


1. INTRODUCTION

The-parallel transport (translation) is a well known concept
in differential geometry and fibre bundle. theory, usually tied up
with the connection theory [1-4]. The purpose .of this paper is to
propose an independent definition and the corresponding investiga-
tion of (parallel) tranéports (along paths) in arbitfary fibre,bun—
dles. It .is writtbn in a manner analogous to the one of [5,6], from
where some ideas, results and proofs are ;ransferied mutatis mutan—
dis. .The detailed comparison of the materiai pfeéepted.here with
the one in the literature on the same subject wili be donekiﬁ the
next part of our Sefiesf

The transports along paths in fibre bundle§ are'defined*in
Sect. 2, where also.two main groups of possible res{fictionsdpn
them are considered. Some simple properties and the general func-
. tional form of these transports are fouﬁd in Sect. 3. Sect. 4 deals
with different connections betwéen trahépbrtsJaiong paths and 1lif-
tings of paths from the base to the bundle space of the fibre
bundle. Necessary and sufficient condition is obtained for a fibre
bundle to admit transp&rts aiong paths. In Sect.. S5, a method for
generating a cdnnection‘by a transport along a bathvisréop;iaefed“

;

. 2. TRANSPORTS ALONG PATHS AND POSSIBLE.

RESTRICTIONS ON THEM | e s

Let (E,m,B) be a general topological fibre: bundle with a base

B, total bundle space E and projection m:E-—B [7-9]. The fibre
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bundle (E,n,B) is,

generally, not supposed to be loéally trivial.
The fibres = '(x), xe€B are supposed to be homeomorphic with each
other. The set of all sections of (E,n,B) is denoted by Sec(E,n,B),
i.e., oce€Sec(E,n,B) means ¢:B—>E and noa:idB [7,9]; where idx is
the identity map of the set X.
By J éhd 7:J ——B are denoted arbitrary, respectively, real
interval and a path-in B. .
The transpérts along paths ‘in (E,n,B) are defined in Subsect.
2.1 where also their basic properties, describing to a certain
extend the dependence on their parameters, are found. On the trans-
ports ‘along paths one can be imposed different restrictions. In the
présenf'wbrk’two“méin groups of them are considered. Firstly’ (Sub-'
$éct.’ '2.2), the one describing more or less the transport’s depen-
dence on the path of the transport. The second one (Subsect. 2.3)
concerns the’ tiéS':BétWeen‘ some primary giVéﬁ structures on the
, fibfé“puhdléi”ﬁf.gny,fand transports along paths“in it.

-
; B

z;i;_DEFINITION OF TRANSPORTS ALONG-PATHS
IN' FIBRE' BUNDLES

The'analysis of definition'2..1 ‘of Ref. [6] shows that it“may
be genéralizZed:in such a way as the defined in it linear transport>
along paths in vector bundles to be a special case of more genefal
"transports along paths" described by ‘

Definition 2.1." A transport -along paths ‘in’ the fibre bundle
(E,n,B) is a map T which to any path 7:J——B puts “into correspon-

dence a map 17, transport along 7y such that I’:(s,t)rb—alv__9
s t

. where ‘for every'syteJ-the map .

17 i (ale)) —on T (a(1)), . B CHY)

a transport along 7 from s to t, has the following two praperties:

i r,s,teJ, . ) ) (2.2)
1 =id . sel. - ‘ ' (2.3)
To(F(s)) : .

The path_ y and the  numbers , s,teJ in the map (2.1) will be
called, respectively, path, initial parameter. and.final parameter
of the transport.

The property (2.2), which. may be called a graup pfoperty of -
transports along paths, 1s an exact exprgssion‘of the representa-
tion that the "composition of two transports élong one-and the same
path" must be a "kransport along the same, path". The property (2.3)
fixes a O-ary operation in the set of "transports along paths" . de-
fining in it the "unit transport" and, besides,: it is. an exact
expression of the naive understanding that  if we "stand" at ane
point of a path without "moQing" along -it,: then "nothing must.
happen" with a fibre over it. R : e

The problem of existence of transports along paths, i.e.:.when a
fibre bundle admits transports along paths, will be considered in..
Sect. 4 and .the problem of their uniqueness or a general-form will
be investigated in Sect. 3. '

Closely. connected Qith definition~2.1—is‘the following one ge-
neralizing  the concept for sections: linearly  transported -alang
paths (cff [10], Bect. 5). ’ 3

pefinition: 2.2. Let in: (E,n,B) be given.a transport -along:

paths I. The section ceSec(E,w,B) undergoes a (an I) transport or:

it is (I-)transported (resp. along 7:J—B), if the:equality

s(r()=I?  s(a(s)), s.ted L (2aay
- s_——" .

holds. for every (resp. the given) péth 7:J—B.

Proposition 2.1.. If (2.1) is fulfilled for a fixed,value seJ,
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then this equallty is valid for every seJ.

Proof. This result is a trivial corollary of (2 2).m

Proposition 2.1 shows that in definition 2.2 it is sufficient
to want (2.4) to be valid for a fixed s=soeJ end then (2.4) may be
regarded as afneceSSarQ»ahﬁ sufficient conditien for the section ¢
to be I-transportedialong 7.~ . vl

Proposition 2.2. If the section seSec(E,n,B) is I-transported
along 75J——+E, then its "values a(r(s)) fof every s€J ‘are uniquely
defined if. the value 6(7(56)) is givén for an arbitrary fixed soeJ.

- Proof. This result follows from:(2.4) for S=s ..

Ev1dent example of transports along paths are the linear tran-
sport ‘along pathsg in vector bundles, -a result follow1ng from the
comparison of definitions 2.1 from this work and from [10].

7 Now wé shall censider two examples for thansports alongvparis

which' appear in fibre bundles with a certain .structure.

Example 2.1. Let the fibre bundle (E;n,B) have’'a structure of’

foliation:[11], i;e.»bnTtheetotal’buhdle spacé'E, which now is sup-

posed' to “be'a manifold to ‘be 'given a ‘foliation {K: KCE, «€A} "

[11], whiehriln part1cu1ar, means that'K‘nK =@, :«,B€A, o and-

agAK =E. Let the follat1on {K } be such that n(K )=B, acA.
=: Before going ‘on we want‘to’streSS'the‘fact-thet this construc-

tion is equivalent to-the one when over (E,n,B) is defined a family

of sections {aa: aaeSec(E,n,B), a€A} such that if o (x):a (x) for’

some X€B; ‘then a=8. Actually,: if such a famlly {a } is g1ven, then

it 'is -sufficient to put : K —a(B), «€A and on the_opp051te, if a

foliation:(Ka},is giveh, then the:sections o a€Aare defined by
the,equality aa(x):=n'1(x)nKa. X€B, a€A. ‘

.In fibre bundles with such a structure there appears a natural
concept for a lifting ?u:J—éaE'of any path y:J—>B in the pase B

through every point u over the set 7(J), i.e. ue;u(J) and ne§u=7

[12]. In fact, if we define «(u)eA as the subscript of the unique
fibre K ()e(Ka) to which belongs the point u, i.e. Ku“nau, then
aqlu
the lifting 7 :J—E of 7 through u is given by
u

F.(s) = s MK,

oy’ seJ.

Evidently, {?U(J): ueﬁd(y(s N} for a fixed soeJ is aypne di-
mens1ona1 foliation of the (d1m(B)+1) d1men51ona1 manifo;d
"1(7(J)) Besidesg, it is clear that 7 is the unique lifting of 'y
in E lying as a whole in some of the fibres ef the fqliation {Ka}.
The so-defined lifting 7+—+§u generates a transport K along

the parts in B, defined by

Kx__ag(u):=;d(t)’ uEn—l(y(s)), seJ.

The following equalities, which are true for every r,s,teJ and
-1 ¥ i ransport along 7 from s
en (y(s)), show that Ks . 15 reel}y at ‘t‘p g
to t (see definition 2.1):

KZ__ﬁs(u)=§u(s)=n"(1(§))ﬂKa(u)zu. uen'l(w(S)).kSGJ.

T K7 =K? t (ry=n"(z(rnNlk _ = =
-(K‘__* Ks__*‘)(U) Ko (7 ()= 77 (6, ’ ﬁ ! i acy (e
= (a(r)) Nk, =7 (1)=KT__ (u), uen ' (3(s)), T,s,teJ.

afu)

Here, we have used that af(v)= a(u) for every veK @ whlch is a con-
sequence of the unlqueness of the fibre of the follatlon pa331ng

through an arbltrary point of the follatlon

Example 2. 2. In [1], vol I, p. 174 the def1n1t10nskare glven
for parallellsm and a parallel vector field accord1ng to wh1ch vif
€ is a vector bundle over BxB, whose bundle over (x, y)eBxB is {f:
f:Tx(B)——aTy(B), f - linear}, then the parallellsm on’B 1s such a

section PeSec§ that

. P(z,y)eP(x,2)=P(x,y), P(x,x)=id_ . . X,¥,2€B.



The vector field X is parallel (with respect to P) if
. . . B .

P(x,Y)X =X "

If B is parallelizable, i:e. in it exists a parallelization P,
then it uniquely defines axiomatically defined (global) parallel
transport in B [2] From the cited definitions it is clear that the
para11e11zat10n P on B defines a transport (along paths) in the
tangent to B fibre bundle (T(B),n,B). Besides, 'this transport ‘is
global in a sense that it depends oniy on the initial and final
points of'a transoort andrdoes not depend on paths connecting them.
As the vector fields over B are in fact sections of (T(B),n,B)
[1,2]}, it is evident that the above definition for paralleiism of X

is a special case of the definition 2.2.

2.2. ADDITIONAL RESTRICTIONS

The considered below restrictions, which can be imposed on the
transports‘a;ong‘paths, are under the title "additional" as, never-
theless they are important from some view—points, in our opinion,
they have more spec1a1 character-and define one or another special
property of the transports along paths One should have in mind
that they descrlbe the functlonal dependence of the transports

i

along paths on the path or curve of transport and they can be 1mpo—
sed separately, on groups, as well "as all of them together.Abe—
sides, they have a number of equivalent formulatlons, but we below
cons1der on1y one of them ‘

(1) Condltlon for ocallty

If J’ is a sub1nterva1 of J and 7:J—B, then

N . s,tel’ (2.5)
s—t s—t ) . . )

where 7[J 1s the restrlctlon of ¥ on J'cl.
(2) ondltlon for 1nvar1ance under the parameter changes

If 7:J"—J is one-to-one map and r:J—B, then

ToT _y7 “ ; o :
Is N IT(S) ey’ s,tel”. . ' v . - .{2.6)

(3) Conditions for smoothness

We will not formulate these condltlons, but ve shall only men-

tion that there are three types of them, descr1b1ng the "smooth—

3

ness" respectlve]y of
. (3a) the dependence of a transport on a path of the transport;
(3b) the dependence of a transport on 1ts 1n1t1a1 and final

It

parameters, .
1 o R u,‘ - - . EEES T
(3c) a transport as a map between the f1bres over the curve

deflned by the path of transport » ‘
In connectlon ‘w1th the locality condition the foilowino
propositlon is very 1mportant. . v : o
Proposition 2.3. If 17 is a transport aioné ¥, then (2,5)'is

equivalent to

17 ITI[mln(s v, max(s,t)l, s,ted. ‘ @
s—t s—it Vet T H £

Proof. (2.7) follows from (2.5) for J'=[min(s,t),max(s,t)lcd.
on the‘opposite, if (2.7) holds, then i

I‘IIJ"_I(‘IIJ )I[m\n(s t),max(s, L)] I7|(mln(s t) max(s,t)] I’I
st s/t L s— i . sﬁt

v

where s,teJ’cJ and we have used the evident fact that.if J%cJ’cJ,

2 Cy

then (7|J')|J"=2|3". = e
‘Proposition 2.3 shows that if (2.5) holds, then the transport

along 7 from s to t does not depend globally on the "whole" map-7,.

but‘only on ‘its restriction on the interval defined‘from‘s and t.
The ‘transports along-paths Satisfying the“conditionb(z.S), in

fact, depend not ‘on-the path of -transport y:J—oB,” bun on thefcurve
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of transport, i.e. only on the values 7(5); se&d, or other wise sta-
ted, (216) leads “to the dependence'of aftransport'aiong 7 only on
the nonparametrized curve 7(J). Namely, the set of these transports
has invariant and clear geometrical sense.

It is important to note that frequently the condition (2.6) is
given in a weaker form‘in which one wants 7 to bevorientation pre-

serving homeo— or diffeomorphism

\‘ “‘

Elsewhere 1t will be proved that "a transport along paths 1s a

.

parallel transport iff it satisfies simultaneously (2.5) and

(2.6)". , ' ;

The conditions of the type (3a) in their essence coincide with
,the conditlons for smoothness in the ax1omat1c approach to the pa;
rallel transport and those of the type (3b) in the case of consi-
dered 1n [6] llnear transports 1n vector bundles are reduced to the
standard condition for smoothness of 1inear operators (between

vector spaces) on scalar parameter.

e 2.3. CONDITIONS FOR CONSISTENCY

. The conditions for ‘consistency udescribe connections between
transports along paths in fibre bundles and, if there exist, speci-
fic for the fibre bundles structures. In the most‘general case of
arbitrary fibre .bundles there are no such structures due. to which
there are no conditions for consistency. They appear in more spe-
cial-cases, . two-df which are considered below. The general case of
this problem will be a subject. of another work. -

. Let 17 . be a transport along 7:J—B from s to t, s,teJ in
s—>

the real (resp. complex) vector bundle (E,n,B). Then, on.the trans-

port I there can pe imposed the.following restriction.

{4) Condition for consistency with a'vector structure

If A,ueR (resp. A,pueC) and u, ven Y(¥(s)), sEJ;'then‘

7 V¥ 7 ' ' .
I S(Autpv)=al’ }u+yis Vs S,tel. ‘ (2.8)

~Using definition 2;2.We can reformulate (2.8) in an equivalent
way by saying that ‘a real. (resp. ‘complex) linear combination of
transported along 7 sections is also a transported along:7 sectlon‘
whose -value at y(t) is obtained by transporting along.r from-s to t
the value of this linear combination at a point y(s) for an arbi--
trary fixed seJ.

Evidently, in.vector bundles the condition (2.8) reduces the
transports along paths to the considered in [6] linear'transportS‘
along paths: V

Another important example of <conditions for consistenc&
appears in the case when -in the fibre-bundle (E,n;B) is"given a
bundle .metric g, i.e. [3] when in it is fixed a family {gx:
gx:n'l(k)ymfl(x)—f—MR,‘ x€B}. 1In. particular, if- (E,n,B) . is.,-ra vector
fibre bundle and.g , X€B are nondegenerate bilinear forms, then g.
defines an usual bundle metric in the fibre bundle [2]. (Teo this.
class; .belong also all (pseudo-)Riemannian. metrics:iiff' B is a
(pseudo—)Riemannian manifold,. then one puts, E=T(B), n_l(x)=Tx(B),A
X€B and g.is identified with the (pseudo—)Riemannian metric of B.)
In this case the: class of transports along 7: J~—»B satlsfying the
follouing condltlon 1s natura11y generated v

(5) Conditiog for consistencv w1th a bundle metr1c

S If u,ven (7(s)), seJ then

Tyeas

g?'( 8) (U, V,) =g

s (I0_uwI7 vy, s ted. _ L (2.9)

s—>t st T . . e

“In the (pseudo~)Riemannian case (2.9) ‘simply means ‘a conserva—
tion of ..the scalar product of the vectors under their (parallel)

transport along an arbltrary path at any 1ts p01nt
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The transportjs along paths satisfyi’ng simultaneously (2.8) and
(2.9) will bev ~,i1'17ves;t:‘iga”t.ed eylsewhere (cf. ,‘[13]).

As we shall see elsewhere the conditions for consistency of
t;rans‘ports along paths with .some structures are‘ equivalent to the
demand these structures to be. "transported® with respect. to pro-
perly chosen transports along- paths acting in the corresponding
fibre bundles. In particular, this is the case with the condition
for consistency df a parallelism P (see example 2.2 at the end of
Subsect. 2.1) and its torsion S, which is given in [1], vol. 1,
p.175 and p.235, where this condition is taken as a definition for
parallelness ('"pdrallel transport") of S; in fact, in this case,

these two concepts are equivalent.

3. SOME PROPERTIES -AND ‘GENERAL FORM

Proposition 3.1. If (2.2) is valid, then (2.3) is equivalent

to the invertibility of the map (2.1) when its initial and final

parameters coincide;- i.e. 'té the existence of (1? )y ', sed.

s—s
- Proof. If (2.3) is valid, then, evidently, no matter whether

-1 -1

)y =

=id =17 7, -On the opposite, if, for example, exists the
al (res)) o

there exists ‘and (17

o 7.
(2.2) 1is® true pr not:° (I s) . s

_1‘

s) " then puttlng T=8= t in (2. 2), we get

left 1nverSe map (17
17 o1? =17 ‘ and mu1t1p1y1n from left by (I7 .)-"‘iu we
s—s Ts—s s—s 9 Y s—s)

convince ourselves in the va11d1ty of (2. 3) =

Proposition 3.2. If (2.2) is fu1f111ed then (2. 3) is equiva-

lent to the existence of the inverse map of (2.1), besides

(17
s—t
Proof. If (2.3) holds, putting r=t in (2.2), we get I: °

10

“1_ -7, - . o ’
) —It . s,ted. S (3.1)

Vflned by the equalltles

°If “=id L 4 Wwhich results in (3.1). .On the opposite, 1if
— s -
no(rie))

. . e s S 4
(3.1) is true, then putting r=t in (2.2), we get IL L—Is N
7 2 . b -1_. . s .
«-,IL . Is to(Is L) _1dn_ (7(”), i.e. (2.3‘) is valid.=s

In particular, (3.1) shows that the transports ~along a path
7: J—>B are 1 1 1pvert1ble maps between the f1bres over 7(J)

If 71: J —J 1s an or1entat10n changlng 1:1 map between the
real intervals J’ and J and ‘7:J—>B is a path, then tne path

7, v::yo-r;:J'——)vB will be called inverse to 7 with respect to z_. In

the canonical case, when paths of.the type 7:[0,1] —B:are consi-
dered, by definition [8,12] the inverse path to ¥:[0,1]:—Bis.
¥ :1=yot°:[0,1]—R, where ©°:[0,1]—[0,1] is defined by
-rf:s»%i—s, se[b,i]. ‘

‘Proposition 3.3. If (2.6) holds, then the transports: along a

path 7:J—B and its inverse path 7. :J"—B arerco_nnected by i

- _17- : ’ v ‘L‘ .
Is——n"I-r_(s)-a———n_(t)' s, tet’. e o _».(3'2)

Proof. (3.2) follows from (2.6) for =T_.8 ‘

We ’deflne the product of paths in the follow:.ng way which
differs from ;the standard one (cf. [8,12]; see belloW). Let ‘us have
an' ordered pair (7,,7,) of two paths 7h:[ah,'bh']—‘—>B, ">h=1';2"wif:h
the end of 7, coinciding with the beginning of LA i.e. {wl(bl')"'—
=7/z(a2). Let there be given numbers a b ,c €R; sucnthét aoscosbo,
and one-to-one -haps rl:[ao,co]——)[al,bl] and -l:2 ['c';;bo]%[az,b;]
preserving the orientation, < which, in partieniar," means that
T (a )=a , "—ci_(cl:o)?p“~ t,(c )=a  and rz§b01=b2. .gh(e“‘igregget ‘e’f" the
paths 7, and 7, is a, path

i), lag b 1B, (3.13a)i

wh1ch depends on the parameter x: (ao,bo,eo‘;v'tl‘..‘i:z‘), and’ it ’is ‘de-~

1
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(?xrz)xl[ao,cpl:eWIO?l. | | (3.3b)
(1112)x|[c°.bb]:=72°'(2. : o (3.3c)

Dt

In the‘canoniEal caseiksee [8.,12]1) the‘product of the paths
10, 1]—>B h=1,2 is defined'by‘ a parameter z°=(0,1, 1/'2'1':,.1;),
where r SF—%ZS for sE[O 1/2) and L €:s1—2s-1 for se[1/2 1].
Propos1t1on 3 4. Let (2.2), (2.6) and (2.7) be ‘valid. Let
7h:[ah,bh]——eB, h=1,2 and (7172)1 heithe product of 7, and 72‘def1-
ned - by :{ ra’"-parameter "x=(a°,bo,c°;tl,t2).u Then, for . arbitrary
tle[ao,co] and tze[co,bol the equality is valid- -

(v,7.) 7, g 7 ; o ' a
1727y _ 2 1 <t <c <t < ’
vt —t Iq — T (t )OIT (¢t )—n_ ' ao_tl_c°~t2_bo. (3.4)
1 2 2 2 2 11 1

Proof: ‘Using consequently' (2.2), (2.7), (2.6) -and the ' above
definition-of (7 1 ) - we get:

(v,7) (77) (7.7.) (77)|1c°,t1 (7,7,), |1t ,ep

1927y _ 1927y %20 P %20 2y 127l _
v =t c —t t —c - e —t C Tt =
1 2 0 2 1 o ) 2 1 [
_oT T
_ 172 2 E[7/10.1 - 172 e I?’1 R
- —t t—3 T —T_(t T (t )—T ’
S0 2. 1 o 2f°o) 2} 2! 1! 1)' 1%’

from where it follows (3.4), as we have T, (a))=a , T (c,)=b ,
»fz(po)fngand -;2(bq)=b2 becaQSe rl and_-r2 are or1entatlpn preser-
ving .= i

Remark If we had, for example, tl,tze[ao,eo}, then instead of
(3 4) the equa11ty w111 be va11d

(7172)1 _ 7,

t —ot _vJT“(i‘%——+t(t ) "tlltze[ao'co]' S ot -»«(3;5)
1 2 11 12 . :

s : L R I A R . - ] Lae t .
in the derivation of which only (2.6) and (2.7) can be used.

The above prpposition shows some importarnt properties of tran-
~ §ports anng paths and connections between the~‘basic.fproperties

descr1b1ng them Let us note that when der1v1ng (3 2), (3 4) and

(3.5) the main role was played by the cond1t10n for 1nvar1ance
(2.6). . o

y

12

Once again we want to stress the fact that the basic proper-.
ties describe the dependence of a transport along paths. on the ini-
tial-and final value of its parameters, while the -additional condi-
tions define its dependence on the path of the transport. .

The general functional form of the transports elong paths’is
given by " ]

Theorem 3.1.~Le;‘in the base-B’gf’the fibne_bundie‘(é.n;B{ he
given a path 7:J—B and for arbitrary sthJ be given e map (2.1).
The mape I7__%t,'s teJ define a transport'along 7 from s to t, 1i. e.
(2 2) and (2.3) are satlsfled iff there ex1st a set Q and a famlly

of one-to-one maps {F’ (w(s))——eo. selJ} such that

7 —(pTy1 ¥ ’
17 S(FO T o(FD), s, ted. , BEEET (3.6)

Proof. The theorem is a corpollary of the following lemma in
. . Dok _ o ~ 1 » N - K ;. ¥ m7
which one has to put N=J, Qs—n (7(s)) and Rs t«Is e s,ted.

'Lemma 3.1. Let there be given a set N, N#0 and families of

equipollent sets 1Q_: seN} and of maps {R_ oo R ,Lgo;e—eot,

s,teN}. Then, the maps of {Rs t) satisfy the.equa;1p1es

Rs ‘tORr s=Rr g r,s,teN, ‘ : Lo » J;(3.7)

R_ s=1.dQs, seN ; o (3.8)

iff there exists an equipollent with Qs for some s€EN set Qhand a

family of one-to-one maps {Fs:-Fs;Qs——eQ, seN}, 'such’ that
iRs' (=(F)7 O(F ), s,teN.w o : S (3.9)
" Proof.- The sufficiency is almost evident: the‘substitution of
(3;9)[into (3.7) and (3.8) converts them into identities. On the
s—t

opposite, putting-in (3.7) r=t and using (3.8), we see that R

has an inverse map and

13



(R )-1=Rl

s—t . 'l‘-—)l’ 5, teN, (3.10)

due to which (see and (3.7)) for any fixed s eN, we have R =
o ' - ; s—t

) 'e(R

s—Is
. [+}

=R oR =(R

=  °R, - ), i.e. (3.9) is fulfilled for

t—Is
[}

Q=Qso and Fsst s .|
[+]

‘The arbitrariness in the choice of the set Q and a family {F }
. s

in the theorem 3.1 is described by

Proposition 3 S. Let in the fibre bundle (E,n,B) be g1ven a

transport along paths I w1th a representatxon (3 6) for some set Q
and ‘a fam11y of 1:1 maps {F’ (7(s))——eQ seJ}. Then, there ‘exist
a 'set °Q and a family of one-to-one maps {“F:nfi(r(s))——a°0. sei}
such that ' - ) T

17 =CFNTe(FY, s, tey, c (3.6")

s—t

1ff there ex1sts an one to -one map p’: °Q——eQ for wh1ch
F’-D’a( F7) s,e,l. : (3.11)
- Proof. - The proposition follows for N=J, Qs=m*(7(s))i:and

R =17 “s,tel from

8 —t - s—;)t'
Lemma 3.2. Let there be given a set N, N#g, famiiy of . equi-~
pollent sets {Qs: seN}, an equipollent with Q_ for some seN set °Q

and a family of maps {°Fs: °Fs:Qs——a°Q, seN}. If .

-7 -1 o . ) ) ,
R 5 sCF) e UF ), o N S (3.9)

I

then (3.9) is valid for some family of maps {Fs: F_:qQ -—0Q, séN}; Q
being some equipollent with °Q set, "if and only if there exists a

one-to-one map_D:?p——aQ, such that

Fs=uo("ps).- : : : .(3.12)

Proof. The sufficiency is almost evident: if (3:12)'13 true

for some Q and {F }, then from it we find °F =D"'eF_, s€N and subs-

14

tituting this result into (3.9’), we get (3.9). On the opposite, if
(3.9) is true, then, due to (3.9°), from it results in ‘(l’-‘l)'1

o(F)=(°F,) 'o(°F), s,teN, hereof we see. that . Fo(°F)'=
=Fl°( Fl) for any s,teN, but this means that the left and right
hand sides of the last equality do not depend either on s-or on t.

Hence, ' fixing' :arbitrarily some s eN and .. putting D=Fs o°:

. [
o(°F, )"':°Q——Q, from the last equality for t=s , we get (3.12).#
fo. . - Lo L

R o . PR ce *

4. TIES>WITH THE LIFTING OF PATHS

The definitilon of a transport along paths I 1n a f1bre bundle
(E,n B) leads to a natura1 11ft1ng of every path 7 J——»B [12]

De;xnxtxon 2.4. Let 7:J—5B, 1I¥ be a transport balong' rﬁ
Eu'l(7(3)5,. qy(u):={s: s€J, v(s)=n(u)} and. soeq7(u). The path

¥ :J—5E defined by the equality

U, s
"o

7 (s)’:\=1:r (), sel, T
[} . R . :

is the 11ft1ng of ¢ through u generated by 17 w1th a parameter 5,

the map rk—ayus is the 1lift through u generated by 17 with a pa-

. *To
rameter s . If qv(u) consists of only one elément, i.e., if h(u) is

not ‘a self-intersection 'point’ for 7, then 7 will: bpe "denoted

[}

simply by ? and we say that ? and 7r—a§ are generated by . 17.
Evidently, apny transport along paths- I generates through (4 1)
a lift of the paths from the base B.. The usage of. the term "11f—

t1ng“ ‘here and in definition 4.1 is correct due to

4

' Proposition-4.1. The path ;ws :J—E , ‘defined 5y (4.1), is a
vs _ 1ne . . A

lifting of the paith 7:J—5B (from B into E) through-u,' i:e.

15



noFU's =7, 7, (s;)=u. . " (4.2)
0 o ’

Proof. (4.2) follows from (4.1) and definition 2.1 (see also
(2.1) and (2.3)).m - »

From (4.1) we ‘can. make the following simple,- but important,
conclusion.: .In the general case, one transport along paths gene-
rates through~the point uen’ (7(J)) as many liftings of ‘the path
¥ J——aB as 1s the number of elements (the power) of q (u) equal,
evidently, -to one plus the number of self-intersections of 7 at the
point n(u) In this connect1on, one naturally puts the question in
what sense and when the l1ft of a given path through a lying above
1t p01nt is un1que o

Def1n1t1on 4 2. The 11ft1ng generated through (4 1) hy a trans-

B

port along paths I is globally un1que (or is unique in an absolute

sense) 1f for every path 7 J——aB and every uen (7(J)) we have

T o=x r.seqw(u). v : . k _ (4.3)

u,r u,s

Proposition 4.2. The 1lifting generated. through (4.1) by the

transport I is globally unique iff

s

. =id for those r,séJ for which 7(r)=7(s),l (4.4)

-1
neyes) ),

or, which is equivalent, iff

*'VE§M;(J) = Fvs=§mr. seq, (v),, req (u). ‘ (4.5)

Proof. Let (4.3) be valid. Then, for any teJ from (4.1), we get

T Wy ()= (£)y=17" S ] ; p
I t(U)—z'u'r(t)-zru’s(t)—Is .(u).- Therefore, due-to the arbitra-
riness of uen '(3(J)), we. find 17 &= =17 ’, which as a’ conse-

r—t s—3t
quence of_(z.1),'(z.z), (3.1) and the definition of qw(u) (see de-
finition 4.1), {5 equivalent to (4.4). Further,. if ver - (J),
u, r
req (u), then by (4.1) there exists '5,€J such. that v=7 (s )=
. . u,r’ .

77 .
—-Ir 51(u). So or every teJ and seqw(v), we have 7hs(t)=

16

P N 4 7 (7 Y Y = 7 . =
=X (V=1 | eI7 (u)—(I LoIs eIl )(u)—I J(w=

—? r(t). Here we used the ev1dent fact that s Eq (v) (see (4. 2)),

the proved equal1ty (4.4), and,” bes1des. we have twice applled

(2.2). Hence ;;';=7u;r, i.e. the right implication in (4.5) is
true. The inverse implication in (4.5) is evident and it does not
depend on any additional ‘facts: ifv ;h;=§u‘r' for Vseq;(v) and
req (u), then ver,‘(J)=;1'(j); ile. vé?mﬁ(J). So, we proved that
(4 3) results in (4.4) leading to (4.5) due to which the proof of
the proposition ends with the fact that from'(4.5) there follows
(4.3): "as by definition uezhr(J),'then from (4.5) for v=u there
follows (4.3).w ’ R '

In a local sense, the generated from a'transport along paths
1ifting of 'paths ‘may be unique undér different'criteria,\modffying
in an appropriate'hay definition 4.2 and to which theére correspond
modified versions of proposition 4.2. For instance{ ~£he‘*1a¢ai
uniqueness may be defined in the following two ways}

(a) Equality (4.3) ls'valid.only along a given:path 7' (unique-
ness along‘afgiven path)[‘A necessary and ‘sufficient condition for
this is (4.4); or (4.5), to be fulfilled along the path iy. (The
proof is a-consequence form the one of propositionv4(2 for a flxed
path 7- ) L

(b) Equal1ty (4 3) to be val1d on1y at a- g1ven polnt u over a

path 7 (un1queness along a given path through a po1nt above 1t) A

necessary and suff1c1ent condition for th1s 1s (4 4) to be ful-

N

f1lled for every r seq (u) (The proof is a consequence from the

one of propos1t1on 4 2 for fixed ry and u.) Due to th1s if the l1f—
t1ng is un1que along 7 through u, “then it is un1que along 7 through
every vei*(n(u)), so qr(v)zqw(u). Now, in the general;casepg(4:4)
and‘(4.5)-are not«equivalent,

.Evidently, the uniqueness with respect to (a) is .stronger: the

17



lifting "is unique, along a given path iff it is unique along it
through an arbitrary point above it.
COrollary 4.1. The generated in accordance to (4.1) from an ar-

bitrary transport along paths lifting of any path without self—

intersection through any lying above it point is unique (in any one

of the above-mentioned senses) along it.

Proof. If 7:1——aB. is without intersections, then 7(s)=i(r);
s,reJ is equivalent to r=s, as a consequence of Which_for‘every
uen ' (¥(J)) the set qw(u) contains only one element, so the eguali—
ties (4.3)-(4.5) are iQentically satisfiedrl

Due to corollary 4.1 there can be uniqueness of the mentioned
lifts in a “"middle" between local and global sense.vFor instance;
we can say that the liftings generated by transports along paths
are ‘unlque .when they act on the class of paths w1thout self—
intersections.

Concluding the discussion of the uniqueness of lifting genera—
ted by transports along paths we shall prove A

Proposxtxon 4.3, - The: 11ft1ng generated through (4.1) from I is

unique .in a sense that for, every path 7:J—B, we have

. o=7 ., uen (3(s)), r,sel, : © (4.6).

; {r),r v 8
u,s :
i.e. the 1lift of any path through a point belonging to its lifting,
when the value of its parameter coincides with the one describing
this point, c01nc1des w1th the initial 1lift of the path

Proof. (4. 6) 1s equ1va1ent to the basic property (2 2) of the

transports along (paths: if‘ teJ,‘gthen .;ms(t)=I:_ t(u) 4ano

T (r),r
s

u,

i (=17 (G, (r)=1]_ eI | (), so (4.6) and (2.2)

are equ1va1ent Y
Corollary 4.2, If the lifting generated through (4.1) by I is

globally (resp. ocally) unique (resp. along ¥) and u, ven L(7(J)),

18

then ;mr(J)QEHS(J)=¢ or ?mr(J)=§hs(J), reqw(u), Aseqw(v) . for
every (resp. the given) path 7, i.e., in this case two generated
from I liftings of one and the same path do not intersect nith each
other or coincide as sets.

- Proof. Let 'FQ'F(J)QFV,S(J):#Q) and we?u'r(J)rﬁv;s(J). Then, due

to the global (resp. local) uniqueness (resp. along 7) (4.5) 'is va-

1lid because of .proposition 4.2. So 7u;r=7"‘g=7v,s for reqw(u),
seqv(v) and teqw(w). i.e. LN from yhere ne get 7u.r(J)=
=r (J).=m

¥, S

Corollary 4:3._If the generated from I lifting'is.unique along
a path ¥, uen '(¥(J)), Q " (n(u)) and v¢o, then ; u (J)FW . (J)=
QQ r seq (u)= q (v), i.e., in thls case two lifts of one  and the
same path through two different p01nts above 1t hav1ng equal pro-
jections do not have a common po1nt as sets.
) Prooflb If we admit ;mr(J)QFHS(J)¢¢ andJ we?v (J)ﬂ7 (J),
then byyaproposition 4.2 (see (4.5)) ih;=§u;;§#s, r seq, (u)—
=q7(v), teq (w). 50, if we choose s eq (u)= =q, (v) and use (4 3), we

get u=y (s )= 7 (s )=7, S(s )—7 ‘(s )=v, wh1ch contradlcts

'-hS . ':‘:.":v . v,s '

u£v.u
Proposition 4.4. For every soeJ,kforﬁwhich the lifting genera-

ted by I is unique along ¥ through some voei?(z(so)x,'is fulfilleg

= U 7 ) for wedmas) o e o ()
u€r C(y(s 1) .

R o . ’ - ‘ ' .

for every seJ and if s=s;, then this equality is valid in spite of

§

the above condltlons

Proof. From the def1n1t10n of the po1nted unlqueness xt follows

H

that 7v,s=7v,s°' \s,sqegw(vo) for eyery yenv (7(50)) _(see ‘above).
Then v=7y (s )=¥ (s.), from which we find 7 =% . ,-80
. v,so 0" v,s o] - V, 8 -— - b
. v's,,l :
. : L o,
vey, _(3)=7_ e U 7, (D)
’ 7 (s,s uen” T(y(s 1y %
v,s Q Q
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and consequently

7 N (2(3))= _U ve U 7.

ven t(yian wen Teyesn U0F
Evidently, for s=s  the last two formulae, as well as their
proofs, are identically valid and do not have any connection with
the uniqueness of .the generated by I lifting.

On the other hand, due to (4.2), we have the inclusion

LU 5 metaan,
w€T (7is )

from wh1ch due to the prev1ous 1nc1u51on. it follows (4.7).-

. Prop051t10n 4 5 vathe generated by I liftlnglis unigue along
7 J——aB and E is:a man1fold then for arb1trary fixed so,seJ such
that 7(s )—7(5),7 the famlly {7 ;S(J): (7(s ))} forms ,(one_
d1men51ona1) follat1on of the submanlfold n (7(J))CE ‘

Proof Accord1ng to corollary 4.3, the sets from the oon51;

dered fam11y do not have common polnts, so the proposltlon follows
d1rect1y from the def1n1tlon of a follatlon [11] .= '

%

The above results show that the def1n1t10n of a transport

RS i

along paths in one f1bre bundle induces a structure of foliation in
the set of liftings of an arb1trary path in its base.
Now we ‘shall consider ‘the 'problem when in oneé (generally
tépological)'fibre hundle there exist transports along paths.
-Theorem 4.1. In the fibre bundle (E n,B) there exist‘transports
along paths 1f and only if for every path e J——eB every point

(7(J)) and every seq (u) there ex1st a 11ft 7 » J——%E of 1

through u, for wh1ch 7 (s);u and which is un1que in a sense that

-l i N
i PR T -2

for 1t (4 6) is val1d

i Proof .The nece551ty follows d1rectly from def1n1t10n 4 1 and
propos1t1ons 4.1 and 4. 3. On "the opposite, let in‘(E,n;B);exist’a
1ift 1:(7,u, s)»——ay,s'of the'paths in B with the desoribed proper-

ties.  For seﬁ,t and guen”(y(s)),_' we” T define the maps

20 ' .

17 in((s))=>n7M(#(1)) by the equality
117 u:=77"" (1), s,ted, uen  (3(s)). '(‘4 8)
s—t ) u,s . ~ o s, } ,;'.u T

On the one hand,- if . we put here s=t and use:?us(s)=u and : the

: : R 1.7 . ) ] .
arbitrariness of 'u, we get Is S-Ldn_(y()). On the other hand,
5

from the proof of proposition 4.3 it follows that (476) is equlva_

. 1.7 1.7 1.7 1.7 iy Ll : P
lent to It L° Is S Is . + So Is . is a transport along ‘v
from s to t, i.e., 'I defined by lI:yF——fl’:(s,t)p¥—4lIT T, ls‘a

i s—t

transport along paths in (E,n,B).w

Theorem 4.1 has also a local variant ekpressed by

Theorem 4.1’. In the fibre bundle (E,n,Bb) along a given path
7:J—B there exists a transport along it lf’and only if for eveqy
uend(y(J)) and every seq?(u) there exists a lifting ;ms:J—~eE of
7 through u, for which ;ms(s)=u and (4.6) holds.

ProofrTThe”proof of this theoreh:coincides*with'the}proof of
theorem 4.1 with the only difference that now the path y is fixed.®

The proof of theorem 4.1, together with'propositionj4;1,'gives
us a reason to introduce 4

Definition 4.3. If for one lifting of paths equality (4.6)
holds along every (resp. a given) path 7, then for ‘the defined by
(4.8) transport along paths we shall 'say that’ it “is generated by :
this lifting (resp. along'y). Y . -

.Proposition 4.6. If one transport 'along paths is generated:
through (4.8) by some lifting of paths from B 'to'E,” which is ‘Unique
in a sense that (4.6) is true, then the generated from this trans-
port, in accordance with definition 4.1, lifting of paths from B to
E coincidesvwith the initial lifting generating the considered
transport along paths. ' » |

Proof. Let the transport along paths ' be generated by'the

Lift liye—7y, _, uen ' (5(J)), 7, (s)=u, >seq7(u) in accordance
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with (4.8). Then, due to‘qefinition 4.1 and proposition 4.1, I
generates the lifting ‘1:9—’7 , so that ’7 (ty='17 u.

u, s u, s s——t

%

Comparing the last equaiity with (4.8), we “conclude that
‘yo-(t)=r (t), teJ, i.e. ‘3 =y _ and consequently ‘l=1.®m .
u,s u,s u,s

Proposition.4.7. If one lifting of paths from B to E is genera-

ted from a transport along paths by (4.1), then this lifting gene-—

rates in accordance with (4.8) a transport along paths coinciding

with the transport along paths generating the considered lifting.

Proof. Let the lifting 7  _, uen” ' (7(J)), 7, (s)=u,
. . - 7
seq7(u) be generated from the transport I, 1i.e. 7u's(f.)—1’s U
Then, this_ ‘1ifting generates - transport ' for which }IZ LU=
- 7 14
=T, . (t)=1° U, so 'I=I.m

i

' ‘5., CONNECTION GENERATED BY A TRANSPORT ALONG 'PATHS

In this section, the problem will be discussed. of how one
transport along paths, with the help of the generated by it\}ifting
of paths, generates a connecp%on in (part of) a given manifold::

Let .(E,n,B) be a differential fibre bundle, U be k-dimensio-
nal,_isksdim, submanifold of B.and U to be. covered from a congru-
ence of paths 7X:J—-aU numbered with the (k-1)-dimensional parame-

. 'S . _ —
ter. A:(Ai....,xk_l)eAcR , i.e.. U—AQA(vx(JA)) and 7A(Jx)rwu(Ju)—¢

for A,peA, A#g. Then, from (4.7) it follows that for any fixed xeU

is fulfilled . . ) Vo

_I(U)? _'I;J ' [U 37/7\5 S0 seq (v ~ (5.1)

u€n - (x) »
where the seis ih.square brackets, which are k-dlmen51onal mani-
folds, form a k-dimensional follatlon over n LUy [11] »

If uen’ (U) and T (M) is the tangent space to at xEH to the

manifold M [3], then by definition [1,2,4] the vertical tangent
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space to n'l(U) at u is

T (= (U)): =T (n" ' (n(u))) T (x'(U)). : ~ (5.2a)
Let:
T':"(n"(U>):=Tu(AU GO, GGy, (5.2p)
€er ' v . - : : i .
ST =T () TR u)) ST (sa20)

h, -1 . ‘ o,
and Tu(a (u)) be the direct complement of .Tz(n'l(U)) in
T (= '), i.e.

o (27 () =: T (a7 (U)) eTh(n 7 (W) « : (5.2d)

Lemma 5.1. For everi uea'l(U) is fu;filied
T« (U) 1 T0(7H(U)) = (0}, . : : L (5.3)

where 0 is the zero element of;Tu(n'f(U)).

~ Proof. Let uen '(U) and Q::T:(n_l(U))nTh(n—l(U)). If weR, then
weT:(n_l(U)) and according to (5.2d), we have weT (n"'(U)). From
here, taking into account (5.2c¢c) and weT (n (U)) (due to weR), it
follows wETS(n_l(U)). This fact, compared with weT® (n (U)) shows '
that weT:(n*I(U))fhf(n'l(ﬁj). But, in accordance w1th the defini-
tion; for a" dircct sﬁm, from (5 2d) {iv. follows
o “("ij))ﬂrz Y(n)={0} and so we{o}, i.e. w=0. Hence, if wen,
thén w=0, due to wh;ch n-{o}, i.e., (5.3) is va11d n i o

Proposxtlon 5. 2 The subspaces T (n (U)) 'arev horlzontal

i.e.! they deflne a connectlon in the flbre bundle (n (U) n|U U)-

S

=(E,n, B){ 1ff
-1 v, -1 h, -1 , o
T (x" ' (U) =T} (" (U))@T (n" (1)) , . (5.4)
Remark. In the case of locally trivial fibre bundles an ele-

mentary check (see (5.2) and the dimensions of the defined by it.

objects) shows the equivalence of (5:4) and the condition
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L]
T, (T (U))={q}, ‘ (5.4")
Proof. The proposition is a direct consequence of the defini-
tions (5.2), lemma 5.1 and the definition of a connection in arbi-
trary fibre bundles [2-4].m
A priori it .is clear that the validity of the condition (5.4)
depends on the used transport along paths I, which are used to con-
struct liftings cf paths appearing above, as well as -on the choice
of the family of jpaths {1A}.
In particular, if U=B, and (5.4) .is .fulfilled, then the
h h -1 N
: . . : . . - a
dim(B)~dimensional distribution up—aTu(E) Tu(n (B)), U€E defines
connection in (E,m,B) and it is almost evident that the. defined by
it parallel transport (see [3,4]) along the paths Ty A€A coincides

with the initial transport I along them.

6.CONCLUSION

In th1s worP" Qe have defined and investigated some properties
of the transports along paths in general flbre bundles As examples
of such transports we pointed out the 11near transports along paths
in vector bundles [6]) and, in partlcular as their spec1al case, the
generated by der1vatlons of tensor algebras over a manlfold trans-
ports along paths [5]. Here, we were not concern w1th the ties of
the theory developed w1th the ones of connect1ons, parallel trans-
ports, bundle morphisms etc., items which will be studied else-

i

where.
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