


1. INTRODUCTION

This work is devoted to the introduction of the concepts
“curvature” and "torsion" with respect to the linear transports
along paths considered in [1]. The former concept turns out to be
more general in a s;mse that it can be introduced in arbitrary
vector bundles, while the latter one can be def-ined only in the
tangent bundle to a differentiable manifold.

The theory of linear transports along paths will not be
repeated here, the reader being referred to [1] for further de-
tails. We shall only mention briefly hereafter the elements which
are necessary for the present part of our investigation.

By (E,nx,B) we denote a vector bundle with a base B, total
bundle space" E and projection m:E——B. A path in B is a map
v:J——B, J being a real interval (of arbitrary type).

To any C' linear transport (L-transport) along paths L in
(E,n,B) is associated a derivation D along paths which maps 7 into
a derivation D7 along 7 such that its action on any ¢! section ¢

over y(J) is (s and s+c belong to J)

(D"d)(v(s)):=D:¢:=iﬂl;o[%(L:w o(r(s+c))~a(v(8))) 1, (1.1)

where L: , 8,t€J is the L-transport along v from s to t.

t
If (el} (the Latin indices run from 1 to dim(u"(x)), X€B) is

a field of bases along 7, i.e. (el(s)} is a basis in u"(w(s)), and

. ;mﬂ;m;g L

u'=u"e1 (a summation from 1 to dim(z"'(x)), xeB over repeated on
different levels indices is assumed), then the explicit form of

(1.1) {is
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(270 (r(2) =[2G & 1t (sin)e (a(8)) o, (o) (1.2)
in which rf’(s;r) are the coefficients of L (coinciding with that

of D). The general form of Fl (s;1) is given by

r (3) ur (9'7)I F~ (s'z’) dF(s,T) [H(; t,T)lt s]' (1.3)

F(s;7) being nondegenerate ¢' matrix function of s (defining also
the general form of the matrix H(s,t;v) of L; cf, [1]). If along 7
is made the change {e’(s)}———a{e‘,(s)=A:,(s)e1(s)} of the basis
{e,}, where IA:,(s)ﬂ=:ﬂA:l(s)|-l is a nondegenerate matrix func-
tion, then in the new basis {e’,} the coefficients of L are

’ ’ ’ dA‘l(S)

,/ (8 =A] ()R] ()T (s57)+A] (8) —F—. (1.4)

rl

If B is a manifold and y:J—B is a C' path with a tangent
vector field 7, then of special interest are the L-transports along
c paths whose coefficients have the form

dim(B)
r' (siv)= ) T (2(8))7%(s) (1.5)

a=1
for some functions rhazB-——eR. In particular, if (E,n,B) is the
tangemnt bundle to B, then r‘a are coefficients of a linear connec-~
tion, the corresponding to which parallel transport coincides with
the considered L-transport along (smooth) paths.

The usage of the operator 97, associated to a given L~
transport along paths through (1.1), gives a possibility for defi-
ning the torsion and the curvature of that transport to which is
aimed this paper. The torsion is introduced in Sect. 2, where it is
prove that it vanishes only for parallel transports generated by
symmetricblinear connections. The curvature is defined in Sect. 3,

where also some its properties are investigate. Certain ¢oncluding

remarks are m,de in Sect. 4.
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2. TORSION

Let M be a differentiable manifold and (T(M),m,M) be its
tangent bundle (some times denoted simply by T(M)) [2].

Let n:JxJ’ ——M, J and J’ being real intervals, be a C? map.
With 7(.,t) and =#¢(s,:), s8,teJ we denote the paths u(-,t):sr—s
—m(s,t) and n(s,-):t—n(s,t) and with 7'(-,t) x 7”(s,:), res-
pectively, the tangent to them vector fields.

Definition 2.1. The torsion operator of an LQtransport along
paths in (T(M),n,M) is the map JT:q——9":JIxJ’ —T(M) defined for
all (s,t)eIxJ’ by

(s, £):=0] g, )01 Vy’ (s, ) eT (M), (2.1)

Nis,t)

where D is the derivation along paths corresponding in accordance
with (1.1) to the given L-transport along paths.

Let in (T(M),n,M) be fixed some local coordinate basis. For
the sake of simplicity we assume 3(J,J’) to lie in only one coordi-
nate neighborhood of the generating this basis coordinates. Then,

using (1.2), we get the components of 7%(s,t) to be »

@) = (&5 5 1) + TEaC N (e ) -

B 5 )0 + T NG s )
where rf’(...) are the coefficients of the considered L-transport.
As we supposed 3 to be a c? map, from here we find
@Ns, ) =r (siaC, 1) (7 (s, 1)) -r! (tins, N (' (st (2.2)
Proposition 2.1. If an L-transport in (T(M),n,M) is a parallelssss

transport generated by a linear connection V with local coeffi-

cients r”t‘ then in every coordinate basis



(s, 0) =M (a8, 0))=r' (n(s, 1" (5, ) (n' (s, t)*. (2.3)

Proof. From what is supposed it follows that the coefficients

of the L-transport have the representation (1.5), i.e.

' (sin)= T (1(8))7"(s) (2.4)

for every 7. Substituting this equality into (2.2), we get (2.3).m
Under the condition of the above proved proposition it natu-
rally arises the torsion tensor T of V. In fact, if we take two c?
vector fields A and B defined on oné and the same neighborhood UcM
—-— 4 -
and for every xe€U define n, by nx(so,to)—x, "x(s't°)~AnJ-.to) and

" — 3 7
nx(so,t)—an(.o.t' for a fixed (so,to)eJxJ , then, we can put

7
(T(A,B))(x):=F *(s,t ). (2.5a)

So, from (2.3), we obtain

LTAB) Gl =l-rt (x) + ' () 1A (0B (), (2.5b)

hence T(A.B)=VAB—VBA—[A.B]. [A,B] being the commutator of A and B
[2], is the usual torsion tensor (cf. [2]).

f;é next propesition shows that the torsion operator, as in a
case of parallel transports generated by linear connections, cha-
racterizes the deviation in the general case of arbitrary L-
transports in the tangent bundle to a given manifold from the para-
llel transports generated by symmetric affine connections.

Proposition 2.2, The torsion operator of a given L-transport

in (T(M),n,M) is zero in a neighborhood of some point xeM, i.e.

g7(s,t)=0 for every n:JxJ’ —iM, n(so,t°)=x, (2.6)

if and only if that transport is a parallel transport generated by

symmetric linear connection in that neighborhood.

Proof. The sufficiency is almost evident: if the given L-
transport is a parallel transport generated by a symmetric linear

connection, then T=0 (by definition of such connection) and it is
valid (2.4) as a consequence of which from (2.5a) follows (2.6).

Conversely, let (2.6) be true. Then from (2.2), we get
(sinC, ) (" (s, 00 =r! (tias, ) (27 (s, ))!

from which follows

o (mp=rt (rin7i(r)
3 ’ I ! o.

where rf’l(r;v) are some functions, 7=n(-,t),n(s,:), respectively
r=s,t and 7 is the tangent to 7 vector field.

Therefore, we see that rf)k(s;n(-,t))=rfk1(t;n(s,-)). So, as a
consequence of the arbitrariness of 75, the common value of the
right and left hand sides of this equality can depend only on the
point "n(s,t). Denoting this compuon value by

rf”(n(s,t)) we obtain rfn(n(s,t))=rf”(n(s,t)) and

r' (rip=r' ((r))7'(r), red, y=n(-,t),7(s, ), resp. r=s,t.

As 7 is arbitrary, from here we find
A

r' (rin=r' N, ! =r (2.7)

.kl L1k

for every path 7:J—-M and reJ. Due to (2.5b) and proposition 5.1
of [1] (see also the comments after its proof) this means that r}kl
are coefficients of a symmetric linear connection the genérated by
which parallel transport coincides with the initial L-transport

(see also proposition 5.4 from [3] and the note after its proof).m



3. CURVATURE

The curvature operator, which is referred to an arbitrary vec-
tor bundle (E,x,B) is defined analogously to the torsion operator.

Let 7:JxJ’ —B.

Definition 3.14. The curvature operator of an L-transport along
paths in the vector bundle (E,n,b) is a map R:n—R",
/" (s,t) —R"(s,t) where R"(s,t) maps C° sections of (E,n,b) into

sections of (E,n,b) and it is defined for every (s,t)e€JxJ’ by

R"(s,t)::!)m '.'.)oD'n(l, ) D-'n(l. ')oD'n( ','.). (3.1)

If A is a C* section of (E,n,B) and {e} is a field of bases
in 2(J,J’), i.e. {e‘(s,t)} is a basis in = '(n(s,t)), then, by

means of (1.2), we get

[(R(s,t)) (M) 1(n(s,£))=(R"(s, 1)) A'(n(s,t))e (5, t), (3.2)

where

®(s, 1))}, = G50 (tints, - 0)) - Fe(r! (min( 00y ) +
+ o (sinC-, ) (tin(s, )= (tin(s, - (s3n(-, 1)) (3.3)

are the components of R with respect to {el} at the point (=»,s,t).

Proposition 3.1, If B is a manifold, n:JxJ’ —B is of class

c? and the coefficients of some L-transport have the form (1.5),

then the components of its curvature operator in any basis are

®@(s,0)", = Rals,£))" 50" (5, ) (0" (5, £))F, (3.4)

where

8

\o_r. 8 St yrt
®R(n(s,t))) 0= (r.1¢)+axa(r.JB) r

Xk 1
8xB .jar.kB+r.JBr.k¢]|n(-,t)' . (3.5)
3

Proof. This proof reduces to a simple substitution of (1.5)

into (3.3).8
6

If an L-transport is a parallel transport in (T(M),n,M) gene-
rated by a linear connection V with coefficients rhk, then, as a
consequence of the last proposition, naturally arises the curvature
tensor R of V [2]. Actually, let us define A, B and 7 as it was

done before (2.5a) and put

n
(R(A,B)C)(x):=[(R *(s_,t ;;Cl(x) (3.6)

for arbitrary vector field C. From here, (3.4) and (3.5), we find

R(A,B)=VAV'—VBVA-V and that the components of R at xeM are

[4,B]

exactly (R(x))fjk as they are given by (3.5) (cf. e.g. [2]).

1
Proposition 3.2. Let in some basis {e‘,} the coefficients of
an L-transport in a vector bundle (E,n.B)‘ be zeros along every

path, i.e.

7

rt j,(s;1)=0 for every 7:J —B. (3.7)

Then:
1) If B is a manifold and 7 is a c! path, then in every basis
{e‘} is valid (1.5), i.e.

! (sim)=r! | (1(s))3%(s), 7:3—B, (3.8)

for some functions rha:B-——an. Besides, in the basis {el,} is ful-

filled the equality

I

I g(%)=0, xeB; ' O (3.9)

2) The curvature of the considered L-transport is zero, i.e.

®*M(s,t)=0 for every n:JxJ’ —B, ' (3.10)

which, if B is a manifold, is equivalent to

R(x))! | g=0, xeB. (3.10%)



Proof. Let us choose a basis {el} in E such that el(x)é‘

’ ’ 1‘_
=A] (x)e ,(x), xeB, det A, #0, and 1Al 1:=4A) |77
From (3.7) and (1.4) follows 0=rfj(s;1)A:,(1(s))+g§A:,(1(s))

or
/ 3A 1 (x) .
1 vooy=— [Dpt J I S ) .
P (sim=-(§g) e A (ren= (L] (%), qeni™® (31D

where {x%*} are local coordinates in a neighborhood of 7(s). Putting
1
aA , (%)

1 G | I
F.’u(x)- P A’ (x), (3.12)

we seé from here that in any basis {el} is true (3.8).

1

’ lI
, ()=, we find

In particular, if we let e,=e /., i.e. A
rfj’,u(w(s))i“(s)=rf:’,a(s;7)=0 for every path 7, from which imme-
diately follows (3.9).
| At the end, the equality (3.10) is a corollary from (3.7) and
{3.3), written in {el,}, and (3.10’) is valid because of proposi-
tion 3.1, written in the basis {el,}, in which is true the qlready
proved equality (3.9).m

Proposition 3.3. If the curvature operator of an L-transport

in a vector bundle (E,n,B) is zero, i.e.

-

RM(s,t)=0 for every n:JxJ’ —B, s,ted, (3.13)

then in E there e*ist‘ fields of bases {el,} in which the coeffi-
cients of the L-transport are zeros along every path,‘i.e. (3.7) is
valid. Besides, all of these field of bases are obtained from one
another by linear transformations with constant coefficignts.

Proof. Let us choose a field of bases {e‘} in E. We have to
prove the existence of a transformation {e‘(x)}-—»{el,(x)=A:/(X)x
xe, (x), det“A:,(x)ﬂ#O,m}, such that in the basis {e .} to be ful-
filled (3.7).

If we let ||A:l(x)||:=||A:,(x)[|", then, due to (1.4), it follows

that (3.7) is equivalent to

‘that w(s)i=n(y)| _, and af (s,t):=n(y)|
) 1

g;AiL((v(S))=A:I(v(s))rf‘(s;v) for every 7:J —B. (3.14)

’
Now we shall prove the existence of A: (x) satlisfying this
equality which will mean also the existence of the pointed trans-

formation. i
Let V:i=Jx---%xJ (n=dim(B) times) and #:V—B. For every
y=(¥,,...,Y )€V we define maps n:’: J——B and nrJ:JxJ' —B, such

yymy = (for i=j we must
have s=t here). Evidently ni does not depend on y, and nr} is inde-
pendent of Y, and yj.

’,
Now we shall prove the existence of A: (x) satisfying
3 1’ _at’ 1 y
=2-A} (a(y))=A} (a(y)T (¥ i), (3.15)
ay '
which is obtained from (3.14) for s=y, and r=n,, as a consequence

of which nj(y’)=n(y)-

In fact, a simple calculation shows that

a® 8* v 3 (a1’ ,

- A = — cany -

(ay,ayk ay.ay,] , ((y)) ay,[}\l (n(y)){,(y,.nk)]
y

2 (x' 1 o¥y) = at’ "k -

ay"[A' (n(y)){,(y,.n,)] = AL (y) @ My v N0

o+
from which, due to (3.13), follows the expression between the first
and the second equality signs to be equal to zero. But these are
exactly the integrability conditions for (3.15). Hence, the system
(3.15) has a solution with respect to A:'. (All such solutions are
obtained from one. of them by a left multiplication with a constant
matrix, but this is insignificant here.)

It is 1mpoftant to be noted that by its construction this so-
lution depends only on the point »(y) but not on the map 7 itself.
Consequently, 1if we take a path 7:J——B and put y’=s. n]=1 and
2(y)=7(s) in (3.15) (the remaining arbitrariness in % is insigni-
ficant), we get (3.14). So, in the basis {él,} defined by



e‘(x)=A:,(x)e‘,(x) is valid (3.7), i.e. in {e,,} the coefficlents
of the considered L-transport are zeros.

At the end, if in two arbitrary Dbases {el} and {el,=A:,e’}
holds ffj(s;1)=rfjj,(s;1)=0 for every path 7, then from (1.4)
follows dA::(1(s))/ds=0, so we get ﬂAil(x)I=const.l '

Theorem 3.1. If in a vector bundle is given an L—trahsport
along paths, then a necessary and sufficient condition for the
existence of a field of bases in the bundle, in which the coeffi-
cients of the L-transport are zeros along any path, or, equiva-
lently, in which the transport’'s matrix is unit along any path, is
the curvature operator of this L-transport to be zero.

Proof. This result is a direct éonsequence of propositions 3.3
and 3.2, as well as proposition 5.2 from [1].m

Proposition 3.4. If an L-transport in the tangent bundle to a
manifold has a zero curvature, then a necessary and sufficient con-
dition for the existence of a ﬁolonomic basis in which the coeffi-
cients of the L-transport are equal to zero is it to be torsion
free, or, equivalently, when this L-transport is a parallel tran-
sport -generated by a aymmetric linear connection.

Proof. First of all, the second part of the proposition is a
corollary from proposition 2.2.

If the conditions of this proposition areifulfilled, then by
proposition 3.2 in the pointed holonomic basis are valid (3.7)-
(3.9), the last of which, together with (2.3), gives 778, t)=0.

On the opposite, if 9%sg,t)=0, then from the conditions of the
proposition, (2.5a), (3.6), theorem 3.1 and proposition 3.2 follows
that the considered L-transport is a parallel transport generated
by a linear connection with vanishing curvature and torsion. Hence
the coefficlents rf’k of this connection and rfj of the L-transport

1 'k
are connected through the relation ’f,(s‘7)=r.,.(7(”’7 (s), but,

10

as is known (see e.g. [4)), for the firs quantities there exists a
holonomic basis in which they vanish. In fact, if in {a/ax'} the
connection’s coefficients are rhk. then there exists HA;llzﬂA;,L
such that rf’k=A;,aAj'/axk, as the integrability conditions for
these equations with respect to A;l are exactly Rf”l=0; The basis
ej,:A},a/axl is holonomic because the conditions: for this are Tfjk=

’
=0. And at the end, as a consequence of (1,5), we have Ffljlk,=0.l

4. CONCLUSION

In this work we have introduced the curvature and torsion of a
linear transport along paths in, respectively, a vector bundle and
the tangent bundle to a manifold. This was done by means of the
assigned to the transport derivation along paths. Evidently, the
same scheme works also with respect to any derivation along paths
(we did not used explicitly the transports anywhere). This fact is
in a natural agreement with the proved in [1] equivalence between
L-transports along paths and derivations along paths. On the other
hand, as the derivation along paths is a local concept such.mu;t
be, and in fact are, the curvature and torsion of a linear trans-
port along paths. From this point of view arises the problem for
the global analogs of these concepts, which will ﬁe considered
elsewhere.

At the end, we want to note that the investigated in [5]
“flat" linear transports in tensor bundles are "flat" in the sense
that their curvature operators, as they are defined in the present

spaper, are zero. This follows from the simple fact that the deriva-
tions along paths corresponding to these transports are covariant

differentiations along paths generated by linear connections (see

[5], Ssect. 3 and Sect. 3 of the present work).

11
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