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1.. INTRbDUCTION 

The parallel transport (translation) is a well known concept 

in differential geometry and fibre bundle. theory, usually tied up 

with the connection theory [1-4]. The purpose .of this paper is to 

propose an independent definition and the corresponding investiga­

tion of (parallel) transports (along paths) in arbitrary fibre bun­

dles. It is written in a manner analogous to the one of [5,6]. from 

where some ideas, results and proofs are transferred mutatis mutan­

dis. The detaile<!l. comparison of the material presented here with 

the one in the literature on the same subject will be done in the 

ne~t part of our series. 

The ti-ansports along paths in fibre bundles are defined in 

Sect. 2, where also·. two main groups of possible restrictions, .on 

them are considered. Some simple properties and the general func­

tional form of these transports are found in Sect. 3. Sect. 4 deals 

with different connections betw.een transports_ along paths and lif­

tings of paths from the base to the bund;,e space of the fibre 

bundle. Necessary and sufficient condition is obtained for a fibre 

bundle to admit transports along paths. In Sect.. 5,. a method for 
.. . ' 

generating a connection by a transport along a path is considered .. 

2. TRANSPORTS ALONG PATHS AND POSSIBLE_ 

RESTRICTIONS ON THEM 

Let (E,n,B) be a general topological fibre bundle with a base 

B, total bundle ilpace E and projection n: E ---+B [ 7-9] . The fibre 

• -c-- .... ..,...,..._._,,;.,.....,_. ,, 
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• 
bundle (E,rr,B) is, generally, not supposed to be locally trivial. 

The fibres rr- 1 (x), xeB are supposed to be homeomorphic with each 

other. The set of all sections of (E,rr,B) is denoted by Sec(E,rr,B), 

i.e., creSec(E, rr, BJ means er: B -E and rrocr=id
8 

[ 7, 9], 

the identity map pf the set X. 

where idx is 

By J and ,:J-B are denoted' arbitrary, respectively, real. 

interval and a path iri B. 

The transports alci'ng paths in ( E, rr, B) are defined in Subsect.' 

2.·1 where also t.heir basi'c properties, describing to a certain 

extend the depen'dence ori their parameters, are found;' On the trans­

ports' along paths one can be imposed different restrictions. In the 

present work two'.main groups of them are considered. Fir'stly (Sub­

sect. '2. 2)', the one describing more· or less the transport• s depen­

dence on the path of the transport. The second one ( Subsec:t'. 2. 3) · 

concerns the ties · between some primary given structures on the 

fibre~ bundle, -if ;:my, 'and transports along paths in it. 

2.1. DEIFINITION OF TRANSPORTS ALONGPATHS 

IN FIBRE BUNDLES 

The analysis of definition 2.~ of Ref. [6] shows that it may 

be generalized-in such a way as the defined in it liriear transport 

along paths in vector bundles to be a special case of more general 

"transports along paths" described by 

Definition 2. 1: A transport along paths in the fibre bundle 

(E,rr,B) is a map ·x which to any path 7:J-B puts into correspon-

denc~ a map I', transport along 7 such that 7 
I 

7
: ( s , t) -Is -t' 

where for every·'s;teJ the map 

I' :rr- 1 (,(.s)> -rr-1 (,(t)), 
s-t 

(2.1) 
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a transport along 7 from s tot, has the following two properties: 

I' o!' =I7 , r,s,tEJ, 
t ---+r s ---+t s ---+r 

(2.2) 

r• =id 1 
s -s rr- (7(s)) 

seJ. (2.3) 

Th_e path_7 and thenumbers,s,teJ in ,the map (2,1) will be 

called, respectively, path, initial parameter. and--,final parameter 

of the transport. 

The property (2.2), which. may be called a group property of­

transports along paths, is an exact expression of the representa­

tion that the "composition of two _transports along one and the_ same 

path" must be a "transport along the same path". The property (2.3) 

fixes a 0-ary operation in the set of "transports along paths" de­

fining in it the "unit trans_port" and, besides,. it is an exact 

expression of the naive understanding that if we "stand" at one 

point of a path without "moving" along it,_ then "nothing must_ 

happen" with a fibre over it. 

The problem of existence of transports along paths, i._e.,,when a 

fibre bundle admits transports along paths, will be considered in 

Sect. 4 and .the problem of their uniqueness or a general•·form will 

be investigated i~ ~ect. 3. 

Closely connected with definition 2.1 is the following one ge­

neraliz_ing· the concept for sections linearly transported along 

paths (cf. [10], Sect. 5). 

Definition 2.2. Let in (E,rr,B) be given a transport along 

paths I. The section creSec(E,rr,B) undergoes a (an I) transport or 

it is (!-)transported (resp. along ,:J-B), if the .. equality 

1.1(,(t) )=I'____. 1.1(7(s)), s, teJ 
s----,t 

(2.4) 

holds for every (resp. the given) path 7:J-B. 

Proposition :2.1. If. (2.1) is fulfilled for a fixed.value seJ, 
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then this equalit~ is valid for every seJ. 

Proof. This result is a trivial corollary of (2.2). ■ 

Proposition 2.1 shows that in definition 2.2 it is sufficient 

to want (2.4) to be valid for a fixed s=s
0
eJ and then (2.4) may be 

regarded as a-necessary and sufficient condition for the section Cl 

to be I-transported' along 'i. • 

Proposition 2.2. If the section <lESec(E,rr,B) is I-transported 

along 7:J-B, then its values <l(7(s)) for every seJ are uniquely 

defined if. the value Cl{7(s )) is given for an arbitrary fixed s eJ. 
0 0 

···Proof~- This result follows from ·(2. 4) for s=s
0

• ■ 

Evident example of_ transports along paths are the linear tran­

sport along paths in vector bundles, a result following from the 

comparison of def'initions 2.1 from this work and from [10]. 

'., Now we shall consider two examples for transports along parts 

which appear in fibre bundles with a certain structure. 

Example 2.1. Let the fibre bundle (E,rr,B) have a structure of· 

foliation·[11], i.e. on: the total bundle space. E, which now is sup-

pos·ed'.to be. a manifold, to be · given a foliation {Ka: K cE, a aEA}: 

[11].,· Which, i_n•particular, means that K~nK/3 =0, a,{3EA, a'#/3 and 

IIAK =E. Let the foli~tion {K.} be such that rr(K )=B, aeA. 
(X~ (X (X (X 

<>·Before going on we want·to ·stress the fact that this construc-

tion is equivalen;t to"the one when over (E,rr,B) is ·defined a family 

of sections {<la: ClaESec(E, rr, B), aeA} such that if· Cla{x)=Cl/X) for 

some xeB; then a=B. Actually,· if such a family {c;a} is given, then 

it is sufficient to put Ka=Cl~(B), aeA and on the opposite, if a 

foliation ·{K }. is given, then the sections 
• (X Cl a' aeA,·are defined by 

the equality Cl (x):=rr- 1 (x)fn<, xeB, aeA. 
. (X (X 

.In fibre bundles with such a structure there appears a natural 

concept for a lifting 7 : J---.+E · of any path 7: J---.+B in the base B u . 

through every point u over the set 7( J), i.e. ue'i u ( J) and rro7 u =7 

4 

7 

" 

... 

[12]. In fact, if we define a(u)eA as the subscript of the unique 

fibre Ka< ul e{Ka} to which belongs the point u, i.e. Ka< ul 3U, then 

the lifting 'iu:J---.+E of 7 through u is given by 

7 (s) := rr- 1 (7(s)) n K , sEJ. 
u a.(u) 

Evidently, {r (J): uerr- 1 (7{s ))} for a fixed s EJ is a one di-
u O 0 

mensional foliation of the (dim(B)+1)-dimensional manifold 

rr- 1 (7(J)). Besides, it is clear that 7 is the unique lifting of ·7 
u 

in E lying as a whole in some of the fibres of the foliation {Ka}. 

The so-defi,1ed lifting 7~7u generates a transport K along 

the parts in B, defined ny 

K7 (u):='i (t), uerr- 1 (7(s)), seJ. 
s----?l u 

The following equalities, which are true for every r,s,teJ and 

uerr- 1 {7(s)), show that K7 is really a transport along 7 from s 
s-t 

tot (see definition 2.1): 

K7 (u)='i (s)=rr- 1 (7(s))fn< =u, uerr-
1
(7(s)), seJ, 

s~s u a.(u) 

~(K:_r oK:_ .... H) (U)=K:---+r('i)t) )=7_ (r)=rr-
1 
(7(r) )fn< = 

7u(tl, a(7u(t}) 

=rr- 1 (7(r)) n K =7 (r)=K7 (u), uerr-
1
(7(s)), r,s,teJ. 

CX(u) u s~r 

Here, we have used that a(v)=a(u) for every veK which is a con-
. CX(ul . 

sequence of the uniqueness of the fibre· of the foliation passing 

through an arbitrary point of the foliation. 

Example 2.2. In [1], vol I, p. 174 the definitions are given 

for parallelism ~nd a parallel vector field acco_rding to which "if 

~ is a vector bundle over BxB, whose bundle over (x,y)eBxB is {f: . . 

f:T)B)-TY(B}, f - linear}, then the parallelism on Bis such a 

section PeSec~ that 

P(z,y)oP(x,z)=P(x,y), P(x,x)=idT <e>' x,y,zeB. 
X 
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The vector field Xis parallel (with respect to P) if 

P(x,y)X =X " 
X y 

If Bis parallelizable, i;e. in it exists a parallelization P, 

then it uniquely defines axiomatically defined (global) parallel 

transport in B [2]. From the cited definitions it is clear that the 

paralleiization P on B defines a transport (along paths) in the 

tangent "to B fib're bundle (T(B),n,B). Besides, ·this transport.'is 

global in a sense that it depe~~i 6nly on the initial and final 

points of a transoort and does not depend on paths connecting them. 

As the vector fields over B are in fact sections of (T(B),n,B) 

[1,2]. it is evident that the above definition for parallelism of X 

is a special case of the definition 2.2. 

2.2. ADDITIONAL RESTRICTIONS 

The considered below restrictions, which can be imposed on the 

transports along paths, are under tl"!e title "additional" as, never­

theless they are important from some view-points, in our opinion, 

they have more special character and define one or another special 

property of the transports along paths. One should have in mind 

that they describe the functional dependence of the transports 

along paths on th'e path or curve o_f transport and they can be impo­

sed separately, on groups, as well ·as all of them together. Be-

sides, they h_av~. a number of equivalent formulations, but we below 

consider only one of them. 

(~) Condition for locality 

If J' is a subinterval of J and 7:J-B, then 

I 7 1J' =I7 s teJ' 
s-----+t s~l ' 

(2.5) 

6 

7 

• 

, 
' 

where 7 j J' is the restriction_ of 7 on J_' cJ. 

(2) Condition for invariance under the parameter change~ 

If -r: J"-;-+J ~s one-to-one map and r: J-B, th_•:m 

I 70 -r =I 7 s teJ". 
s--tt 't"(s)-'t"(t)' ' 

(3) Conditions for smoothness 

(2.6) 

We will not formulate these conditions, but we shall only men­

tion that there are three types of them, describing the "smooth­

ness" respectively of,: 

(3a) the dependence of a transport on a path of the transport; 

( 3b) the dependence of a transport on its initial and final 

parameters; 
)1 

( 3c) a transport as a map between the fibres over the curve 

defined by the pa~h of transport. 

In connection with the locality condition the following 

proposition is very important. 

Proposition 2.3. If r 7. is a transport along 7, then (2.5) is 

equivalent to 

17 -r7llmln(s,t),max(s,t)] teJ - , s,. . 
s---+t s-----+t .;· · 

(2.7) 

Proof. (2.7) follows from (2.5) for J'=[min(-s,t),max(s,t)]cJ. 

On the opposite, if (2.7) holds, then 

r71J' =IcrjJ'l jlm~~(s,t),max(s,t)J=Irllmln(s,t),max(s,t)J=I7 ' 
s----+t s-----+t . s-----+t , s---+t 

where s,teJ'cJ arid we have used the evident fact that,if J"cJ'cJ,, 

then (7jJ') jJ"=7jJ". ■ 

Proposition 2.3 shows that'if (2.5) holds, then the transport 

along 7 from s tot does not depend globally on the "whole" map.7; 

but ·only on its restriction on the interval defined from sand t. 

The transports along paths satisfying the condition (2.6), in 

fact, depend not ·on the path of transport 7: J~B,· bun on the' curve 

7 



of tran~port, i.e. only on the values ;(s), sEJ, or other wise sta­

ted, (2-. 6) leads to the dependence - ~f a~ transport· along ; only on 

the nonparametrized curve ;(J). Namely, the-set of these transports 

has invariant and clear geometrical sense. 

It is important to note that frequently the condition (2.6) is 

given in a weaker form in which one wants, to be_ orientation pre­

serving homeo- or diffeomorphism. . ' .,.,, 

Elsewhere it will be proved that "a transport along paths is a 

parallel transport iff it satisr'ies simultaneously (2.5) and 

( 2. 6)". 

The conditions of the type (3a) in their. essence coincide with 

the conditions for smoothness in the axiomatic approach to the pa­

rallel transport, and those of the type (3b) in the case of consi­

dered in [6] linepr transports in vector bundles are reduced to the 

standard condition for smoothness of linear operators (between 

vector spaces) on scalar parameter. 

2.3. CONDITIONS FOR CONSISTENCY 

The conditions for consistency _describe connections between 

transports along paths in fibre bundles and, if there exist, speci­

fic for the fibre bundles structures. In the most general case of 

arbitrary fibre .bundles there are no such structures due to which 

there are no conditions for consistency. They appear in more spe­

cial ·cases, two·df which are considered below. The general case of 

this problem will be a subject of another work. 

Let I' be a transport along ;:J-B from s tot, s,tEJ in 
•-t 

the real (resp. complex) vector bundle (E,n,B). Then, on the trans-

port I there can ~e imposed the following restriction. 

8 

') 

) 
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(4) Condition for consistency with a vector structure 

If A,µEIR (resp. ;\,µEC) and u,ven- 1 (,(s)), SEJ, then 

I' (;\u+µv)=;\I' u+µI' v, s,tEJ. 
s~t s~t s~t 

(2.8) 

Using definition 2.2 we can reformulate (2.8) in an equivalent 

way by saying that a real (resp. complex) linear combination of 

transported along; sections is also a transported along·; section 

whose value at ;(t) is obtained· by transporting along ; from s to··t 

the value of this linear c~mbination at a point ;(s) for an arbi­

trary fixed seJ. 

Evidently, in .vector bundles the condition (2.8) reduces the 

transports along paths to the conside_red in [ 6) linear transports 

along paths. 

Another important example of conditions for consistency 

appears in the case when in the -fibre -bundle (E,n,B) is 'given a 

bundle _metric g, i.e. [3] when in it is fixed a family {gx: 

g :n- 1 (x)xn~ 1 (x)-IR, xEB}. In particular, if (E,n,B) is:·a vector 
X . . ' 

fibre bundle and.gx, xEB are nondegenerate bilinear forms, then g 

defines an usual bundle metric in the fibre bundle [2]. (To this 

class belong also all (pseudo-)Riei:nannian metrics:, ff B is a 

(pseudo-)Riemannian manifold, then one puts,.,_i;:=T(B), n- 1 (x)=T (B), 
X 

xeB and g is identified with the (pseudo-)Riemannian metric of B.) 

In this case the_ class of transports along ;: J-8 satis,fying the 

follo~ing condition is naturally generated. 

(5) ·condition fm: consistency with ft bundle metric 

If U,VEn- 1 (,(s)). SEJ, then 

- _ 7 7 
g,<s> (u, v)-g71 tl ( Is-t U, Is-t v), ,s, tEJ. > ' (2.9) 

In the (pseudo-)Riemannian case (2.9) simply means a c:o~serva­

tion of .-the scalar product of the vectors under tneir (parallel) 
: ,,·, f: . 

transport along an arbitrary path at any its point. 

9 



The transport_s a_long paths satisfying simultaneously (2. 8) and 

(2. 9) will be Investigated elsewhere (cf .. [ 13]). 

As we shal 1 see elsewhere the conditions for consistency of 

transports along paths with some structures are equivalent to the 

demand these structures to be. "transported" with respect. to pro~ 

perly chosen transports along· paths acting in the corresponding 

fibre bundles. In particular, this is the case with the condition 

for consistency Of a parallelism P (see example 2.2 at the end of 

Subsect. 2.1) an~ its torsion S, which is given in [1]. vol. I, 

p.175 and p.235, 'where this condition is taken as a definition for 

parallelness ("parallel transport") of S; in fact, in this case, 

these two concepts are equivalent. 

3. SOME PROPERTIES AND GENERAL FORM 

Proposition 3.1. If (2.2) is valid, then (2.3) is equivalent 

to the invertibility of the map (2.1) when its initial and final 

parameters coincide, i.e. to the existence of (I 7 )- 1
, sEJ. s--)s 

Proof. If (2.3) is valid, then, evidently, no matter whether 

(2.2) is• true {Jr . 7 ) -1 
not · ( I s--)s there exists and -I ( I7 > = 

s--)s 

=id =I7 • On the oppo.site, if, 
- 1 s -----+s 

for example, exists the 

n < 7( s '·' 

left inver~e map ( I 7 ~ )- 1
, s~s then putting r=s=t in (2. 2), we get 

I 7 oI7 =I7 and multiplying from 
s-----+s s-----+s s-----+s 

left by (I7 )·-i· 
s~s ' 

we 

convince ourselves in the validity of (2.3). ■ 

Proposition 3.2. If (2.2) is fulfilled, then (2.3) is equiva­

lent to the existence of the inverse map of (2.1), besides 

(I7 )- 1=I( S tEJ. 
s-----+t ti-+s' ' 

Proof. If (:!!. 3) holds, putting r=t in (2.2), 

10 

(3.1) 

I7 o we get •-t 

.. 

,. 

7 . =id ·1 oit--)s 1l-1(7(t)) 
which results in (3.1) .. on the opposite, if 

(3.1) is true, t.hen putting r=t in (2.2). we get I 7 · =I7 o t-t s-t 

oI 7 =I7 . o(I7 )- 1-=id , i.e. (2.3) is valid. ■ 
t~s s~t s~t -1 n (7(t)) 

In particular, (3.1) shows that the transports _along a path 

7:J--)B are 1:1 ipvertible maps between the fibres over 7(J). 

If -r : J' -J is an orientation changing 1: 1 map betwee~ the 

real intervals J' and J and 7: J-B is a path, then the path 

7-r ::::70-r_:J'-B will be called inverse to 7. with. re.spe.ct to -r. In 

the canonical case, when paths of.the type 7:[0,l] -a are consi-

dered, by definition [8,.12] • the inverse path to 7: [O, 1] :.-B is. 

7_:=70-r::[0,1]-B, 

<= s f---)1-s, sE[O, 1]. 

where -r::[0,1]-[0,1] is defined by 

Proposition 3.3. If (2.6) holds, then the transports along a 

path 7:J-B and ~ts inverse path 7-r :J'--)B are connected by 

7't' 
I - =I7 
s-t 't' ( s l-'t' ( t l ' 

s, teJ'. (3.2) 

Proof. (3.2) follows from (2.6) for -r=-r_. ■ 

We define the product of paths in the following way which 

differs from the standard one (cf. [8,12]; see bellow). Let us have 

an ordered pair (7
1

, 7) of two paths 7h:[ah,bh]-B, h=l,2 with 

the end of 7
1 

c0inciding with the beginning of 7
2

, i.e. 7
1 
(b

1 
)= 

=7 ( a ) . Let there be given numbers a , b , c EIR, such that a sc sb , 
22 000 000 

and one-to-one *aps -r
1
:[a

0
,c

0
]-[a

1
,b

1
] and i: : [ c ; b 1-[ a , b J 

2 o O 2 2 

preserving the orientation, which, in particuiar, means that 

,: ( a ) =a ' . ,: ( C ) :;cb ' ,: ( C ) =a and ,: ( b ) =b . 
1 0 1 1. 0 -~- - 1' ' 2 0 2 2-_ 0 - 2 

The product of the 
,[_• -,. f •; ·• ."T 

p~ths _7
1 

and 7
2 

ifl,,a, path 
~ ,-.,_; i ~-;: 

. 7 (717 2 ):t:: [a~, b)-B, (3.3a) 

which depends· on the parameter :t:: =( a , b , c ·; ,:. ,',: ), and it is · de-
o O O 1 2 

fined by the equ4lities 

11 



{ 7 1 7) :t j [ a 
O 

, c~] : =7 1 ° -r 1 , { 3 . 3b) 

{ 7 7 ) ' j [ c , b ] : =7 o-r . { 3. 3c) 12:t 00 22 

In the canoni~al case· { see [ 8, 12]) the product of the paths 

7 :[0,1]~B, h=1,2 is defined.by a parameter :tc={0,1,1/2;-rc,-rc). 
h 1 2 

where -rc:~....'..-+2s fcpr se[0,1/2] and -rc:s~2s-1 for se[1/2,1]. 
1 2 

Proprisit.ion. 3. 4. Let (2. 2), (2. 6) and (2. 7) be valid. Let 

-_,::[a ,b ]~a',' h=1,2 and (7 7) be the product of 7 and 7 defi-
h h h 12:t. · 1 2 

ned by: ·a · parameter :t={'a
0
,b

0
,c

0
;-r1,'r2). Then, for.. arbitrary 

t 1E[a
0
,c

0
] and t 2E[c

0
,b

0
] the equality is valid 

{7172\ 
I = 

t --H 
1 2 

72· 71 
I a. -'t" ( t ) 

0 
I 't" ( t ) -b ' 

2 2 2 I 1 I 

a
0
st1 sc

0
st

2
sb

0
• (3.4) 

Proof~ Usiri~ consequent! y· { 2. 2), { 2. 7), { 2. 6) and the · above 

def'ini tion- of (,7 t ) , 
1 2 '.t 

{7172):t (7172):t 
It ~t : IC -t O 

1 2 0 2 

we get: 

( 7172.):t ( 7172):tllco,t2) · ( 7172):tl!tl,cOJ 
I =I · ol = 

t ~c c ~t t ~c 
1 0 0 2 1·0 

7 o't" 
= I 2 2 

c ---)l 

o I 71 o'.[' 1 

t ---)c 

72 
1-r <c ,_-r <t > 

71 
o I 

't" (t l-'t" (c) 
0 2 1 0 2. 0 2_ 2 1 1 1 0 

f;rom where it follows {3.4), as we have -r1{a
0
)=a1, -r1(c

0
)=b1, 

_-r2(.c
0

)=~2 .and -r2(b
0
_)=b2 because -r1 and -r

2 
are orientation preser­

ving. ■ 

Remark. If .~e ha~, for example, t 1,t2
e[a

0
,c

0
], then instead of 

{3.4) the equality will be valid . . ' ~ 

(7172):t 
I_... . = 

t ---)t 
1 2 

7• 1 
,IT .. !t >--r It> •· t1,t2e[ao,co], 

l 1 1 2 

in the derivatio~ of which oniy (2. 6) and (2. 7) can be used·. 

{3.5) 

The above. prpposition shows some important' pf.operties of t'r'cin:... 

iipoi:-ts along paths and connections between th~ 'basic,'.properties 

describing them. Let us note that when deriving {3.2), {3.4) and 
. C{l,. . . • . ' 

(3. 5) the main role was played by the condition for invariance 

(2. 6). 

12 
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Once again we want to stress the fact that the basic proper-. 

ties describe the dependence of ·a transport along paths- on the ini­

tial and final value of its parameters, while the additional condi­

tions define its dependence on the path of the transport. 

The general functional form of the transports along paths is 

given by 

Theorem 3.1. Let in the base B of the fibre bundle (E,n,B) be 

given a path ;:J-B and for arbitrary s,teJ be given a map (2.1). 

The maps 17 , s,teJ define ·a transport along 7 from s to t, i.e. 
s-¼t · 

(2.2) and (2.3) ~re satisfied iff there exist a set Q and a family 

of one-to-one maps {F':n- 1 (,(s))-Q, seJ} such that 
s 

I' -(F' -1 • •-t - t) 0 
( F s) , S, teJ. (3.6) 

Proof. The theorem is a corollary of the following lemma in 

which one has to put N=J, Q =n- 1 (,(s)) and R =I' . , s,teJ. 
s s ~t s--+t 

Lemma 3.1. Let there be given a set N, l'ft0 and families of 

equipollent sets {Q.: seN} and of maps {R•-t' R s----41.; Q -a s t' 

s,teN}. Then, the maps of {R } satisfy the equalities 
•-t 

Rs--+t 0 Rr--+~=Rr--H' r,s,teN, (3.7) 

R -·d •-•-t Q, seN ( 3. 8) 
s 

iff there exists an equipollent with a. for some seN set Q and a 

family of one-to-,one maps { F s: • F s :.a. -a. seN}, ·such that 

R '~(F )- 1o(F ), s,teN. ■ 
s----+t · t s 

(3.9) 

Proof. The sufficiency is almost evidentf the'substituti6n of 

(3.9). into (3.7) and (3.8) converts them into identities. On the 

opposite, putting in (3.7) r=t and using (3.8), we see that Rs-t 

has an inverse ma~ and 
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( R ) - l =R ' , s, tEN, 
s--+t t ---+s (3.10) 

due to.which (see and (3.7)) for any fixed s
0

e_N, we have Rs--H= 

=R oR =(R }~ 1 o(R ). i.e. (3.9) is fulfilled for 
s --+t s----+s t--+s s--+s -

0 0 0 , 0 

Q=Q and F =R . ■ 
s s s--+S 

0 0 

The arbitrariness in the choice of the set Q and a family {F} 
s 

in the theorem 3. l is described by 

Proposition 3. s. Let in the fibre bundle ( E, n, B) · be given a 

transport along paths I with a representa,tion (3. 6) for some set Q 

and ·a family of 1: 1 maps {F7:n- 1 (7(s) )-0, sEJ}. Then, there exist 
s 

a ·set 
0
Q and a family of one-to-one maps {°F7:n- 1 (r(s))-0 Q, sEJ} 

.s 

such that 

7 0 7 ~1 0 7 
.Is~t::;,( Ft} o(- F

5
), s,tEJ, 

iff there exists an one-to-one map D7 : 0 Q~ for which 

F7=D7o(°F7), SEJ. s ., . s ' 

(3.6') 

(3.11} 

Proof. •The proposition follows for N=J, Q =n- 1 (r(s)) ·and 
s 

7 ' 
R =I , s,tEJ from 

s -t · s-t 

Lemma 3,2. Let there be given a set N, N~0, family of equi-

pollent sets {Q
5

: sEN}, an equipollent with Q
5 

for some SEN set 0 Q 

and' a: family of maps {°F : °F :Q - 0 0, SEN}. If 
s s s 

Rs~t=(oFt}-l~(oF }, 
s ( 3. 9') 

then (3.9) is valid for some family of maps {F
5

: F
5

:Q
8
-0, SEN}, Q 

being some equipollent with 0 Q set, · if and only if· there exists a 

one-to-one map D: "'.0--0, such that 

F =Do(°F }. ■ 
s s (3.12} 

Proof. The sufficiency is almost evident: if (3.' 12) · is true 

for some Q and {F }, then from it we find °F =D- 1 ~F, seN and subs-
• a. • . 
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d 

'( 

.,· '' 
A 

')!, i•,: ,, 

I 

tituting this result into (3.9'), we get (3.9). On the opposite, if 

(3.9) is true, then, due to ( 3. 9' ) , 

o(F )=(°F )- 1 o(°F ), 
s t s 

s,tEN, hereof 

from it results 

we see that 

in (F }- 1
o • 

t 

F :o(°F }-1 a: 
s s 

=F o(°F )- 1 for any s,teN, but this means that the left and right 
t t , 

hand sides of the last equality do not depend either on s or on t. 

Hence, fixing arbitrarily some ·s
0

EN and putting Da:F o 
so 

o(°F }~ 1
,

0 Q-O, from the last equality for t=s; we·get' (3.12); ■ 
s O · 

0 

,l. 

4. TIES. WITH THE LIFTING OF PATHS 

The definitibn of a transport along paths I in a fibre bundle 

( E, n, B} leads to a natural lifting of every path r,: J-B [ 12]. 

Definition ~.1. Let r:J-B, r7 be a transport along r, 

uEn- 1 (r(J)), q (ti):={s: seJ, r(s)=n(u)} and s Eq (u). The path 
7 O 7 

7 :J-E defin~d by the equality 
u,so 

7 (s):=I7 (u}. seJ, 
u,s

0 
s

0
--+s 

(4.1) 

is the lifting of r through u generated by I 7 with a parameter s
0

; 

the map 71--¼7 is the lift through u generated by I 7 with a pa-
u,s0 

rameter s
0

• If q/u> consists of only one e1e·ment, i.e., if ii:(u) is 

not a self-intersection ·point' for 7, then 7 will be ·denoted 
u,so 

simply by 'iu and we say that 'iu and 71--¼7u are generated by .I7 .. , 

Evidently, _any transport along paths·I generates through (4.1) 

a - lift of the palhs from the base B. The us~ge of the term "lif-; 

ting'! here a~d in· definition 4, 1 is correct due to 

Proposition-A.!. The path 7. :J-E, defined by (4.1), is a 
~,so . . 

lifting of the parc.h 7:J---+B (from B into E) through u,· i.e. 
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noo =o, 
u, s.o 

T (s )=u. 
u~ s

0 
o (4.2) 

Proof. (4.2) follows from (4.1) and definition 2.1 (see also 

(2.1) and (2.3)). ■ 

From (4.1) we can make the following simple, but important, 

conclusion.· .. In toe general case, one transport along paths g~ne­

rates _ through the point uErr- 1 (,(J)) as many liftings of the path 
• J ~:,. • 

;:J-B as is the number of elements (the power) of q
7
(u), equal, 

evidently, to one plus the number of· self-intersections of 7 at the 

point rr(u). In ttiis connection, one naturally puts the question in 

what sense and wnen the lift of a given path through a lying above 

it point is unique. 

Definition 4.2. The lifting generated through (4.1) by a trans­

port along paths I is globally unique (or is unique in an absolute 
. . -1 ·.' 

sense) if for_every path ;:J-B and every UE~ (;(J)) we have 

T =T , r,i,eq(u). 
u,r u,s 7 (4.3) 

Proposition 4,.2. The lifting generated through (4_.1) by the 

transport I is globally unique iff 

I 7 =id for those r,se·J for which ;(r)=;(s).. r-...-+s -1 (4.4) 
1l (:1(-s)) 

or, which is equ~valent, iff 

VET (J) ~ T =T , seq (v), rEq (u). 
u,r v,s u,r 7 7 (4.5) 

Proof. Let ( 4. 3) be valid. Then, for any tEJ from ( 4. 1), we get 

r• (u)~T·· (t)=T (t)=I' (U). Therefore, due -to the arbitra-
r~t u,r u,s s~t 

riness of uErr- 1 (,(J)), we find r• =I' , whfch as a conse-' 
r~t s~t 

quence of (2.1), (2.2), (3.1) and the definition of q,<u> (see de­

finiPon 4.1), is equivalent to (4.4). Further, .. if VET · (J), 
u,r 

req,<u), then by. ( 4 .,1 ) there exists s EJ such that V=T (s ")= 
1 u,r 1 

=I' r-s (u). 
1 

So :or every tEJ and seq
7
(v), we have "i (t)= 

v,s 
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=I'· (v)-=I' QI' (u)=(I' oI7 oI' )(u)=I7 · (u)= 
s~t s-+t r~s s-+t s ~s r~s r-+t 

I 1 1 

="i < t>. Here we used the evident fact tha:t s ·eq (v) ( se~ ( 4. 2)), 
u, r • 1 7 

the prov~d equality (4.4). and;· besides, we have twice' applied 

(2.2). Hence 7 ="i 
v, s u, r 

i. e: the right implication in ( 4. 5) is 

true. The inverse impli~ation in (4.5) is evident and it does not 

depend on· any additional facts: if T ="i for seq' (v) and 
v,s u,r 7 

req (u), then VET (J)=T (J). i.e. VET ··(J). So, we proved that 
7 v,s u,r u,r 

(4.3) results in (4.4) leading to (4.5) due to which .the proof of 

the proposition ends with 'the fact that from ( 4. 5) there follows 

(4.3): as by definitio~ UET (J), ~hen from (4.5) for v=u there 
u,r 

follows ( 4. 3). ■ 

In a local s'ense, .the generated from a tran~port along paths 

lifting of ·paths -may be unique under different ·criteria, 'modfrying 

in an appropriate 'way definition 4. 2 and' to which there correspond 

modified versions of proposition 4.2. For instance; · the ··1ocal 

uniqueness may be defined in the following two·ways: 

(a) Equality (4.3) is valid only a~ong a giien ~rith ,·(unfq~e~ 

ness along ·a ·given path).' A necessary arid ·sufficient condition for 

this is (4.4); or (4.5), to be fulfilled along the path··,. (The 

proof is a consequence form the one of proposition 4.2 for a fixed 

path ;. ) 

(~) Equality (4.3) to be valid only at a given point u over a 

path;," (uniquenes~ along a given path through a point abovJ'it). A 

necessary and sufficient condition for this "is (4.4) to bEi ful­

filled for every r, sEq (u). (The proof i's a consequence from the • 
one of proposition 4.2 for fixed; and u.) D~e to this if the lif~ 

ting is unique along ; through u, · then it· ·is unique ·al'ong ; t~rough 

every VErr- 1 (rr(u)), so q (v)=q (u). Now, in the general case, (4.4) 
• 7 ,. • . . 

and (4.5) -are not. equivalent. 

. Evidently, tne uniqueness with respect to (a) is _stronger:. the 
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lifting is uniqu!c!, along a given path iff it is unique along it 

through an arbitrary point above it. 

Corollary 4.1. The generated in accordance to (4.1) from an ar­

bitrary transport along paths lifting of any path wi that.it self­

intersection through any lying above it point is unique (in any one 

of the above-mentioned senses) along it. 

Proof. If r: 1-s is without intersections, then r(s)=r(r), 

s, reJ is equivalent to r=s, as a consequence of which for every 

uen- 1 (r(J)) the set q (u) contains only one element, so the equali-T - , . 

ties (4.3)-(4.5) are identically satisfied. ■ 

Due to corollary 4.1 there can be uniqueness of the mentioned 

lifts in a "midd;e" between local and global sense. For instance, 

we .can say that the liftings generated by transports, along paths 

are unique when they act on the class of paths without self­

intersections. 

Concluding the discussion of the uniqueness of lifting genera­

ted by.tran~ports 11long paths we shall prove 

P~oposition 1,3. The lifting generated through (4.1) from I is 

unique in a sense that for, every path r:J-B, we have 

T ·=r , uen- 1 (r(s)), r,seJ, 
- u a 7 ( r), r ' 

(4.6) 

u,s 

i.e. the lift of any path through a point bel~nging to its lifting, 

when the value of its parameter coincides with the one describing 
;t .J 

this point, coinciqes with the initial lift of the· path. 

Proof. (4.6} -~s equivalent to the basic property (2.2) of the 

transports along P<!ths: if teJ, .then 7 (t)=I7 (u} 
u, s s---:--+t 

and 

T (t)=I7 (7 (r) )=I7 oI7 (u), 
- _ ·- • r:--,t - u,s r~t s~r 
T Ir) ,r 

so (4.6) and (2.2) 

u,s 

are equivalent-: ■ 

Corollary 4. 2. If the lifting generated through- ( 4. 1) by' I is 

globally (resp. ~ocally) unique (resp. along T) and u,ven-
1
(r(J}), 
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then r (J)nr (J)=0 or r (J)=r (J), req (u), . seq (v} for 
u,r v,s u,r v,s 7 7 

every (resp. the given) path T, i.e., in this case two generated 

from I liftings of one and the same path do not intersect with each 

other or coincide as sets. 

Proof. Let 'r (J)nr (J)a!0 and wer (J)nr . (J). Then, due 
u,r v,s u,r v,s 

to the global (resp. local) uniqueness (resp. along T) (4.5) is va-

lid because 

seq.,< v) and 

=r <J>. ■ 
v, s 

of proposition 4.2. 

teq.,<w>, i.e. - -
T =7 u, r v, s 

So r =r =r u,r w,t v,s 

from where we 

for 

get 

req.,<u), 

; (J)= 
u,r 

Corollary 4.3._ If the generated from I lifting is unique along 

a path T, uen- 1 (r(J)), yen- 1 (n(u)) and v.tu, then 7 (J)nr (J}= 
u,r v,s 

=0, r, seq.,<u)=q.,<v>, i.e., in this case two lifts of one and the 

same path througtt two different points above it having equal pro­

jections do not have a common point as sets. 

Proof. If we admit 

then by proposition 4.2 

r (J)nr (J)a!0 and wer (J)nr (J), 
u,r v,s u,r v,s 

. -,. 

(see (4.5)) r =r =r , r,seq (u)= 
u,r w,t v,s 7 

* , 'c 
=q (v), teq (w). So, if we chooses eq (u)=q (v) and use (4.3), we 

T T . T T 

get u=r (s*)='r (s*)=r (s*)=r (s*)=v, which contradicts 
* u,s v,s * u,s .. v,s 

u.tv. ■ 

Proposit,i~n 4.4. Fo,; every s
0
eJ, fo1: ,which the ,lifting g:nera­

ted by I is unique along T through some v en- 1 (r(s ))_, is fulfilled 
< ' <' 0 0 .l.- ' \ ,,1 

n- 1 (r(J))= LJ ; (J) for r(s)=r(s ) 
-1 u,s 0 

ueit I Tl s
0

ll 

(4.7) 

for every seJ and if s=s
0

, then this equality is valid in spite of 

the above conditions. · 

Proof. From the definition of the pointed uniqueness it follows 

that T =T , 
v,s v,.so 

s, s eq (v ) 
o ... ,T o 

for every -1 ven (r(s
0
)) (see 

Then v=r (s )=7 (s ). from which we find T =r , .so 
v,s O Y,s O v,s - · 

O · 7 .• 
v, so, 

VET1 (J):7 (J}c _ u 7 (J} 
V, s 7 ( s ) , s u Ett - 1 ( 7 ( s ) ) u, s 

v,s o a 
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and consequently 

--1 u 
1( (7(J))= 

-- 1 
vEn C 7< J ll 

v~ LJ r (J). 
-1 u. s 

uEn ( 7( s
0

» 

Evidently, for s=s 
0 

the last two formulae, as well as their 

proofs, are identically valid and do not have any connection with 

the uniqueness of ,the generated by I lifting. 

On the other.hand, due to (4.2), we have.the inclusion 

u 7 
-- 1 

uEn < 7(s
0

ll 

(J)~n-- 1 (7(J)), 
u, s 

from which, due to _the previous inclusion, it follows (4.7). ■ 

Proposition :4.S_. If the generated by I lifting is unique along 

7:J-B and Eis a manifold, then for arbitrary fixed s ,seJ such 
. ·, 0 •. 

that 7(s )=7(s), the family 
' l. Q • . \ o ' 

{r (J): uen-- 1 (7(s ))} forms (one-
u, s 0 

dimensional) foliation of the submanifold n-- 1 (7(J))cE. 

Proof. According to corollary 4. 3, the sets from the consi­

dered family do not have common points, so the proposition follows 

directly from the definition of,.a foliation (11]. ■ 

The above r.esul ts show that the definition of. a transport 
r ~; ,. 

along paths in one fibre bundle induces a structure of foliation in 

the set of liftings of an arbitrary path in its base. 

Now we shall consider. the problem when in one, (generally 

t6p61,ogical) fibre bundle there exist transports along paths. 

-Theorem 4.1. In the fibre bundle (E,n,B) there exist transports 

along paths if and only if for every path 7: J-B, every point 
·' --1 .. , . • ,. 

uen. (7(J)) and every seq
7

(u)_ there exist a 
.. 

lift 'i :J-E of 7 
u,s 

through u, for which 7 (s)=u and which is unique in a sense that 
u,s . 

~ , - · ,.. li·;"'."r·.::::·-· 
for it (4.6) is valid. 

Proof. The necessity follows directly from definition 4~1 and 

propositi6ns 4.1 arid 4.3. On ~he opposite, let in (E,n;B) ~xisi =~ 

lift l:(7,u,s)'~r of 
u,s 

the paths in B with the described proper-

ties. For seJ and UEn • 1 ( 7 ( S) ) , we ·: defirie the maps 
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1 I 7 :rr_ 1 .(7(s))----n,-- 1 (7(t)) by the equality •-l 
1 I 7 u:=7 (t), s,tEJ, UErr-- 1 (7(s)). 

s---4t u,s (4.8) 

On the orie hand,· if we put here s=t and use ,7 (s)=u and the 
u,s 

arbitrariness of u; 1I7 =id 
1 We get •-S rr-- <71 sl J 

On the other · hand, 

from.the proof of proposition 4.3 it follows that (4.6) i; equiva-

lent to 1 17 o
1 I 7 : 1 I 7 so 

1
I 7 is a transport along· 7 t---4r s~t s---¼r •-l 

from s tot, f.e., 1 I defined by 1 I::r;_ ___ /I 7 : (s,t) - 1 I 7 , is a 
•-l 

transport along ~aths in (E.~,B). ■ 

Theorem 4.1 has also a local variant expressed by 

Theo·rem 4.1'. In the! fibre bundle (E,rr,B) along a given path 

7:J-B there exists a transport along it if and only if for evetj/ 

uerr-
1 
(7(J)) and every seq (u) there exists a lifting r : J-E of 

'1 u, s 

7 through u, for which r (s)=u and (4.6) holds. 
u. s 

Proof. The proof of· this theorem coincides. with the proof of 

theorem 4.1 with the only difference that now the path 7 is fixed. ■ 

The pr~of ~i theore~· 4.1, together with proposition.4.1, gives 

us a reason to introduce 

Definition 4.3. If for one lifting of paths equality (4.6) 

holds along every (resp. a given) path 7, then for the defined by 

(4. 8) transport along paths we shall say that it is gemerated by 

this lifting (resp. along 7). 

Proposition 4.6. If one transport ·along paths is generated 

through (4.8) by .some lifting of paths from B 'to E;' which is unique 

in a sense that (4.6) is true, then the generated from this trans­

port, in accordance with definition 4.1, lifting of paths from B to 

E coincides with the initial lifting 

transport along paths. 

generating the considered 

Proof. I ' Let the transport along paths I be generated by the 

lift 1 : 7 --:; 
u,s 

uen-- 1 (7(J)), r (s)=u, 
u,s seq7'u) in accordance 
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with (4. 8). Then, d~e to definition 4.1 and proposition 4.1, 
1
I 

generates the l°ifting 'l:·n--'r so that 'r (t)=
1
I' u. 

u,s u,s s-----+t 

Comparing the last equality with (4. 8) ,· we '·conclude that 

'r, ·(t)=7 (t), teJ, i.e. 'r =r and consequently 'l=l. ■ 
u,s u,s u,s u,s 

Proposition.4.7. If one lifting of paths from B to Eis genera­

ted from a transport along paths by (4.1), then this lifting.gene­

rates in accordance with (4.8) a transport along paths coinciding 

with the transport along paths generating the considered lifting. 

Proof. Let the lifting 7------'>7 , 
u,s 

UErr- 1 (,(J)), r (s)=u, 
u,s ' 

seq,< u) be generated from the transport I, i.e. 7 (t)=I' u. 
u, s s-----+t 

Then, this lifting generates trans po.rt I I for which 1 I 7 u= 
s--:-+t 

=r (t)=I' u, so 
1
I=I. ■ 

u, s -. s-----+t 

5. CONNECTION GENERATED BY A TRANSPORT ALONG PATHS 

In this sec1:.ion, the problem will be discussed of how one 

transport along paths, with the help of the generated by it .lifting 

of paths, geryerates a connect~on in (part of) a given manifold. 

Let (E,n,B) be a differential fibre bundle, Ube k-dimensio­

nal, 1:.ksdim, submanifold of Band U to be covered from a congru­

ence of paths 7;\:J-'>U numbered with the (k-1)-dimensional parame­

ter. ;\=(\, ... , \_
1

) eAclll, i.e. U=;\YA ( ';\ (J;\)) and 7;\ ( J;\)n7 µ< Jµ)=!Zl 

for ;\,µEA, ;\~µ. Tmen, from (4.7) it follows that for any fixed xeU 

is fulfilled 

n- 1 (U)= LJ [ LJ ~ (J;\)], seq (u) 
u en - 1 ( x l ;\EA u • s 7 

( 5. 1) 

where the sets ip square brackets, which are k-dimensional mani­

folds, form a k-djmensional foliation over n-
1

(U) [11]. 

If uerr- 1 (U) and T (M) is the tangent space to at xeM to the 
X • 

manifold M [3). then by definition [1,2,4] the vertical tangent 
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space to rr- 1 (U) at u is 

Tv(n- 1 (U)): =T (rr- 1 (n(u)) )cT (rr- 1 (U)). 
u u u 

(5.2a) 

Let: 

Th-v(n- 1 (U)):c:T ( LJ ~ (J,))cT (n- 1 (U)), 
u u "'A.El, I'\ u, s "- u . . 

(5.2b) 

T0 (n- 1 (U)):=tv(n- 1 (U)) n Th-v(rr- 1 (U)) 
u u u 

(5.2c) 

and Th(rr- 1 (U)) 
u 

be the direct complement of T 0 {n- 1 (U)) in 

Th-v(n- 1 (U)), i.e. 
u 

Th-v(n-l(U) )=:To(n-l(U) )@Th(n-l(U)). 
u u u 

Lemma 5.1. For every uen- 1 (U) is fulfilled 

Tv(n- 1 (U)) n Th(n- 1 (U)) = {O}. 
u u 

where o is the zero element or' T (n_ 1.(U)). 
u 

u 

( 5. 2d) 

(5.3) 

Proof. Let tten- 1 (U) and n:=Tv(n- 1 (U))lrrh(n- 1 (U)). If wen, then 
u u 

wETh(n- 1 (U)) and !iCCording to (5.2d), we have wETh-v(n- 1 (U)). From 
u u 

1· ,.<~ "-,:<J~J-. 

here, taking into account ( 5. 2c) and weT: ( n - ( U)) ( due to wen), it 

follows weT 0 (rr- 1 (U)). This fact, 
u 

compared with weTh(n- 1 (U)) shows 
u 

that wETh(n-\U) )lrr0 (n- 1 (U)), But, 
u • u 

in accordance with the defini-

tion for a direct sum, from (5.2d) it 

Th(n- 1 (ln )lrr0 (n- 1 (U) )={O} 
u u 

and so wE{O}, i.e. 
-,, ' ' 

w=O. Hence·, 

then w=O, due to which n={O}, i.e., (5.3) is valid. ■ 

follows 

if wen, 

Pro~osition 5.2. The subspaces Th(n- 1 (U)) are horizontal, 
u 

i.e., they define a connection in the fibre bundle (n- 1 (U),njU,U~= 

=(E,n,B)lu• iff 

T (n- 1 (U))=Tv(n- 1 (U))@Th(n- 1 (U)). 
u u u 

(5.4) 

Remark; In uhe case of locally trivial fibre bundles an ele­

mentary check (s~e (5.2) and the dimensions of the defined by it 

objects) shows th,e equivalence of (5.4) and the condition 
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T 0 (n- 1 (U} )={Q}, 
u 

(5.4.') 

Proof. The proposition is a direct consequence of the defini­

tions (5.2), lemma 5.1 and the definition of a connection in arbi­

trary fibre bundles [2-4]. ■ 

A priori it ,is clear that the validity of the condition (5.4) 

depends on the used transport along paths I, which are used to con­

struct liftings cf paths appearing above, as well as ·on the choice 

of the family of ~aths {1A}. 

In particular, if U=B, and (5.4) is .fulfilled, then the 

dim(B)-dimensiona,l distribution u~Th(E)=Th(n- 1 (B)}, ueE defines a 
u u 

connection in (E,n,B) and it is almost evident that the defined by 

it parallel trans]port (see [3, 4]) along the paths 1A, AE/\ coincides 

with the initial transport I along them. 

ACKNOWL"DGEMENTS 

The author expresses his grati tud,e to Prof. vi-. Aleksandrov 

( Institute of Mathematics of Bulgarian Academy of Sciences) for 

constant interest. in this work and stimulating discussions. 

This research was partially supported by the Fund for Scienti-
. . ' ' 

fie Research of Bulgaria under contract Grant No. F 103. 

REFER~~CES 

1. Greub W., S. ~alperin, R. Vanstone, Connections, Curvature, and 

Cohomology, vol.1, vol.2, Academic Press, New York and London, 

1972, 1973. 

2. Dubrovin B.d., S.P. Novikov, A.T. Fomenko, Modern geometry, 

G.CONCLUSION J Nauka, Moscow, 1979 (In Russian). 
' 

In this worl<,. we have defined and investigated some properties 

of the tran_sports along paths in general fibre bundles. As examples 

of such transport$ we pointed out the linear transports along paths 

in vector bundles [6] and, in particular as their special case, the 

generated by derivations of tensor algebras over a manifold trans­

ports along paths [5]. Here, we were not concern with the ties of 

the theory developed with the ones of connections, parailel trans­

ports, bundle morphisms etc., items which will be studied else­

where. 

24 

3. Kobayashi S., K. Nomizu, Foundations of differential geometry, 

vol.1, Interscience publishers, New-York-London, 1963. 

4. 

5. 

Warner F.W., Foundations of differentiable manifolds and Lie 

groups, Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1983. 

Iliev B.Z., Parallel transports in tensor spaces generated by 

derivations of tensor 

Dubna, 1993. 

algebras, Communication JINR, E5-93-1; 

6. Iliev B.Z., ½inear transports ~long paths in vector bundles. I. 

General theory, Communication JINR, E5-93-239, Dubna, 1993. 

7. Steenrod N., The topology of fibre bundles, 9-th ed., Princeton 

Univ. Press, Princeton, 1974 (1-st ed. 1951). 

8. Viro O.Ya., D.B. Fuks, I. Introduction to homotopy theory, In: 

Reviews of science and technic, sec._ Modern problems in mathema-

tics. Fundamental directions,' vol.24, To pol ogy-2, VINITI, 

25 



/ 

Moscow, 1988, 6-121 (In Russian). 

9. Husemoller D., Fibre bundles, McGrew-Hill Book Co., New York­

St.· Louis-San Francisco-Toronto-London-Sydney, 1966. 

1o'f Iliev B. Z., Linear transports along paths in vector bundles. 

II. Some app:lications, Communication JINR, ES-93-260, Dubna, 

1993'. 

11. Tamura I, Topology of foliations, Mir, Moscow, 1979 (In 

Russian; ·translation from Japanese). 

12. Hu Sze-Tsen, Homotopy Theory, Academic Press, New York-London, 

1959. 

13. Iliev B. Z., Consistency between metrics and lf~ear transports 

along curves, Communication JINR, ES-92-486, Dubna, 1992. 

Received by Publishing Department 
on August 11, 1993. 

26 

: }-~ 

SUBJECT CATEGORIES ,..,f~, J. 

OF THE JINR PUBLICATIONS 

,- ',~!·. 

' 1..1,· t,,,. 

Index ·subje~t 

1. High energy experimental physics 

2. High energy theoretical physics·-

3 .. Low energy experimental physics 

4. low energy theoretical-physics 
··:: 5. Mathematics · · " 
" 6. Nuclear spectroscopy and radio~hemistry 

. . ' . , . ~ 

7. Heavy,ion physics 

8. Cryogenics ' ..L:·, 

., ~ 

9. Accelerators 
' ,.:, ' 

10. AutomatiZat·ion of data ,.pfocessing. 

11. Computing mathematic~- a~d~te~h~ique 1 :,, 

12. Chemistry: ,;\J'/N; 

13. Experimental techniques and methods .. 

· -14. Solid st.ate physics. liquids · 

15. Experimel)tal physics of nuclear reactions 
at low energies · · 

. ;- ·-., ~ : .;, ; 

16. Health physics. Shieldings 

17. Theory of condensed matter 

18. Applied researches 
19. Biophysics 


