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l,INTRODUCTION 

.This -work is devoted to som~ simple _applications of the 

c:onsidered in. [ 1] .linear transports along: path_s in vector 

bundles .. It is organized as follows. Sect ... 2 contains a. co­

llection of the main definitions and results of [ 1]. which 

will be used. here, In Sect. 3 the general theory of linear 

transports. along paths is specialized in the __ case .of tensor. 

bundles over a given differentiable manifold, In particular, 

the connections with the transports along paths ·gener~ted by 

derivations of tensor algebras are investigated, The problem 

for holonomici ty of special , bases in which ·,tiiE/ matrix of a 

.linear transport along paths in a .tensor.bundle is unit is 

considered in Sect. 4, In Sect. 5 the concept of linearly 

transported along.paths sections of a vector bundle is intro­

duced. Some properties of . these section, as well as their 

connections with derivations along paths, are investigated. ... . 

In Sect~ 6 the firs steps of one possible ge~eralization of 

the ·,theory ·of geodesics paths (curves) is proposed'. Here we 

consider paths in a manifold tlie tangent ivector· to which 

after a linear transport·a1ong thems~lves. remain~ ~u~h. Sect. 

7 contains remarks concerning · special . bases· 'for parallel 

transports generated by linear connections.· 

Part of the results of this work were found in [2] in 

the special case of the tangent bundle to'a given differen­

tiable manifold. 
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2. SUMMARY OF SOME RESULTS 

In this section • we summarize certain needed for this 

paper definitions and results of [1]. 

A linear transport CL-transport) L' along the path 
s-t 

·7:J~B,'J being a real interval, from; to t, s,teJ in the· 

vector bundie (E,n,B)with a base B, total bundle space E and 

projection n:E--tB, ·has the properties: 

L' :n-1 (,(s)) -~-m- 1 (,(t)), 
, s-t , 

(2.1) 

L' O.u+µv)=AS' u+µS' v; A;µEIR, u,ven-·1 (,(s)) :,(2.2) 
s ---+t s --+t s ---+t 

L' . oL'. • =L' •., r,s,teJ, (2.3) 
t ---+r s ---+t s · --+r ' · 

• . =id 
Ls~• 7l-1(7(sl l 

(2.4) 

·· where idx means the identity map of .the" set· x.·. Its general, 

form is· 

L' . =(F"f 1 o(F'), s,teJ. 
s --+t t s 

(2.5) 

where ,F':n-' 1 (,{s)) ~V, V being a dim(n- 1 (x))-dimensional, 
. s· .. ·- -

. xeB, vector space, , 1;1re. line1;1r is_omorphisms . 

If ,{e ,· i=1, ... , dim( n- 1 
( x)), xeB} is a field of bases 

.·, I·. . 

,-_(or simply a basis) along ,, i.e. {e
1
(s)} is_ a basis in 

n-.,1 (,{s)), for seJ, thE;n the.matrix H:,(,t,s;,)~H(t,s;,):= 

:=llH1 ·ct,s;,)ll, s,teJ of_ the transport is defined by 
• J " . ' ' , ' ' ' ' 

L' e (s)=HJ (t,s;,)e (t), s,teJ, 
s -t I .I. J 

(2.6) 

where here and from here on in our text the Latin indices run 

from 1 to dim(n- 1 (x)), xe~ a~d the usual summation ;~le from 

1 to dim(n- 1 (x)) over _repeated on different leveis indic~s is 

assumed. 
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The matrix function H satisfies·the equations· 
., t . 

H(:,t;,)H(t,s;,)=H(r,s;,), r,s,teJ, (2.7) 

H(s,s;,)=D:=diag(t, ... ,1)=:llo~ll, seJ (2.8) 

and its general form is 

H(t,s;7)=(F(t;7))- 1 F(s;7). s,teJ, (2.9) 

where_F(s;,) is a nonde~enerate matrix function. 

Let L, be a smooth (of class C1
) linear transport along 

pat~s and creSec
1 (€1 7<Jl), where €1,<J> is the restriction of 

the vector bundle l;=(E,n,B) on the set ,(J) and ~y Seek(/;) 

( resp. Sec( I;)) is denoted the set of Ck ( resp. all) sec_tion 

o_ver I;. The gene.rated by L derivation along ,: J --tB is a map 

v 7:sec
1
frl,,n> ~Sec(!:l,(J)) defined by (s:s+ceJ) 

(V'cr){,(s)): =V'cr: =lim_ [!-(L' . · cr(,(s+c) )-cr(,(s) ))] , (2.10) 
. .. ; s C-O C s+C-• · . 

and has the properties: 

V'(Acr+µ.:)=AV'cr+µV'.:, A, µEIR; er, .:esec1 (€1 ,<J>), (2: 11) 

V'(f •cr)= ddf(s) -cr(,(s) )+f(s) • (V'cr), (2.12) 
s s . s 

v'~L' =0 s teJ 
t s ---+t ' ' 

(2.13) 

for any C1 function f: J --t!R. 

,The coefficients r 1 (s;,) of L along, in {e} coincide 
• J I 

with those of v•.and are given, e.g., by· 

v•e ;,;r1 (s· ,)e {s). 
s J , • J ' I 

(2.14) 

The explicit connection of r 1 (s; ,) wfth the matrix H of L is 
' • J 
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• 
r (s)=~r1 (s;7)~ H(s,t;·O, -- =F-1(.) dF(s;7) 

7 .J at t=s s, 7 ds (2.15) 

If cr=cr1e esec1 (~1 1 ,>. then explicitly (2.10) reads - I 7 J 

(V7cr)(7(s)} = [dO'I ~;( s)) _ + ,r'. / s; 7)0'J ( 7(s))] e 1 ( s), (2, 16) 

3. LINEAR TRANSPORTS ALONG PATHS IN TENSOR BUNDLES 

Now we shall con~ider linear transports along paths in 

the special case, of tensor bundles over a given _differen­

tiable manifold. In particular we shall investigate· the ties 
. ' . . 

of these tra~sports with the ones generated by derivations of 

tensor algebras.(the S:_transpor:ts) . 

Let M be a di.fferentiable manifold, TP ·1 (M), p, qe!Nu{O} 
,q X' 

be the tensor space of type (:) eve; M at xeM, and 

(Tp (M).rr,M), Tp (M):= II Tp , . be. the tensor ~~ndle' of' type 
. q, ,q x~M .q X 

(:) over M with a projection 

-1 p I rr (x):=T.q x(M). XEM (cf. [3]). 

rr: TP ( M) ~M 
• q 

such that 

Till the end of this" section we shall deal with L-

transports PL7 along paths 7:J--4M acting, respectively, 
q - p 

in 

the tensor' bundles (TP (M).rr,M) of arbitrary type (q). 
.q 

i.e. 

we.will investigate maps 

PL:~i--+PL7: (s,t) ~P-L7 :TP I - (M)~TP I - (M) -q q_ . q s __ t _.q 7_(s) .q 71\1 (3. 1) 

satisfying (2. 2)-(2. 4)., 

Practically is far more convenient ,instead of_the·trans­

ports' PL7, p,q~O along 7 to be used the equivalent to them 
- - q 

map L7 , the (L- )transport along 7 in the tenso'r algebra over 

M, defined by L 7 : ( s, t) .i--+L 7 , s, teJ, ,where · - s-t 
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i.7 : U (TP I (M>)- · U .- (TP j ·- (M)), ·,s,-tei s-t p,q=O .q 7(s) p,q=O ,.q 7(t) - _ , (3.2} 

with 

L7 T :=PL7 T for -T ETP ·, (M). s-t O q s-t- 0 0 .q 7(s) 
(3.3) 

Before formulating certain results concerning the so.de­

fined L:-transports L7 along 7 we will present the concrete 

form of some formulae from the preceding section in the case 

of the maps (3.2). 
< .,. 

According to the equality (2. 6) the matrix elements 

H" · (t, s; ;) ;ftr ar.e unique!; de;ine~ ~y ~he expansio~ 
J ... J k , , • k ; J . , , J · . ..- -_, ,: 1 • , , 1 - - - ---

L 7 -- (E 1 ____ ?I•-: )=H 1 , P_ 1 __ ~(t,s;7)E 1-· qi - , 
s-t I .. ,I 7(s) 1-- ... 1 ;I ... I , ·· , k- ••• k 7(t) 

1 p 1 q 1 p _1 p _ 

(3.4) 

and are components of a two-point -- tensor from Tp -, (M)® 
• q 7< ti 

®Tq - ,- < 
1 

( M) . 
• p 7 s 

Here 
1 ... I 1 , I 

E 1 q:=E 1®• • •E-q®E ®· · •®E ® being 
k ... k k k 

1 p 1 p 

the tensor product· sign, is a basis• -(field· of. bases) - in 

TP (M) generated by the bases· {E1} and its_: dual '.{E } .in, res-
• q J • 

pectively, T1 (M) and T0 (M): 
• 0 • 1 

J ••• J I ••. I - ; - :; -

If- T=T 1 qE 1 Pl e-rP-1 - (M), ---- I .. ,I J ... J 7(s) ,q 7(s) " 
1 p 1 q 

then; due to 

(2.6) and the·linearity of-L7 , we have 
s-t 

k .. ,k;J ... J 1 .. ,1 1 .. ,1 
L7 T=H -1 P 1 q(t,s;7)T 1 

. P(E 1
- . qi ), 

s-t 1
1 
... lq;t

1 
... tp J

1 
... Jq k

1 
.. ,kp 7(t) 

(3.5} 

Because of - (2. 7) and (2. a)° the_ following equalities ,are 

valid: 

k .. ,k ;J .-.. J , _ I .. ·;1 ;n- ,,;n -_ ,' 

H 1 : P 1 
- q(r,t;7)•H 1 P 1

- q(t,s;7),,;,' 
1

1 
••• 1q;1

1 
•• ,lp J

1 
••• Jq;m

1 
••• mp 
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• k 1 ~ .. kp;n 1 .~.nq • .· 
=H . (r,s,7), r,s,teJ, 

1
1 
••• l~;m

1 
••• mp 

(3:6) 

p q 

k1•••kp;J1·••Jq (TI. ka.) (TI Jb) 
H1 ••• l ;I ••• i (s,s;7)= '\ o1 , 

1 q 1 p , a=l a b=l b .. 
(3.7) 

which, in our case, are equivalent to (2.3) and (2.4) respec­

tively. 

From (3.6} and ·(3.7) it can easily be obtained the gene­

ral form of the matrix elements H"'(, .. }. Its explicit form 

is described by, the component form of (2.9) . in which the 

indexes must be· replaced with the corresponding multi-indexes 
._,' 

(e.g. i1--+(i1,, .. ,fP) etc,). 
': •"\• -, '.· . . ; .. . . 

Definition 3.1;' The L-transport L·iri the· tensor :,algebra 

over M will be called consistent ( resp. along 7) with the 

operation tensor mul tf plication if 

L7 (A®B)=(L7 'A}®(L7 B), s,teJ 
s-t ·· . s-t s~t 

(3.8) 

holds for arbitrary .tensors A and B .at the point 7(s) and any 

(resp. the given) path 7. 

It is easily seen (3.8) to be,equivalent to 
p +p . p p 

1 2L7 =( 1L7 )@( 2L7 ), s, teJ (3. 9) 
q1 +q2 s-t q1 s-t q2 s-t · . 

for arbitrary nonnegati v.e integer_s p 1, p 2, q 1 and q 2. · , 

- With this we end the necessary for the following preli­

minary material. : 

Proposition 3.1. The equality (3.8} is fulfilled- iff _the 

defined by · { 3. 4) matrix elements of L 7 have the represen­

tation 

p q 

Hk1 ... kp;J1•••Jq(t,s;7)=( 
1 ... 1;1 ... 1 · 

1 q · .1 P 
TI k • • ) ( TI·· Jb . ) H_\ (t,s;7) ·. · H;· __ (t,s;7) 
a=l a - b=:=t b 

(3.10) 
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where ilt.(t,s;,) and H"J(t,s;,) ,define, according to (3.4), • J I. . . 

the transports along 7 of the vectors an·d .covectors respec­

tively . 

Proof. (3.10) follows from (3. 4), (p+q:-1) times applica-

tion of (3. 8) to the tensor product A
1
®· • •®AP@B

1
®• • •®Bq for 

the 
. * ' 

and Bl, ... ,BqeT,Cs)(M) and arbitrary A , ... ,A ET 
I 

l (M) 
1 p o s 

arbitrariness of these vectors and covectors. On the oppo-

site, if (3.10}. is valid, then .an elementary check with the· 

help of (3.4)-shows that.(3.8} is true. ■ , 

Corollary 3.1 •. If the, L-transport L' along O in the.ten-,-: 

sor algebra over M "is consistent .. with the, ten~or. produc_t, .. 

then .it. is, uniquely defined if. its action is gi_ven on vectors 

and covectors. 

Proof. This .result is .a direct conseque~ce_from proposi­

tion 3.1 and equality (3.5}. ■ 

Corollary 3.2. If the L-transport,L0 'along • in the 

tensor algebra over Mis consistent withthe·tensorproduct,,., 

then 

L7 (A)=A, s,teJ, AE~ . . s-t (3.11) 

Proof. ·Putting A=B=le~ in (3,8), we find. L:~t(1)=1 

which, due :to.,(2.·2), · is equivalent to .·(3.11). (The· same 

result, follows also .from, (3. 5). and. (3.10) f.or p=,q=Oe~. ) ■ 

,,c.Let· us:•.note that in·the general.case, due. to (2.2), 

instead of ,(3.11),. we:have 

L7 (A)=h(t,s;7)•A, s,teJ, AE~, s-t (3.12) 

where (see (2.2)) the 2-:-point scalar h(t,s;i) is defined by 

h(t,s;i):=L7 · · (1), s;teJ; . s-t (3.13) 

According to (3.6} and (3 .. 7) it has the properties 
' ' ' • , •t' J ,·:. , ~ ', 
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• h(r, t; 7)h(t, s;-r)=h(r, s; 7), r, s, teJ, (3.14) 

h(s, s; 7)=1, SEJ (3.15) 

and because of (2:9) its general 'form is 

h(t,s;7)=f(s;7)/f(t;7), s,teJ, (3.16) 

where f is nonvanishing scalar function of sand 7. 

Evidently, tbe transport ~L7 is consistent with the 

tensor product iff it is, fulfilled ,(3.11), which is equiva­

lent to h(t,s;7)~1, s,teJ, or all the same f(s;7)=f,~7); i.e. 
0 

when f(s;7) does not depend on seJ. 

· An essential role play the L-transports along paths in 

the tensor algebra over M which commute with the contraction 

operator C, i; e; transports L7 along 7 for whfch 

L7 oC-CoL7~ =O, s,teJ, 
S ----¼t S--"7t 

(3.17) 

or, written in another way, 

(p- 1,L7~ )oC-Co(PL7~ ):0, p,q:2e:1, s,teJ. 
q-1 s~t q s~t 

(3.17') 

Proposition 3.2. A given L-transport along 7 in.the ten­

sor algebra·over M satisfies simultaneously (3.8) and (3_.17) 

if and only if its. matrix elements are given ·by (3.10) ,in 

which H1.(t,s;7) and H"J(t,~;7), defining the L-transports 
• J ' I. 

along •_7 of the vectors and covect_ors respectively, are ele-

ments of mutually·. invers~ matrices, i: e; they are connected 

by the relationship 

Hk"(t,s;7)H" 1(t,s;7)=01
•• 

, ,• I , · _ , k. , , .' , :c , • J 
- (3.18} 

, .. Proof. If (3.10) ·and (3.18} are true, then with"the help 
• • . . • ' , , . !. • ~ : -:. '~ • 

of (3.5),. by a direct calculation we confirm ourselves that 

(3. 8) and (3.11r a.re identi~a11y' sati~fied; On ;the oppcisit.J;, 
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if (3. 8) and (3.17) are true, then by proposition ~-1 is 

valid (3.10), 
J ' , 

(E l7(s;)@(El 17(s)) 

(3.18). ■ 

and 

and 

applying · (3.17)'.: to the 

using (3.10) for , ,p=q=1, 

tensor 

we get 

Corollary 3.3 •. An L-transport along. paths in the tensor 

algebr~ ov~r M Which i~' consistent with the tensoi- multipli­

cation and commutes with the c~ntra~tion, op~rator is' uniquely 

defined by fixing its action on. v.ectors or, , equiva,lent~y, on 

covectors. 

Proof. This result follows fr:om (3.5) and prop~sitions' 

3.1 and 3.2, i.e. from (3.5), (3.10) ·and '(3;18).'■ 

Proposition 3. 3~'• If a given L-transport' L7 along 7: J~M 

in the tensor algebra over M satisfies '(3.8) and (3;17)'and V 

is the covariant derivativ:e define by an affine connection 

with coefficients r 1 (x) at xeM, then .Jk 

v:=DY,7(s)' seJ, (3.19) 

where v 7 is generated by L7 through (2.10), Vis defined on a s . 

neighbol'hood of 7( J) vector field with the property 

V < ,=r(s), sEJ and D .1 < l is the derivative along 7 at 7(s) 7s , Y7s 

defined by 

,,' D~ I ;Csl,=Vy I-re ~l +~Y l-r<sl; ( 3 .' 20) 

,where 

,, ' . , I . , . ,, , . , J , , ,. ... , 

Hy l-r ( • ) : = [ Vy I • ( B) ( H. ~ ( t. s ; 7) EI I 7 ( ~) ®E I 7 ( s) ) ] I t = ~ • '(3.21)" 

Remark. The restriction ,Vy 1-r<s> means ,t~at VY ,acts only 

on the, defined at the point 7(s), objec:ts, ~n~ .~or1sequen,t,ly 

(see;[3] and (3.7)) 

',,9 



' .'. . (aH1·ct,s;7) 
l k _..;..• .._J :----

( Hy I 71 s i ) : /V 7( s) c37k ( s) ~~k(7(s))H'.;(t,s;7)) L=s= 

aH\Ct,s;7)1 - r' (7(s))7k(s}. 
• c3S t=s • J k 

(3.21') 

Proof .. If T is defined on a neighborhood of 7(J) C
1 

ten­

sor field of type _(:), then due to (2.15}. and. (2.16), we have 

(V'T)11···1P= ~T11 ... 1P(7(s)) + 
s J1 ... Jq ds J1 ... Jq 

a 
l ••• l;k ••• k . 1 ••• 1 

+ {-Hi P. 1· P(t,s;-r})I T 1 - q(7(s)). 
OS J ••• J . ; l •• , l t=s k ••• k 1 q 1 q ,. 1 P. 

(3.22) 

Substituting hei:e. (3.10) (see, proposition 3.1), wi_th the help 

of (3.18) (see pro:i:>osition 3.2). (3,21') and the equality 

(see e.g'. [3]) 

d- 11 ... l 
dsTJ

1 
... JP(7(s)} 

q 

11 ... lp 

= [(VVT)l7(s)]J1•··Jq 

p l l , , • l kl . , . l -- I r:~ki(7(s}}T,1_;_,a~1 a+1 P(7(s))7l(s) +. 
a=1 . . · 1 q 

q 
. l ••• l I 

+ l r\ 
1 
(7(s))T,1 ... / kJ ... J (7(s))7 (s). 

b 1 b-1 b+l q 
b=1 

after an easy transformations, we get V7T=(V + 
s V 

+Hv)l
71

•
1
(T(7(s))), From here, due to the arbitrariness of T 

follows (3.19).• 

It is clear that taken by itself a consistent with the 

tensor product and commuting with the contractions L-

transport.along paths in the tensor algebra over-M·does not 

defirie globally some derivation, but on a given path 7 it 

uniquely defines the derivation (3.20), the action of which, 

due to (3.19), does not depend on the used in its definition 

IO 

\_l_; 

'(1 

,, 

addi tiona·l covariant d·ei--i ~ati ve V .. Thi.s fact allows. us if it 

is given an-L-transport along paths with the above.properties 
.. . . '1 .: . - : '. 

and the -~anifold Mis covered with a C congruence of paths 

U ( ( )) dlmeH)-1} {7,1.: 7,1.:J,1.---,M• :ii. 7,1. J:il. =M, :il.EAclR to construct a 

giobal S-dedvati~n Dv of the tensor algebra over M in the l · 

following way. If XEM, th~n th~re 'exist unique µ(x)EA and 

s 0 EJ µ(_x>. µ(xl, such that ~=7µlxl(s;,x>). We define the 

field V by the eq~ality Vx_:=-rµlxl(s;,x/• xEM arid_put 

' D I : =V 1 • +Ho I ,. 
Vx Vx Vx 

where 

H~l~:=[Vvl7 -~>. )(H'./t,s;(x);7µ(x))E,r7µex)et>® 
µex) µex) . 

: ®E' ·1 .. ·. ·, )] I . -
. 7µex)cs;(x)) t=s;(x) 

vector 

(3.20') 

. ; ·' 
(3. 21") . 

The so constructedderivation·depends; of course, on the ini-:­

tial .,L-transport ,alorig paths as well· as -on the used in its· 

definition family:of paths {7,1.}. 

Proposition 3,4,,-A given L-transport,along 7-in the-ten­

sor'algebra over M satisfies (3.8) and (3.17) ,iff t:ne.gene­

rated by. it:, map _v7 , • whose action is given. by·. (2.10),.· or. 

(2.16), is _a derivation of the tensor algebra over 7(J),_ i.e. 

when v7 is linear and 
s 

V7 (A@B)=(V7A)®B+A®(V7B), 
. s s s 

(3.23) 

V7 oC-CoV7=0, (3.24) 
,S s 

for.. arbitrary C1 tensor.fields A and,B over, 7(J) and contrac,-_ 

tion op_erator C. 

ll 



Proof. The linearity of v: is a consequence from (2.11) 

or from the definitions of a derivation of the tensor algebra 

[3) and does not at all depend on the validity of (3.8) and 

(3.17). 

If (3. 8) and (3.17) are true, then with the help of 

(2.10) we see that- from them follow (3.23) and (3.24) respec­

tively. The same result is a consequence ;from the fact that 

in this case the considered L-transport in the tensor algebra 

over M is· an s-transport (see [4], definitions 2.1) for 

which, by proposition 3.5 from [4], the operator V7 is a de­

rivation over 7(J). 

On the other hand, let v7 be a derivation of the men-

tioned tensor algebra. Then, by [4], proposition 3.5, there 

ex,i.sts a unique s-trans'port generating· v7 through (2.10). 

Therefore due to (2.14), the coefficients_ of this S-transport 

and of the considered L-transport coincide, which by [ 1), 

proposition 4.7 means these two transports along paths to co­

incide. But by definition (see [1], definition 2.1) any s­

transport satisfies (3.8) and (3.17), consequently the inves­

tigated L-transport also satisfies them. ■ 

Proposition 3. 5. Every s-transport is an L-transport 

along·(smooth) paths in the tensor algebra over.M. 

Proof. This proposition follows from the comparison of 

definitions of s-transports (cf. [4], definitio'n 2.1), L­

transports (cf. [1]; definition 2.1) along paths, and L-. 

transports-along paths in the tensor algebra over a manifold 

(see (3.2) and (3.3)). ■ 

In the general case the "inverse proposition" to propo­

sition 3.5 is not.true. Because of this we shall consider.the 
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question.when one L-transport along paths in.the tensor alge­

bra over Mis an s-transportalorig paths. 

From the proof of proposition 3.4. one imme~!ately 

derives the following two corollaries. 

Corollary 3. 4. If the gen~rated by_ (2.10) fr.om a given 

L-transport along paths in the tensor algebra over M operator 

v7 is a derivation of the tensor algebra over 7(J), then this 

L-transport along 7 coincides with the s.,.transport along ,7 

which is generated from the defined by (3;20) derivation 

along 7. 

Corollary 3.5 •. A given L-transport along 7 in _the tensor 

algebra o.ver M is an s-transport along _7 if and only if it 

satisfies the conditions (3._8) and (3.17) or, equivalently, 

iff .the generated by it operator. v7 is a derivation _of the 

tensor algebra over 7(J). 

Corollary 3. 6. A given L-transport · along paths in the 

tensor algebra over M .is (globally) an S-:-:transport along 

paths iff · the generated by it ttif'ough. (2. 10_) operator v7 is 

in fact a derivation of the tensor algebra along any path 7. 

Proof. This statement is a direct consequence . from 

corollary 3.5 and (2.-10). ■ 

4. SPECIAL BASES FOR LINEAR TRANSPORTS ALONG PATHS 

IN TENSOR BUNDLES 

For linear transports along paths in tensor. bundles,. of_. 

course, is valid proposition 3;1 of [1], according· to which 

along any path there is a class of bases in which tlie-trans-:­

port•s matrix is tinit. But in the tensor,bundles (Tf (M).rr,M) 
,q 

with p+q2:1 there exists a privilege set of. bases, the one ho-

13 



-~ , . ·. .. , . ,' . . . - ' . , . . ' . ' ' . 
lonomic bases associated with different local coordinates. In 

this connection arises the 'question, which is a subject of 

th~ pres~nt se~tion; whe~ the des~ribed in the mentioned pro­

position bases are holonomic. 

The next result shows that the L-transports along paths 

in the tangent and·· cotangent bundles _over a manifold are 

Euclidean not only in a sense that they are such along any 

fixed path 7 (se~ [1], definitio;; 3.1 ~nd proposition 3.2), . . 
but also in a sense that along eyery part of 7 without self-

intersections they are generated, through the described in 

[1], definition 2 .. 4 way, 

from local coordinates. 

from local holonomic bases, i.e. 

Pr6po~itio~ 4.1. If p+q=1, then i~ ·(Tp· (M),rr,M) · for any 
• q 

L-transport L7 along a path 7:J~M-
0

without ·seiii~t~r-se~-

tions there exists local coordinates in a neighborhood of (a 

part of) 7(J) such that the ~atrix of L7 is unit in the 
- . 

(field oo··holonomic bases gene.rated 'by' .them in- (Tp (M). ir, M). 
. . . . • q 

p~q=1 whim they are re;tricted '~nthe same neighborhood of. 

7( J). 

Proof. 'By proposition 3.1 of [1] in the tangent (resp. 

cotangent) bundle of M there exists a ·.~et of ~esc:ri.bed · in it 

(field of) bases, defined only on 7(J), in which the matrix 

of L7 is _unit. By lemma .7 of [5] in a neighborhood of· any 

part of i(J) lying in so~e coo;dinat~' neighboihood for any 

such basis there exist local coordinates· :r'or which the res­

trictioii', on· 7( J) · of ,the generated· by. them; holonomic: bases in 

the; tangent l (resp. 'cotangent) bundle: coincide with the" 

i::revious ( field. of) bases. 

Co.nsequently,. in: (TP--(M), rr, M), - p+q=1 • any special-for· L!-
. . . . q 

bases'-'can be extended in a hofonomic way on a neighborhood of 

(a part of) 7{J). ■ 

14 

If the path. 7 has selfintE:?rsections, then, generally, 

along 7 there does not exist local coordinates with the des­

cribed in [5], lemma 7 properties. The cause for this is that 

at· the points of selfintersections, as a rule, the bases, in 

which the niatrix 'of· an L::.:transport i; ·unit, · ~re riot uniquely 

defined or are not continuous. Therefore along. any "piece" 
. . 

without selfintersection 'of an arbitrary path there· exist 

local coordinates with the described properties and which are 

e'xplicitly constructed in the
0

,proof of iemm~. 7 of ·[5]. But 

these coordinates admit· continuation not· far then' the points 

of selfintersections, if any. 

From the proof of proposition 4.1 also follows. that in 

(TP (M).rr,M). -p+q=1 any special for L7 basis can be extended 
.q 

in a holonomic way outside (a part of) 7(J) if 7 is without 

selfintersections. Evidently, nevertheless of the properties 

of 7 such an·extension can be .done also (and gi~bally, i.e. 

on the whole set 7( J)) -i~ an' ~nholonomic way . 

For the tensor bundles (TP (M);rr,M) with p+q2:2 proposi-
• q 

tion 4.1 is generally not :true .. The only gene·ral ~xception ;f 

this are the s-transports'. i.e. 'the L.:.'.tr~nspoits along paths 

in the tensor algebra over M con'sistent with the te~~or pro­

d~ct and commuting with the contractions. In fact, the matrix 

elements 'of these transports are given by (3.10) and (3.18) 

(cf. proposition 3.2). Therefore these matrices are unit 

matrices of the corresponding size in any · special for the 

transport bases in the tangent (or cotangent) bundle over M. 

But the · last bases . can be chosen as holonomic ones ( in a 

neighborhood (~f a part) of any path; cf. proposition 4.1). 

Hence in the holonomic bases generated in this way in any 
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( ' tensor space over M the matrices of the S-transport are unit 

(of, the corresponding size). 

5. LINEARLY TRANSPORTED ALONG PATHS SECTIONS 

Let. a_ linear transport along paths L. in the vector 
- ' . '"., 

bundle (E,rr,B) be given. 
' . ' . ,, 

Definition 5.1. The section creSec(E, rr, B) is l,inearly 

transport~d .. C_L-transported), or _undergoes an L-transport, 
.: 

· along the path 7: J -B if for teJ and some seJ, we. have 

' <T(7(t))=Lr ~tcr(7(s)). (5.1) 

We say that er is L-transported if (5.1) holds for every 7. 

Proposition 5.1. _If (5.1) holds for some seJ, then it is 

true for every·seJ. 
- ,, i, ,, 

Proof. The result is a trivial corollary of (2.3). ■ 
i , 1· 

Proposition 5.2. The values of an L-transported (resp. 
< . • ' ' • ' . 

along 7) _section er are uniquely defined by fixing its value 

<T(X) at an arbitrary given point X EB· (resp. X E7(J)). 
.. o. " · . : .•, , ·' · 0 0 : 

Proof. The result follows from (5.1) for such s · for 

which 7(s)=x . ■ 
. 0 ' ' 

Proposition 5.3. The C
1 section er is L-transported along 

l f'\ •· • ,, • 

the path 7iff it satisfies the equation 

v7 cr;_o,. (5.2) 

where 'D7 is defined from L' through (2.10)·.· 

· Proof': If er is·· L-transported along 7, then (5 .. 2) follows 

from· (5.1} arici (2.13). 

On the-opposite, let (5.2) holds. Fixing a basis {e
1
(s)} 

. 16 

in rr- 1 (7(s)), seJ, we nave <T=<T1 e and defining u:(s)= 
. - ~ ' . ' 

-1 ' 
1 dlm(rr 171s))l :=(cr(7(s)),._ .. ,<T (7(s))), we see that, due to. 

,(2.16), the eq. (5.2) is equivalent to 

du(s) + r (s)u(s)=O ds 7 .. 
(5.3} 

Substituting here r 
7

( s}=F- 1 
( s; 7} dF( s; 7} /ds ( see ( 2. 15}} and 

(2.9)}, we get d[F(s;7)u(s)]/ds=O, i.e. F(s;7)u(s)=const= 

=F(s
0
;7)u(s

0
) for a fixed· s

0
eJ and, consequently u(s)= 

=F- 1 (s;7)F(s ;7)u(s )=H(s,s ;7).u(s) which, due to (2.2) and . .o 0 0 0 · 

(2.6), is equivalent to ·(5.1}. So, er is L-transported along 7 

section. ■ 

Proposition 5.4. The maps (2.1) define an L-transport 

along 7 if and only if for every crerr-
1
(-r(s)) the section 0 . 

cresec(rr-1 (7(J),rrl 
1 1

,-r(J)) d~fined by. 
7 J . • 

cr(7(t))=L! ;_H<TO 

is a solution of the initial-value problem' 

v7cr=O, cr(7(s) )=er 0, 

(5.4) 

(5.5) 

where v7 is some derivation along 7, i.e. for _it (2, 11) and 

(2.12) hold. 

Proof. If (2.1) defines an L-transport along 7, then by 

proposition 5.3, we have 'D7cr=O, 'D7 being·the.·define_d from 

(2.10). derivation along 7, and cr(-r(s))=<T -· because of (2.4). 
- • ·1' .• ' - ' '. '?. .-, ' '•' .. j - ' : 

On. the contrary,. let_ (5.5) holds. By proposition 4.7 of [1] 

there exists a unique L-transport 'L7 along 7° ge~erating v7 
. .... ' . . ' ' ~ . ' - ' 

through (2.1O_),a~d h~ving _the same coefficients. as 'D'-'. There- · 

fore, ·due:_to proposition 5.3 and definition 5.1; the unique 
. . ·. - ~-·~ ~ ' ·, . , . . . . - - . ~ 

solution of (5.5) ·is. cr(7(t))='L7 er. So (see(5.4)), we 
· • . · :,, · . ; ··• -t-0 · ·. · . .- . 

find 'L7 . o- =L' q for every er , i.e. L' ='L' and 
.. ·• . s·--,+t O. · s --,+t O ·. . · · - • · 0 ... , ::·• --,+t . ':·: .. s ~l. _ 

hence the . looked for L-trahsport along ; coincides with 

'L'. ■ 
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Let us note the evident coi-ollary .from the last, proof 

that the coefficients of the L-transport along paths, ente­

ring in (5. 4), and of 'D', appearing in (5. 5). coincides and 

that.these two operators generate each other in the way·con­

sidered. in [ 1]. 

The last proposition ~ives us a ground to give 

Defin~tion 5,2, The equality 'D7<:=o· will be called an 

equati<:>n , of the linear transport ( the L-transport equation) 

along ;. 

In any basis the matrix form of the equation of L-

transports along 7 has the form (5.3) in which 

: = 11r1 cs; 7) II 
: .. ' .• J ' '' 

. ' . 
is the, matrix of the coefficients of 

transport or· a derivatio·n along 7. 

r (s):= . ' 
some L-

According to proposition 5.3 (or 5:4) any'L-t~ansported 

(r~sp. along ;) · section satisfies the.·, equation of L­

transports (resp. along 7). 

_The special bases for an L-transport along; are charac­

terized by (see (2.9), (2.15) and [1]) 

H(t,s';7)=ll or r.cs)=O. (5.6) 

So, in _them,(2.16) r_educes _to 
, • l,. ' ' ' 

I 
v•rr= drr (;(s)) (s) 

s ds 1 
(5.7)_ 

and the equation of the L-transport takes the trivial· form. 
I ... _. : , ' _: :: . . . . , , . : ' '· . .. . •. " . ··.: 

drr (;(s))/ds=O .. Hence rr is L-transported along ; iff in these 

bases 
·1 .·. . ' 

rr =const, a fact which follows al~o directly fr~m 

(5.6), (2.6) and (2;2.): rr1 (7(t))=,~1 (t,s':.)rrJ(,(;))=&1 (7(s))= 
. • J . -

=const. Consequei{tly in any specia:1 for anL:..transport basis 

along • the components of an L-transported sections are 'con­

stant al~ng the ·path of trarisportati~n; Iii' thfs ''sense, the L.:: 

l8 

transported sections of a vector bundles are analogous to the 

parallellr transported (or (covariantly) constant) vector 

fields in an Euclidean space with respect to Cartesian coor­

dinates. 

Proposition 5,5. If the L-transport L' along; in tensor 

algebra over M satisfies (3. 8), then the ·function .f: ;(J)-IR 

is L:...transported along 7 iff it is.,a .constant on_ ;(J). 

Proof. If , f .is L-trans.ported: along 7 ~ see der"ini tion_ · 

5.1), ~hen f(,(t))=L!-i.fC,(s))=f(;(s))L!-t(1)=f(;(s)) for 

any .s,teJ, i.e .. f(;(s))=const=f(;(s )) for fixed s eJ· and o _o 

every .. seJ. On .. the ·opposite, if f(7(s))=c=:conste1R, .then 

f(;(t))=c=L7 (c)=L•· . (f(;(s))), L·e .. f is L-transported 
•s-t ,. • s-t . · · · . , 

along;. ■. 

6, PATHS WITH LINEARLY TRANSPORTED 

TANGENT VECTOR (L-PATHS) 

Let a linear transport along paths L in the· tangent 

bundle (T(M),rr,M) over a differentiable manifold M be given. 

Below.we sketch a scheme for an introduction of a class of 

paths in M which, with respect to L, behave in the same way 

as:·the geodesics· does with respect to the defining them para­

llel transpor\ or a linear connection [3]. 

Definition 6,1. The.C1 path ;:J~M is a path with a 

lineariy transported tangent vector, or simply 'an L-path, if 

its tangent vector field i-esec(T(;(J)),rrj;
1

J
1
,;(J))~ 

. . 
c(T(M),rr.M) is L-transported ~long 7. 

By definition 5:i the path 7 is an L-path iff 
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• 
i(t)=L7 . i(s), s,teJ, 

. · s---H · · · · 
(6.1) 

which., due to proposition 5.3, equivalently means that 7 
tisfies the L-transport.equation along 7, i.e. 

sa-

v7i=O, ( 6 .1') 

where 'D7 is given by (2.10). 

If L7 · is a smooth transport, i.e. if• it has ·a C1 
s-H 

dependence on· t, then through any point xeM in any'direction 

XET (M) there is on~ 'arid oniy one L:.:.path. More precisely, it 
- X 

is true the following theorem wh.ich is an: evident -generali-

zation of the corresponding theorem concerning:geodesic paths 

in manifolds with ~ffine connection (cf. e.·g. [3]). 

Theorem 6.1. If xeM, XeT (M), J is an IR-interval· and 
X 

s eJ is fixed, then there exist a unique L-path 7:J'~M, such 
0 -

that 

: 7(s
0

)=x, i(s
0

)=X. 

Proof. From (6.1) for s=s 
0 

(6.2) 

and ( 6. 2), we see that the 

:Statement'· of the theorem is, equivalent. to the existence of a 

unique path 7 having the properties 

i-{t)=L7 , ·_HX, 
so 

(6.3a) 

7(s )=x 
0 . 

(6.·3b) 

Due.to (2.2) and (2.6) in local coordin.ates (6.3a) redu-· 

ces to a first order system of .ordinary differential equa-:­

tions with respect to the locc1;1 coordinates of r(t) which, 

due to the initial condition (6.3b), in accordance with the 

conditions of the theorem arid the theorems for existence and 

uniqueness of such systems [6] has a unique solution 

7:J-+M. ■ 
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,Let us write the initial-value problem (6.3) in an equi..:. 

valent but more convenient from practical view-point form, 

which is near to that in a case of. geodesic paths [3]. 

Let v7 be the generated from the given L-trai{sport L 

along 7 derivation (see (2.10)). Due to proposition 5.4 the 

initial-value problem (6.3) is equivalent to 

V7 (i)=O, (6.4a) 

i(s
0

)=X,· r(s
0

)=x, '(6.4b) 

i.e. i satisfies the L-transport equation along 7 .under the 

initial conditions (6.2) • 

If in some local basis the transport L is given by it.s 

coefficients r 1 (s;7) (see (2.15)), then in it, according to 
• J 

(5.3), ,the equation (6.4a) takes a form analogous to that of 

the canonical geodesic equation·[3]: 

•I . , 
d7~ + r' (s; 7 )iJ(s)=O, seJ. 

ds :J 
{6.5)' 

As a consequence of theorem 6.1 .the equation (6.4a) .or 

the system (6.5) can be called equation.or a system of equa­

tions of .the L-paths. 

Evidently (cf. [ 3]), the L-paths generalize the concept 

of geodesic paths (curves) to which ·they reduce when the 

transport Lis a parallel transport corresponding to a cova;.. 

riant differentiation (linear co~nection) V or, equivalently, 

when''IJ1>is a·.covariant differentiation along 7, i.e 'D
7

=V. for 
7 

a covariant differentiation V. · 

Propositioii '6:1'.Al~ng any L..:.path there exist (a clas's 

of) local h~lonomic bases 'in which it is defined as a 11near 

function of its parameter. 
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.. 
Proof •. Let us consider any special for L.basis along 7. 

In it (5.6) holds, i.e (6.5) reduces to 
•I . 

d7~ =O. 
ds (6.6) 

By lemma 7. from [5] locally, i.e. in a neighborhood of any 

part of 7(J) lying· in only one coordinate neighborhood in 

which 7 is without selfintersections, this basis can be ex­

tended in a holonomic way outside 7(J). So, there are local 

coordinates {x1
} in which 71 (s)=.d71 (s)/ds and also (6.6) are 

true. Therefore, we have 

'd271 (s)_O, 

ds 2 

the general solution of which is 

I I · · I 7 (s)=X (s-s
0
)+x 

for some constants s eJ, X1 and x 1 • ■ 0 . . 

(6.7) 

( 6. 8) 

Comparing (6.8) (see the last proof) and (6.4b) we see 

x 1 a~d X1 to be, respectively, the coordinates of the point 

.-cs;) and the components of the vector i(s
0

) at. it in the 

considered special holonomic basis. 

7. CONCLUSION 

· Here we have considered only a few examples oL u,sage of 

linear transports · along paths in vector bundles ... : Some of 

them, in particular the theory of L-paths, as well . as the 
. . 

applications of the L~transport along paths to physical 

problems will be investigated in detail~ elsewhere. 

At the end. we want to ma'k.e a collll)lent on the special 

bases for a linear transport along paths in the tangent 
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bundles over a manifold when it is a parallel transport asso­

ciated to a linear connection with local coefficients , 1 

.Jk 

In this case the transport' s coeffici~nt~ along· 7 are 

(see [1], Sect: 5) 

r 1 (s; 7)=11 (,Cs) )-rk(s). . J . Jk . 
(7.1) 

If. {E
1
,} is a special along , for the transport basis 

(see [ 1], Sect; 3), then 1 1
' , (s; ,)=O, i. e: 

•• J 

1 1 • <k 1 , 

r .. J'k'(,(s)), (s)=O. (7.2) 

As {E ,} itself depends, generally, on 7, from .here one 
, I . ·• . : . • ... ' , , . 

can not conclude that 1
11 

·, ,(7(s))=O. But in [5],. corollary •• J k . . . . .... 

11 we proved the exis.t~nce of a. class of local biiS'7S, .. defined 

in a neighborho_od of . .-CJ). in any .one of whi~h the .~onnec­

tion' s. ;components. vanish· on 7(J). Evid_en_tly: _(see. (7:_1)), 

these bases are special for the corresponding tc,.tlle connec­

tion parallel transport. Comparing the arbitrariness .in the 

, definitions of the bases b~longing to the conside:ed two sets.· 

o_f special bases, for the connecti_on (see corollary 11 a,nd 

proposition 2 from [5]) and for assigned to it parallel tran­

sport (see pr?position 3.1 from [1]), we conclude these two 

sets to be id7ntical (on ,(J)). 

· Hence, for a linear connection on the set 7(J)·, defined 

by a . path ,: J -M, in any basis in which the connection's 

coefficients vanish also vanish the coefficients of the 

corresponding to it parallel transport arid vice versa. 
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l11meB B.3. 
JlHHeHHhle nepeHochl BAOJih nyTeii B BeKTOPHhlX pacCJioemrnx. 
II. HeKoTophle ':JPHMeHeHm1 

ES-93-260 

BBeAeHHhle B CChIJIKe [ I ] JIHH.eHHhle nepenochl BAOJih nyTeii B BeKTOpHhlX 
pacCJioeam1x npuMeuenhl AJISI qacruoro CJiyqasi TeH3OpHhlX pacCJioeuuii ua 
AH<txl>epeHU,HpyeMOM Muoroo6pa3HH. J13yqeuhl HX CBSl3H C nepeuocaMH BAOJib 
nyTeH reuepnpyeMhIX npoH3BOAHhIM TeH3OpHhlX anre6p. IlpeAJIO)KeHO o6o6-
IIJ,eHHe Teop1rn reoAe3utiecKux Jiuuuu, KOrAa napaJIJieJihHhlH nepeuoc, reHepn­
pyeMhIH JIHHeHHOH CBSl3HOCThlO, 3aMellJ,aeTCSI npoH3BOJlbHhlM nepeHOCOM BAOJib 
nyTeu B KacaTeJihHOM pacCJioeuuu. 

Pa6oTa BhlnoJiueua B Jia6opaTOpuu TeopeTutiecKou QJH3HKH 011.Slll. 

Co06ll.\elme O6ne;im1eH110ro HHCTl1yYTa Sl;\epHblX HCCJle;\OBaHHH. Jfy6Ha, 1993 

Iliev B.Z. 
Linear Transports along Paths in Vector Bundles. 
II. Some Applications 

ES-93-260 

The linear transports along paths in vector bundles introduced in Ref. [I] 
are applied to the special case of tensor bundles over a given differentiable 
manifold. The ties with the transports along paths generated by derivations of 
tensor algebras are investigated. A possible generalization of the theory of 
geodesics is proposed when the parallel transport generated by a linear 
connection is replaced with an arbitrary linear transport along paths in the 
tangent bundle. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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