invariants” of sites. The universal arrow for an H-presite
is, clearly, a counterpart of topos-theoretic “sheafified Yoneda functor® ¥: & — Sh&
associating to any l{-site § the topos of Sety-valued sheaves on it. In many familiar
cases of U-presites C (see examples of universal arrows below), the corresponding site is
not an U-site, which means that the topos of sheaves on this site exists in some higher
universe only. At the same time, the glutos C associated with the presite C exists in the
same universe I{, where C is contained. Nevertheless, when both constructions exist, they
sometimes coincide as shows the following

Proposition 8.8 Let C be U-small and finitely complete. Let a pretopolegy T on C be
given, such thal any arrow of C is clopen. Then the universal glutos C coincides with
the topes of sheaves ShC up to natural equivalence of categories. The similar is true for
universal arrows,

For example, the glutos constructed from a topological space is the same thing as the
topos of sheaves on it; the same is true for a complete Heyting algebra (equipped with
the canonical (pre-)topology}. .

Many familiar examples of constructing categories out of “simpler ones” by means of
“charts and atlases” routine are just concrete realizations of universal arrows of Theo-
rem 8.4; imbedding of smooth euclidean regions into the category of smooth manifolds,
imbedding of trivial vector bundles into the category of locally trivial ones, as well as the
functor :

Spec:Ring® — Schem.

Note that in this example the global sections functor of p.(d) of Theorem 8.4 exists
and is the same thing as the ordinary global sections functor on Schem, which justifies
the use of the name “global sections functor” in the general case. .

The latter example opens up a néew approach to “universal algebraic geometry”, al-
ternative to that of M.Coste [4] (based on Hakim's theorem): given some locally finitely
presentable category (see [6]) C together with some pretopology 7 on its dual category,
turning C°F into an If-presite, the category of schemes over C and the corresponding
functor Spec can be defined to be, respectively, the glutos associated with the presite
(C°, 7) and the universal arrow for it.

For example, if one chooses the étale pretopology on the category dual to that of
commutative rings instead of Zariski pretopology, one obtains the category ESchem,
which may be called the category of étale schemes; the functor

Schem — ESchem, (6}

provided by Theorem 8.4, fully imbeds the category of schemes into that of étale schemes
in such a way that for any scheme X the topos of sheaves over X with respect to étale
pretopology on Et/X imbeds into ESchem via

Sh(Et/X) — ESchem/X -+ ESchem.

Anocther application is concerned with “non-commutative algebraic geometry™: The-
orem 8.4 gives general non-commutative schemes glued out of non-commutative affine
schemes of P.M.Cohn [2].
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A class of pretopologies on duals to locally finitely presentable categories especially
suitable for “universal algebraic geometry” will be considered elsewhere.

9 M-presites and SG-glutoses

In this section some natural endo-2-functors are constructed on the 2-category Psite
of all presites; recall,that U-glutoses are considered as presites via Props. 8.1 and 8.3.
Besides, a class of I{-glutoses which occur particularly often in practice is studied in more
details. '

Let P be some property of an arrow of a presite C. We say that an arrow f1 X — ¥
of C locally satisfies P or is locally P, if there exists a covering {u;: Ui — X}ies such:
that for every i € I the arrow fu; satisfies P. We wili use further thie metadefinition for
the case when the property ‘P is either “f is {cljopen” or “f is an (c[jopen mono” getting
the properties “f is locally (cl)open” or “f is locally an (cljopen mono” (note yet that
an f which locally is a clopen mono need not to be neither clopen nor mono). One can
easily verify that the set of all pullbackable locally open arrows of any presite is ‘closed
both with respect to compositions and arbitrary puilbacks.

For example, the property (G9%) of glutoses (see section 8) can be reformulated in
this terms as follows: every locally open arrow in a glutos is open.

Let 7 be a pretopology on a category C. Define the pretopology M, resp. L, resp.
SG(7) on the category C as follows: coverings of Mr are all coverings of 7 consisting of
mono’s; coverings of £r are al} sinks of 7 consisting of pullbackable localiy open arrows
of C and having a refinement belonging to a pretopology 7 (the lattes definition is correct
because pullbackable locally open arrows form a clopos structure as stated above); at last
let SG(7) = (LM} N 7. One has, evidently, the following inclusions:

MrCSG(ryCrC Lr.

The operations M, £ and SG can be continued to the endo-2-functors {denoted by the
same symbols) on the 2-category Psite, whereas the chain of inclusions above produce
the chain of 2-functor morphisms ’

M — 8G — Idpgite =+ L, ) . (M

which go to identity 2-functor morphisms when being composed with the neglecting 2-
functor from Psite to the 2-category Cat of all categories. ‘

It is evident that for any U-presite C the presite £C is an U-presite (but the author
do not know at present whether or not the same is true for MC and SGC). An evident
fact that the Crothendieck fopologies generated by pretopologies of C and of LC coin-
cide, imply, together with the construction of universal glutoses out of the corresponding
category of “big” sheaves (see Appendix A), the following

Proposition 9.1 For any U-presile C there is a cenonical natural equivalence ¢~ E’—é;
in more details, the composition arrow

cw Lo X e

is a universal arrow for C.
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dTjéue following proposition describes the monoid of endo-2-functors generated by M, SG
and L. )

Proposition 9.2 The 2-funclors M, SG and £ satisfy the following algebraic relations:

' MP=M, SG*=8G, Cl=g,
(MLY = ML, (LMP =LM, SGL = LML,
, LG =LM, SGM =M, MSG=M.

Th(-:‘ only rela,tion amongst those above, whose vérification uses drawiﬁg of some dia-
-grams is that stating the idempotence of the functor £.

. fThe first thre‘e rela,tim.ls of propesition 9.2 together with the universality properties
of functor rflorp}usms (7) imply that both the full 2-subcategory of presites stable by M
and -of presites stable by 8G are coreflective in Psite, whereas the full 2-subcategory of
presites stable by £ is reflective in Psite.

A presm? stable by M, resp,.by 8G, resp. by £ will be called an M-presite, resp.
an Sq-pres‘lte, resp. an L-presite. In other words, a presite C is an M-presite iff any
covering of it (.:01:15131;5 of mono’s; it is an SG-presite iff any clopen arrow of it is locally a
clopen mor'm; it is an L-presite iff any arrow of it which is locally clopen is clopen.

In pfartlcular, any U-glutos is an £-presite; an U-glutos (C, @) is an SG-presite iff for
any 0b{]ec1: X of C the topos O/X is an SG-topos as defined in [8], which justifies the
name “SG-glutos” for the general case. i

.Glutoses of examples (1)-(4) of scction 3 above are SG-glutoses, as well as ¢P when
C s an SG-glutos; the glutos of étale schemes is not an S5G-glutos, Any I{-topos has
canonically, a s‘tructure of an 5G-glutos, if one defines open arrows as just those a.rrows’
u: U — X which locally are mono (here “locally” is, of course, with respect to canonical
pretopology of the topos). In fact, the latter example can be generalized, as shows the

following proposition, easily deduced from “Giraud theorem” 8.2 and the fact that I{-
toposes are locally U-smali {see p.251 of [16]):

Proposition 9.3 For any U-glutos C the presite SGC = LMC is, in fact, an U-glutos.

Remaﬂ-c 9.1 let € be an ¥-glutos such that MC (and i
femark 8.1 Let C a (and, hence., SGC) is an U-glutos,

SGC —— SGE, (8)

?btained .from the universal arrow ¥z:C — C by applying the pseudofunctor ~ 0SG to
ft and using Prop. 9:3 afterwards. The arrow (8) is fully faithful if the pretopology of €
is subcanonical; the inclusion arrow (6) of sect. & is the particular case of the arrow (8)

. wing a..ddltl()ﬂ to Iheofem 8.4 state ]la.t the set ()f ~pres tes is s ab e 1)y
Ihe fOHO s t
. SG 1 l

Proposition 9.4 IfC is an SG-presite, then the universal glutos for C is.an' S5G-glutos.
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It is clear from above that any SG-glutos can be obtained as a universal glutos for some
M-presite C and that the corresponding universal arrow ¥z:C — C for an M-U-presite
C can be pulled through the presite MC as

¢ X B o LM, 9)

where Y§ = MYe. o
Call an U-presite C nearly U{-glutas if it is naturally equivalent to a presite MC for

some U-presite C. Meditating over the decomposition {9) one can conclude that the full
2-subcategory of nearly U-glutoses is reflective in-that of all M-/-presites, whereas the
arrow ¥£ in (9) is the unit of the corresponding adjunction. Besides, the construction
of universal glutos for a nearly #-glutos C consists simply in adding of all locally clopen
arrows to the set of clopen arrows. ) .

* The next proposition giving an “internal” description of nearly U-glutoses is a kind
of “Giraud theorem” for them.

Proposition 9.5 Let (C,7) be an M-presite such that C is an U-category and the pre-
topology T is subcanonical. Then (C,T) is a nearly U-glutos iff the set O, of clopen errows
of it satisfies condition (Gdy -+ 5) as well as the following condilione:

(NG1) For any object X of C the set of clopen subobjects of X is U-small;

(NG2) Any family {U; =5 X},-e;' of clopen arrows has a facterization into a covering

{U; R U.}ier followed by a clopen arrow U. 25 X (in particular, unions of arbitrary
families of clopen subobjects of X exist (in the lattice of all subobzeris of X) and are
clopen); ’ '

(NG3) Any epi sink consisting of clopen arrows is a covering of T (and, hence, is universal
effective epi). .

Note that the pretopology of a nearly U-glutos is uniquely recovered from the under-
lying clopos structure (just as in the case of U-glutoses), so that we will consider nearly
U-glutoses either as presites or as cloposes, depending on circumstances.

Remark 9.2 The definition of glueing data (see sect. 6) with values in mono’s of a
category C can be essentially simplified. Namely, define for any sét [ the category I"I as
follows. The set of objects of I*I is the free commutative idempotent monoid W{I)/R
over I (i.e. the set of “relations” R consists of two relations: X? = X and XY =YX).
For any objects X and Y of I'] there exists the only arrow X -— Y iff there exists 7
such that ¥ = X. Let n be a natural number. Denote T,I the full subcategory of
'] consisting of all monomials over the variables from [ of degree < n, with the neutral
element of the monoid W(I)/R excluded; let T/ be the union of all Tn (it will be
supposed further that the (discrete) category I'1f coincides with the set I).

Now call a functor U:To] — C with values in mono’s of C an M-gluon or M-
glueing data if there exists its continuation on I'sf which respects pullbacks existing in
Tal (“cocicle condition™); it then follows that there exists a continuation Uy of U on the
whole I', I respecting pullbacks of I',.J and U, is unique up to a functor isomorphism.

Tt is evident enough that one can replace, in the context of M-presites or nearly
U-glutoses, open glueing data by “equivalent” M-glueing data.
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The following proposition generalizes the realization of sheaves over topological space
X as sheaves of sections -of corresponding fibre bundles over X. '

Prbpositi_on 9.6 Let (C,O) be a nearly U-glutos and £LO be the set of all locally clopen
arrows of it. Then for any object X of C the category £LOJX is naturally equivalent to the

iG-topos ShX of sheaves over the complete Heyting algebra O(X) of clopen subobjects of

~Indications to the proof. The corresponding natural equivalence J: Shx = LO/X
can.be constructed as follows. Let s:O(X) ~— /X be some natural equivalence se-
lectmg for any clopen subobject u of X a clopen arrow su:/ —s X representing this
subobject. Given a sheaf F: Q(X) — Set,,, we want to construct a locally clopen arrow
JF: E —> X such that its sheaf of sections (u € O(X) v {su, JF)) is isomorphic to F
As a first approximation to JF one can take the coproduct (in £LO/X): ' ‘

p= H Flu)® su,
. #eOx)

where § ® ¥ means the copreduct of the family {Y }ics (copower of ¥). Unfortunately,
{: has too many sections as compared to F, so that to obtain JF from p one needs to

glue together” any two summands of p along the maximal ciopen arrow where they are
to coincide. :

Now we will go from informal considerations above to the formal constructions. Define
first the “index set” Ir as
Ir= [ Fluw);

weQx)

define a partial order relation on Ip such that for any pair (u,z), {v,¥) (u,v € O(X)
z € F(u),y € F(v)) of elements of Iy one has that (w2} < (w,p) ifu <o a’nd x = p”y’
;here, of course, p: F(v) —— F(u) are the corresponding restriction r;;-aps of the sh;a,%
. Eor any pair ¢ = (u,z) and j = {v,y) of elements of Ir there exists the intersection
iAj = (w2}, where w < uA v is the biggest element of (X)) such that p*z = g2y and
# = py,«; note that this property of Ir essentially depends on the fact tha,ttu Fis : sheaf
and not simply a presheaf.

There exists the only functor
P F_,.IF — I
such that ¢ is the i.denti-ty map on I = T'1Ip C T4 Ir and, besides, for any pair ¢, j of
Ielernents of Iy the identity @(if) = i A j holds. Recall that the category I'y I is defined
in Remark 9.2 above and that Ir is a category being a partially ordered set.

There is as well an evident neglecting functor Ir — O(X) ({u,z) == u), which
produces some functor N: fp — L£LO/X, when being composed with the chain of functors

O(X) -5 O/X — LOJX.
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Composing now the functor N with the restriction of the functor ¢ (constructed
above) on the subcategory. I'yIr of I'y I one obtains some functor

Up:Talp — LOJX.

One can verify easily that the functor Ur is an M-gluon, whereas its colimit Up. in
LO}X can play the role of the locally clopen arrow JF corresponding to the sheaf F.&

Remark 9.3 In an earlier author’s work [12] the term “U{-glutos” meant something which

is now called “nearly U-glutos”, whereas M-U-presites with a subcanonical pretopology

were called there “/-preglutoses”; the main result of [12] was, in this terms, that every U-

preglutos has a universal completion to an -glutos, whereas its proof has used generalized .
“charts and atlases routine” (see the next section). Later on it was observed the presence

of SG-toposes “inside” glutoses just via Prop.9.6, and the natural question arose how to

generalize both the very notion of glutos (so that arbitrary toposes can occur in place of
SG-toposes) and the theorem of existence of universal glutoses (charts and atlases method

failed to prove Theorem 8.4 due to the reasons explained in Appendix A).

10 . Charts and ‘Atlases. :

In this section a way of constructing of universal glutoses (or, rather, of nearly glutoses)
by means of charts and atlases is considered, applicable for M-presites with subcanonical
pretopology. - -

Give first some necessary definitions. A continucus functor J:C — D between
presites will be said to reflect coverings if for any family {u:: {7; — X}ier of clopen
arrows of C the fact that {Ju;: JU; — J X }igr is a covering in D ilimplies that fu;: U —
X}ier is a covering in C; if, besides, C is an M-presite with subcanonical pretopology
and the underlying functor of J is faithful then J will be said to admit atlases.

An M-presite with subcanonical pretopology will be called an DG-presite if it sat-
isfies the factorization condition (NG2) in Prop.9.6 above for arbitrary sinks of clopen
arrows {DG above deciphers as “differential-geometrical”, because presiter of this kind
are typical just for differential geometry). -

Let C be an M-U-presite with subcanonical pretopology and J:C — D be an arrow
admitting atlases, such that D is a nearly U’-glutos, where the universe I{’ is any universe
containing I{ as a subset. In constructing the universal nearly U-glutos for C one can use
the arrow J considering objects of C as objects of D with.additional structure.

In fact, the process of completion of € to € using the arrow J can be performed in

two steps: first, one completes C with objects which are “unions of families of clopen:

subobjects”, arriving to a universal DG-presite, associated with C; the second step is the
completion of the DG-presite so obtained with objects, which are colimits of clopen M-
gluons. Only the second step will be described below, because it occurs very frequently
in practice. . _

So let us assume that the arrow J:C — D admitting atlases is given such that C is a

DG-i-presite, whereas T* is a DG-If’-presite, where the universe U’ contains the universe_

iU as a subset.
Let X be an object of D. An U-small family {U;}.er of objects of C together with a
covering {JU; =% Xlicr of X will be called an J-atlas on X if for every i,j € { the
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pultback JU; ][]y JU; has a representation

- Jul
JU,'J' _*J—“JUI
Juj| uj
U
JU; X (10)

such that both ! and u} are clopen arrows of €. Any arrow u; will be called a chart of
the corresponding J-atlas.

_ We will identify further a sink {Ju; = X)ier with a J-atlas, omitting its first
component {U;}ier; we will write as well “atlas” instead of “J-atlas”, when this will not
lead to confusion.

Remark 10.1 The fact that J admits atlases imply that if clopen arrows I/ —+ V and

o
U/ — V are such that both Ju and Ju' represent one and the same clopen subobject of
JV then u and u’ represent one and the same subobject of V' (ie. there exists an iso 4
such that ' = ug).

In particular, clopen arrows u! in the definition of atfases above (see the pullback

(10)) are, essentially, unique, determining, thus, some clopen M-glueing data in ¢ such
that X is their “colimit in D”.

) Given atlases A and A’ on X we will say that A is compatible with 4’ if the union
sink AU A’ (whose definition is evident) is an atlas on X as well, One can prove that the
relation between atlases just defined 1s, in fact, an equivalence relation; the equivalence
class of an atlas 4 will be denoted further (A

Let A= {JU; 5 X}ier be an atlas on X and B = {JVi =% Y}iex be an atlas on
Y. An arrow f: X — ¥ will be called A-B-admissible if for any chart u; of the atlas
“A and for any chart v of the atlas 7 the pullback of vy along fu; has a :;epresentation

Jf
Jmk____rk__..lka

Juwyg : Vg

. x Ly (11)

such that w;; is a clopen arrow of €.

Proposition 19.1 If an arrow [1 X — Y of D is A-B-admissible Jor some atlases A
end B, then f is A'-B'-admissible for any atlases A’ ¢ {A] and B’ ¢ [B]; i, besides, an
arrow g:Y —— Z is B-C-admissible, then the composition arrow gf is A-C-admissible.

_ The latter proposition justifies correctness of the following definitiens and construc-
tions. First, call the arrow f above [A]-[B]-admissible if it is A-B-admissible. Now one
can define the category C; as follows. Objects of (' are all pairs {X, [A]} consisting of an
sbject X of D and an equivalence class [A] of atlases on it. Arrows of C; are afl tl'iplés
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{{X,[AD, [, {Y,|Bl}} such that the arrow f: X — Y is [A]-{B]-admissible (and we will
write simply f instead of the whole triple in situations not lzading to confusion).

There are evident functors Je:C. — Cy (X v (JX, [{Tdx}]}) and J:Cy —= D (for-
get atlases}. There is the natural pretopology on €y making boih Jz and J' continuous.
This pretopology is defined as follows. Declare a monic arrow f: X — Y ‘between ob-
jects (X, [A]} and (Y, {B]) of C; J-clopen if all arrows fi in the diagram (11) above are

- clopen arrows of C (it follows then from the condition (NG2) that [ iz a clopen arrow of

D). Let 7 consists of all sinks § in C; such that any arrow of 5 iz J-clopen and J'S is a
covering in D. :

One can prove that 7 is really a pretopology on C; and the functors Jy and J' become
continuous if one equips the category C; with the pretopology 7. The notations C;, Je
and J’ will be reserved as well to denote the corresponding presite and morphisms of
presites. Note that the equality J = J'J¢ holds.

Now, at last, one can formulate the theorem giving a-construction of universal nearly
U-glutos by means of charts and atlases,

Theorem 10.2 Let € be a DG-U -presite, D be a DGI -presite for U < U'. Let the
arrow J:C — D admits atlases. Then the presite Cy constructed above is ¢ DGU-
presite. If, moreover, D is o ncarly U -glutos then C; is ¢ universal nearly U-glutos for
C, whereas the arrow Je: C — Cy is a corresponding universal arrow.

Applying this theorem to standard constructions of differential geornetry (manifolds,
vector bundles, principal G-bundles, etc.,) one can check that all thiz consiructions are
fust particular cases of universal (nearly) #{-glutos construction. But to check that certain
functors of algebraic geometry like Spec above fall as well into this scheme, one needs
another tools. The theorem below gives sufficient criteria for an arrow between presites
to be universal.

Before formulating this theorem one needs to introduce one more definition. An arrow
F:C — T will be said to locally reflect clopens if for any arrow w: U/ —— X of C the
fact that F'u is clopen implies that u is locally clopen.

Theorem 10.3 Let C be an M-presite with a subcanonical pretopology, D be a nearly
U-glutos and Y:C — D be a continuous functor. Then the following statements are
equivalent:

(2) Y is a universal arrow for C;

(bY Y is fully faithful, reflects coverings, locally reflects clopens and, besides, for every
object 1} of D there exists an U-small covering {ug: YU; —— D}ier of D by “objects of
C”‘ .

Now the universality of the arrow Spec can be established just with the help of Theo-
remt 10.3. This theorem can be applied as well to obtain necessary and sufficient conditions
for a given U-valued functor on the category Ring to be representable by a Grothendieck
scheme; these conditions can be formulated in terms of Zariski pretopology on the cate-
gory Ring®. (cf. the existence problem of Grothendieck as formulated in [15}).
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A The idea of the proof of Th.8.4

Let a set U’ be a universe such that & C &’ and C is U'-smalt {recall that we are living,
due to Sect. 1, in “Grothendieck’s paradise” restricted from above by the universal class
of all sets). Let ShyC be the topos of U'-valued sheaves on C, considered as a presite via
canonical pretopology . : _ _ -

In constructing the universal arrow Yz:C ~— C the Yoneda functor Y:¢ — ShyC
can be used, whereas {'-valued sheaves can be considered as building blocks in the process
of construction of C. .

In more details, let T be a (non-elementary) theory whose axioms are axioms of
elementary theory of categories Logether with axioms (PT1)-(PT4) of presites and condi-
tions (G2), (G4y}, (G5} and (G6y) imposed on the set of clopen arrows (these conditions
are the same as in “Giraud theorem” 8.2, ezcepting the l-smallness condition (GT))-
The presite ShyC is easily seen to be a modef of the theory T and one can prove that
submeodels of T' form a complete lattice with respect to the inclusion functors. The latier
lattice is, essentially, a closure system on the set

X = Mor(ShuC) [] 7.

One can prove that the T-closure of the image YC of C by Yoneda functor in Shy.C
is not only model of 7" but satisfies the condition (G74) as well. In other words, it is an
U-glutos and one can show further that it is the universal glutos C. .

In proving this it is useful to “translate” axioms of the theory T into the set of rules of
inference (in the sense of [1]) on the set X, whereas arrows and coverings in Y'C to consider
as azioms of the corresponding (infinitary) formal system (denoted further #5(T)). Then
the T-closure of ¥'C in ShyC turns out to be, essentially, the set of theorems of the formal
system F'S(T). ‘

1t is convenient (as well as more informative) to separate the subtheory Ty,; of “presites
with subcanonical pretopology” in T considering first the T,,-closure of ¥C one can
prove that the full sub-2-category of subcanonical U-presites is reflective in Psitey,. This
reduces the proof of Theorem §.4 to the particular case of U-presites C with subcanonical
pretopology. : -

In proving that both T,u-closure C,yy and T-closure C of Y in Shz-C have U-small
local sets of topological generators (see condition (LT G/ Jof sect, 7} the following Lemma,
easily deduced from Lemme 3.1 on p.231 of [16], is crucial:

Lemma A.1 Let C-be an U-presite. Then the Yoneda map Y:C —— ShyC has the
following property: for any objecis X and X' of C and any arrow Y X — VX' there
exists a covering {V; —» X}ies in C such that the set of objects {V; : ¢ € I} is a subset of
the set G'x of local generators over X and for any i € I there exists an arrow Vi — X'
such thal the identity fv; = Y(v!) holds.

It is just applications of this lemma in transfinite induction on the length of proofs
(in formal systems FS(T,») and #S(T)) which permits one to prove that both C,
and C are U-presites. Moreover, one can prove that any object, arrow and covering of
the Tiu-closure C,y has a finite proof, which permits one to describe the presite C,.;
explicitly.
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Now the universality properties of the corresponding arrows ¥3:C — C.u and
Yp:C —— C follow from that of “sheafified Yoned: fanetezs” if one app}ies (transfinite)
induction on the length of proofs: given a continuous functor /:€ — Pinto a subt.:anonk
ical U-presite, resp. into an I-glhitos one has that any element Z (arrow or covering) of
C.us, resp. of C having a proof P, where a family of axioms {A;}ies from C were used,

goes by the functor
Shyy (F): Shyr(C) — Shep (D)

‘into an element Z’ which has “the samé” proof in Shy (D) as Z has in Shy/(C) with only the

family {A;}ier of axioms replaced by the family {F Ag};;_;].. This implies that Z’ belongs
to the closure of D {naturally equivalent to D, because D is a model of Ty, resp. of T},
i.e. the restriction of the functor Shy(F) on Cyys, resp. on C can be pulled through D.
It turns out, that if € is an SG-presite with subcanonical pretopology, _thffn any the-
orem of the formal system F8(T) has a proof of a fixed finite length. In this case one
can use as well another continucus functors F:C — D in place of Yoneda functor in
constructing of C (namely, functors admitting atlases defined in sect. 10 above). -
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