


1. INTRODUCTION

~This . work is devoted to some simple applicatlons of the

'lcon51dered in [1]- linear transports.. along paths in. vector

bundles. It is organized as follows. Sect.ﬂ2~contains a. coe
»llection of the main definitions and results of [1] which
.w111 beiused here. In Sect. 3. the general theory of linear

‘transports along paths is spec1alized 1n the case of tensorl
bundles. over a given differentiable manifold. In particular,'
the " connections with the transports along paths generated by

,derivations of tensor algebras are investigated. The problem o

for holonom1c1ty of spec1a1 ‘bases. in whlch the matrlx of a

‘jlinear transport -along paths 1n a - tensor bundle 1s unit is

considered in Sect. 4. In Sect. 5 the concept of~11near1y
transported along paths sections of a vector bundle 1s 1ntro—
rduced. Some properties of these section,,as well ‘as “their
conneCtions w1th derivations along paths,-are investigated.
In Sect. 6 the firs steps of one p0551b1e generalization of -
the theory ‘of geodes1cs paths (curves) is proposedr Here we

\con31der paths in a manifold the’ tangent vector to which

'after a 1inear transport along themselves remains such. Sect.

7 contains remarks concerning spec1a1 bases ,for parallel

-

ftransports generated by linear connections.l _
' Part of the results of this work were found in [2] in
' the spec1a1 case of the tangent bundle to a given differen-

"tiable manifold.
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2. SUMMARY OF SOME RESULTS

In this “section -we summarize certain needed for thls
paper deflnltlons and results of [1].

A 11near transport (L-transport) Lv__qt along the path

lv'JJ;—+Bf'J being ‘a real interval from's to t, s,teJ in the:

“vector® ‘bundle”(E,n,B)" w1th 'a base B, total bundle space E ‘and

prOJectlon m:E ——B, ‘has the’ propertles. B e 1 A
By 7 ﬂ. R i R . s s
'K,Lsr-—n'n‘ “("a'(s)‘) fﬁn ‘(.v(t)),; ‘ | N | ‘2’1)

R AT L (Ausuv)= RST u+us7__ﬂtv1 A; ueR, ‘i, vern ' (7(s)) 74 (2.2)

oy U : . )
% "'Lg_“——'—)rOLs‘——‘)t_Ls:—;)r' =Ty S’te‘J' e iy : REEGTR P (2'3)
L¥.o=id , -, (2.4)
e fjf)? i n'l(?.(s)) v L P I S RN ERHR SRR S SN

~ﬂwheré id;‘meanSVthe”identity map’ of ‘the 'set "X, -Its' general"

:form is -

- L"’ -(F") o(F"). s tey. ~ e (208)

{where;>Fs€"7 (#(s)) =V, .V being a d1m(n (x)) d1mens1onal

.. X€B, . vector space,  are. 11near 1somorph1sms.,

~;lfh{e ,<i=1,:,.,,d1m(n (g)), xeB} .is a f1eld of bases,

'Qa(or 31mply a ba31s) .along 7, »i, {e (s)} 1s ‘a ba51s ,1n

,n (7(5)) for seJ, then the . matrlx H: (t S,?)F——Aﬂ(t s,v)

..;;HH J(t,erq)ﬂ s,teJ of the transport is deflned by "

LY e (s)=H ,<t.s:v)e-<t),f s, teld, oo l 1’ :;<2-6>'

s —>t

.where here and from here on in our text the Lat1n indlces run

’from 1 to d1m(n (x)), xEB and the usual summatlon rule from,

1 .to d1m(n '(x)) over repeated on d1fferent levels 1nd1ces is

assumed.

ik s s it e

T
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‘andbhas;the properties;

The explicit commection of F! (si7) with the matrix K of L is

. -The matrix:function H SatisfieS‘the‘equatlons} . ,i‘ .
H(l_".t:;'a-)H(t.vs;'a')éH(r,sn‘). r,s,teJ, .o (2.7)
H(s,s;j):ﬂ::diag(i,;..;1)={"6;H;*sej‘fwf'{ STl (2.8)

and its general form is

H(t.S:"fa')'=(F(t;'r))',lF‘(S:%‘)‘. s,tes, oo (2.9)

where F(s,r) is a nondegenerate matrlx function.

Let L be a smooth (of class C ) llnear transport along

paths and ceSec (§| , ‘where g] 1s the restr1ctlon of

V(J) T(J)

the vector bundle E (E m,B) on the set 7(J) and by Sec (E)

(resp. Sec(g)) is denoted the set of C (resp all) sectlon

over €. The generated by L der1vatlon along 7 J-——»B is a mapi
37 sec’ (£|

)-——»Sec(£| ) deflned by (s s+ceJ)

7(1) ?‘(J)

(D’a)(v(s))-—ﬂ"'a.-nm [—(L’ - U(?‘(S+c))—o’(7(s)))] ; (2.107)
-—) et v. ’k. R

27(Aa+ut)=x®7¢+uDvr, A, uER, o, TESeC (&IY(J) (2:11)
D"'(f a)———df‘s) q(v(s))+f<s)»-w§cr). L (22,
. tDtoLs 50, s, ted , L (2a13)

for any C funct1on f J-——»R

\The coeff1c1ents F (s,r) of L along 7 in {e } coincide

with those of D% and are given, e.g., by

e, e



| o (s) HF (s T)H-ESEEE_IL t= -F (s 7)-95é§—11. *‘(2;15)

If U~U e eSec?! (£|.. ‘then exp11c1tly (2. 10) reads

(J)’

- @oraten= [M +;r (sim)o (r(s))]e,l(s)., - (2.16)

3. LINEAR TRANSPORTS ALONG PATHS IN TENSOR BUNDLES

L

Now we shall cons1der 11near transports along paths in

the spec1al case of tensor bundles over a g1ven d1fferen-

t1able man1fold In part1cular we shall 1nvest1gate the t1es

of these transports w1th the ones generated by der1vat1ons off

¥

tensor algebras (the S— transports)

Let M be a d1fferent1able manifold Tpl (M), p,qewu{o}g

: SNETLVE Py i S
the tensor space of type (q) over M at xeM, and

(Tp;(ﬁ)yn,n), qu(M):=*QHTP‘ _be the’ tensor ‘bundle’ of’ “type

Lo ’ ;
(q] over M with a projection n:TPq(M)——fen such .. that:

;nfll(x):=qu|x(H); xeM (cf. [3])- . ‘
:-Till ‘the end ‘of this' section 'we shall "deal .with L-
transports~pLT along pathsﬂrfJ—Aeufacting,krespeCtively, in
P

the tensor bundles (Tp (M), n, M) of arb1trary type (q]f iles

we w1ll investigate maps

| _sz’j’*‘*zF?=;(5't5"ff’§FZ_—, CAPRCEABMUNS
satisfying (é\z) (é 4) » :

» ‘Practically is far more convenlent 1nstead of the trans—

ports;:LT

bmap h* the (L-)transport along r}ln the tensor algebra over

M, defined by LT (s t)k—»LT —_4+ S,teJ, where .

; P, q>0 along T to be used the equ1va1ent to them‘.'

w»

with

i of the maps (3 2)

i, Ll ) L [ freat0) ves o

7T S M P RS
LB tTo' qu LTO fOP T GT IT( ) (M). o (3.3);

Before formulat1ng certa1n results concernlng the .so de-

f1ned L transports LT along 7 we w1ll present the concrete

vform of some formulae from the preced1ng sectlon 1n the case .

[t . vt

i

(t S:T) Of LT are un1quely defined bY the expans1on R

’-L? LE A e 'J“(t SiDE. o

Tes——t 1~;;;1b Tis) o l;..llé{fli; . ! "SR

: w’ : (3.4)

sand are components of a two po1nt tensor from TPIT(U

e’r"' (M). Here E:l""l“:=E‘i®--'#él-“®E-o---oE e belng'
T(s) . gl...kp : . : klyi_ kh e

‘the<'tensorw’product“ sign,” is’ a" basis%:(field’~of‘Ibases)i in

Tp (M) generated by the bases’ {E! } and - 1ts dual {E } 1n, res—

pect1vely, T (M) ‘and T (M)

ceed .

. due - to.

R S 1 qp 1 P P
r'If“' =T," .. EJ ...J~ r(s)eT
~ 1 P 1 :

(2.6) and the l1near1ty of - LT e havéif’fjﬂ"s“ffj&u et
. ‘% >“i;...k 33, ‘.jq' tt"'xl...lp“ 1'{..1 ] i o R
ALe——ﬂtT Heln ;x;;. (t’S;T)TJ L) (Ek vk IT(L)) i”(3’5)

g 0 1 q 1 P 1 q 1: .p :

. Because of (2.7) and (2.8)‘the;folloﬁing-egdalitleslare'

valid:

Accord1ng to the vequal1ty (2 6) the matr1x elements ',f’

(M)e, i



k T
k.vo.k-3n_...n
P

1

e TR e mstes, T (3le)
: -11"'v,l'c;'ml'f°mp 7 - . : : L ) Lo
Tkl ik 1) “; VR
gt rpt q(s s;7)= [ ][ ] (3.7)

I ooeel 31 ol
177 g’

wh1ch, 1n our case, are equ1valent to (2 3) and (2 4) respec—
"t1vely m ; \d. L . I . |
‘ : From (3 6) and (3 7) 1t can easlly be obta1ned the gene-
raluform of the matr1x elements H (...).1Its expl1c1t form
is descr1bed by the component form of (2 9) 1n wh1ch the

'1ndexes must be replaced w1th the correspond1ng mult1 1ndexes

f

SR

1, ete. ). T e

c(e.q. 1&—4(1 YERSS
' Definitlon 3 1. The. L—transport L in the tensor algebra
ower M w1ll -be; called cons1stent (resp. along 7) with the

’ operatlon tensor mult1pl1cat1on 1f
B);'s;tej B @)

y v 7
L’ . (ASB)=(L Me(L]

cholds'for arbitrary‘tensors A and B,at the -point - 7(s) and any
(resp the ‘given) path ...
It 1s eas1ly seen (3.8) to be:equivalent to R

p.+p ’

Pay Py L Pay
q1+q2La———+t (qlPs—f—ét)?(qus—f—ét)h

's,tEQ«:>' L (3.9)
for arbitrary nonnegative integers P, pép‘ql‘and qu o

~ With this.we:'end.the necessary for the following preli-
'm1nary material.. ,"

Proposition 3. 1. The equal1ty (3. 8) is fulfllled iff the

jdefined—by (3.4);matr1x elements of LY have: theurepresen—

tation . . .
R P q
Ukl ek 3 s ) L - .k .. - .
!t P! ?(t,s:v)=[ l | H . (t,s;v)}[ H” b(t s 7)]
' } SPAPI S AR ) o N 1 Rt .
1 q: 1 P - St A=l ha Vb= .

(3.10)

P

',where }f‘(t,s'r) and }FJ(t S'T) define, - accord1ng to (3. 4),”ﬁ

the transports along r of the vectors and covectors respec—ef
t1vely i -

Proof. (3. 10) follows from (3 4), (p+q 1) times appl1ca-v
tlon of (3.8) to the tensor product A --®A ®B, ®-- ®B for
arbltrary Al,...,A GTT( , (1) and B, ....,B GTT( )(H) and the’

arb1trar1ness‘of theseﬂvectors and covectors. On the oppo—

s1te, if .(3.10). is valid, then .an elementary: check- w1th theﬁ

~help of (3.4)-shows that. (3.8) is true. L ¥

. Corollary 3.1. If. the L-transport LT:along 7 in the ten-
'sor algebra over M.ls‘consistent;with;theetensor”producthg'
‘then. it is; uniquely defined if its actionils glwenron'vectors‘
and covectors. . '

Proof. This result 1s a ‘direct consequence from proposi—?v
t1on 3 1 'and equality.(3.5).m . ‘

COrollary 3.2. If the L—transport v along 7 1n the v
tensor algebra over M is cons1stentvwithithe‘tenSOrvproduct;m

then ‘5‘: V .f,f=>.‘ SR i A ST ‘ K

= 1 i . . S [ O
§ Ls t(A) =A, s,tel, AeR. e (Bat)

A1Proof ‘Putting . A=B=1€R. in (3.8), we find: L7 (D=1

which,:- due rtor(2. 2), zis.-“equivalent to (3.11). 7 (The same

result: follows also from (3.5) .and (3. 10). for p-q—OeR.)I i

iiwiLet. us’: note:.that in- the general case, due’ to' (2.2),

instead»ofa(3.11);.we;have

LZ t(A) =h(t, s; r) A, s,tel, AeR, R T (3. 12) ~

where (see (2 2)) the 2—p01nt scalar h(t s,v) 1s def1ned by.:

" h(E, s,v)--L7 (1), Sitedit o '=§ Bt '»‘ {,.**1(3.13)

Accord1ng to (3 6) and (3..7) it has the properties

.



h(r.t;r)hzt.S}r)=h(r;5;7){~r.s.t€?; T sh (3.14)
n(s,s;r)=1, seJ - ' (3.15).

and because of (2.§)yits’general‘form is

n(t,si)=f(si ) /£(ti7), s,ted, - (3.16)

where flis nonvanishing ‘scalar function of s and 7.’
» Evidently, the‘ transport gL7 is 7consistent with the
tensor product iff it is. fulfilled .(3.11), which is’ equiva-
lent to h(t,s;¥)=1,"s, tsJ, or-all the same f(s;r)=f;(r);ai.e.
when f(s;7) ‘does not'depend~on seJ.

'{7An:essentia1 role play the L-transports alongbpaths'in
the tensor algebra over M which commute with the contraction
‘operator C,”i;e;]transports‘LT along ¥ for which "
Lf__ag?C‘C°Ff-;c=°',S't§J' B “f L " B (3{1751
or,ﬁwritten in»another way,: .-

Py S
(q 1Ls—)t)°c Co( Ls—)t

Proposition 3.2. A given L—transport along T‘in:the ten—
sor algebraioverbﬁ:satisfies simhltaneously“(3.8) and (3.17)

'if-and<only if its. matrix -elements are given:by (3.10):.in

which H';(tgs:r) and H;i(t;s;r),“gdefining ‘the L-transports .

along'y of the.vectors'andocoveetors respectively, are: ele-
ments - of mutually*inverse'matrices; i,e.they are connected

by the, re1atlonsh1p

?_r;oqf.*If'(s‘iO) and (3'18) are, true; ‘then with'the“help

of (3 5),. by a d1rect calculatlon we conflrm ourselves that

) (3 8) and (3 17) ‘are identically sat1sf1ed On the opposite,;7,:.

8

)=0, p,qz1, s,ted. (3.17") .

(s, J(ts; 7) ! T (3asy

i et

Jﬁl;;dﬂéa_~;n;

R

(3.18).m

"with coefficients Fle(x);at X€M, then

if ~(3.8) and (3.17),are true,  then by propos1t1on 3.1 is.
valid (3 10),J" and . app1y1ng (3 17)7“
(E?| )®(E |

Tis)

s(sy) -and using (3.10) %forfi =

Corollary 3.3. An L—transport along paths in the tensor

falgebra over M wh1ch 1s cons1stent w1th the tensor mult1p11—

cat1on and commutes w1th the contract1on operator is un1que1y

defined by fixing 1ts action on‘vectors,or.hequ1va1ent1y. on

covectors.

s

‘ Proof. This result’ follows from (3. 5) -and propOSJtJons

“3 1 and 3.2, i.e. from (3 5), (3. 10) and (3 18) ‘'

Proposition 3 3. Ifa g1ven L- transport LT along 7 J——AM

'in’the tensor algebra ‘over M sat1sf1es (3.8)7andr(3;17)“and Vvv‘fk

is the covariant derivative define by an affine: connection

7. . R TR L i, )
DD, | yar+ 535 , T a
where DZ is generated by L¥ through;(zfio);fv,is,defined on a

neighborhood . of - ¥(J) vector field with the Vproperty

Vw(“ 7(s), seJ and D |7() is - the der1vat1ve along T at 7(s)
" defined: by ‘ D
I?(s) V l?(s) '7(.)' (3.20)
" where
HYII(',_ [V I7(s)(H (t Si7E, |7(t)®E |7('))]|t=',‘ (3.21)
Remark. The restrict1on v l,ﬂ )i means that V kacts»only

~on:the defined at the point T(S) obJects, anq“consequently

(see;[3] and (3.7)) ..«



T ) S .
L [ert(tesin) '

oz Ye _yykoo- E 1 1. . = s

: (HVIT(-));J— 7(5,[ F,k(v(S))H.,(t,S.v)]| |

87' (S) t=s

aH (ts-a') ) . ,
|t L - TN @)

as
; Proof.lIf lv1s deflned on a ne1ghborhood of 7(J) C ten—
sor. f1eld of type (;]; then due to (2 15) and (2 16), we have
. l .11...1 ‘“" ”.l,i . . ’
*<nj¢>,1;:'v=;__m PO P(r(s)) +

..jq 'ds 11...1q

. l ..‘. ! .
g ' P 1 q S
o+ (as REETTION q(t s; 'r))It Ty, ('r(s)) 5 7,(3.22)

Substltutlng here (3.10). (see propos1tlon 3. 1)._w1th the help

i<of (3. 18) (see proposltlon 3. 2), (3 21’ ) and the equal1ty

(see e.g. [31) ..
d' ‘4"'1 1 ...lp .
HETJI..".j:(T(;s)) [(V T)l'ﬂs) .jq )
e 1 STy 1kl ..t ‘ i
e a y 1 a=1 a+l ° p > 1 :
- Z,r;ki(7<s)?T,1 et (#(s)) ¥ (s) +.

La=1

< SRR I GO : Loy
) X ; 1 P . . o1 ‘
+ ) T (¥(s))T (#(8))r (s),
z SN [PFRRE MR TTUUREES Py ‘
bo1:- : :
after . an easy ' transformations, - - we get ”DZT=(VV+

+H )| (T(¥(s))).- From here, ‘due toithe arbitrariness of T

Ti(s)
follows (3{19).l

It is clear that taken by 1tself a cons1stent w1th the

tensor product and commutlng w1th the contractlons L-

htransport along paths in the tensoralgebra-over:M does not

‘deflne globally some der1vat10n, but on a ‘given path v it
unlquely def1nes the der1vat10n (3.20), the ‘action “6f iwhich,

“‘due to (3.19), does not depend on the used in its definition

10

'when ﬂ7 is 11near and

add1t1onal covar1ant der1vat1ve V Th1s fact allows “us’ if it
1s g1ven an L transport along paths w1th the above propertles
and the manlfold M 1s covered w1th a C congruence of paths

dim(M)-1 -
" } to construct a

{'rh 'rh 3 ——>M. U ['rA(J )] » AEACR’
global S- der1vat10n D of the tensor algebra over M in the :
follow1ng way If er ‘then there ex1st un1que u(x)EA and

2 ., .
“(x)eJu(x) such that x 7u(x)( u(x))' We deflne the vector

d ) \
‘f1e1 v by the equallty V u(x)( u(x){ﬂ xeﬁ_and_putzA
B I TR T IO N AT P ) .
D, [;:=V, | +#H]] T i, o .(3.20).
where
L. I . ARl A g
Hle' v, |7 W0 (H (t Su(x) u(x))El 0®
ueo ! u(x) o pea
®EJ| : ':; 9 “’; Tatw e 5 R '(3;21h53;
7u(x)(su(x)>‘.gt*su(x) R RN SR S PR R

The‘so“constructed:deriuationfdepends;:of“course,son the lni;j ,‘

tial;L—transport}along‘paths'asjwelL'as;onftheiused'in'its

‘definition family'of- paths {7A}L

Proposition 3.4.¢A given. L-transport.along 7-in the: ten-

sorfalgebra'over;H satisfies  (3.8) :and (3.17) :iff. the gene-'

‘rated by. . it':map' D?, . whose. action: is given. by (2;10)_for

(2. 16), is.a:derivation of. the.tensor algebra ‘over 7(J),,i.e.

‘“z}z(Azesa);:@gm@;wbgm.“ o el

 DJee-conlz0, T T Gayy

for\arbitrary“c1 tensorigieldszganth over: v(J) and.contracég

tion operator C.

It

-



Proof. The 1inearity ostZ is a consequenCe from (2.11)

or from the definitions;of a derivation of the tensor algehra'

f3]vand does not at all depend on the validity of (3.8) and
(3. 17)

If (3 8) and (3.17) are true, then with the helpkof

(z.io) we see that~from them follow (3.23) and,(3.24) respec- -

tively. The same result is a consequence from the fact that
in this case the considered L—transport in the tensor algehra

over M is' an S-transport. (see [4], definitions '2.1) for

which.‘bv proposition 3.5 from [4], the operator 27 is a de-

rivation over T(J);

On the other hand, let D’ be a derivation of the men-

tioned tensor algebra. Then, by [4], proposition 3.5, there

.exists a unique S-transport generating 27 ‘through (2.10).

Therefore due to (2.14), the coefficients of this S-transport

‘and " of the'considered L—transport coincide,“which:by [1],
propos1tion 4 7 ‘means these two transports along paths to co=
incide. But- by definition (see [1], definition 2.1)’any»s—
8 transport‘satisfies (3.8) and (3.17), consequently the -inves-

tigated‘L—transportgalso'satisfies them. =

"~ Proposition 3.5, ‘Every S-transport is an L—transportr»

valbng’(smooth) paths in the tensor algebra over M.

- Proof. “This proposition follows from the'comparison of

definitions: of ‘S-transports (cf. [4], definition ‘2.1), " L-
transports (cf.- [1], definition 2.1) along.paths, and L~

transports~along'paths in the tensor algebra over . a manifold

(see (3 2) ‘and (3 3)) 8

In the general case the "inverse proposition" to propo—'

sition,3.5 is not" true. Because of th1s we shall cons1der.the’,

12

question when .one L—transport along paths in the tensor alge-

bra over M is an s- transport along paths._v”; ) m”j_ . ’
. From the proof . of propos1tion 3. 4 one’ immeoiately
derives the following two corollaries. “ ‘ o "
Corollary’3.4. If the generated by (2 10) from a given
L—transport along paths in the-tensor algebra over H operator
97 is a derivation of the tensor algebra over 7(J), then this
L—transport along 7 coincides with the S-transport along T
which is_;generated from the defined hy (;.20) derivation
along 7. S o k Ai 7‘,‘ | |
Corollary 3.5., A given L—transport along 7>in the'tensor,
algebra over M is an S-transport. along 7 1f and only if it‘

satisfies the conditions (3. 8) and (3 17) or, equ1va1ent1y;

tensor algebra over 7(J).

corollaryra.s. A given L¥transportualong pathS¢in the’
tensor .dlgebra over M 'is (glopally) 'an;'sftransport\ along

paths[iff”the generated by it'th?ough;(z;lo)ioperatorrﬂ7:is‘

in fact a derivation of the tensor algebra‘along~any path 7.

_Proof. .This statement is a direct'zconseqvenceygfrom

.corollary 3.5 and (2.10).® . LR

:4. SPECIAL BASES FOR LINEAR TRANSPORTS ALONG PATHS(

"IN TENSOR BUNDLES

For 11near transports along paths in tensor bundles,;of

course, s valid propos1tion 3:1 ‘of . [1],;accord1ng to which

along any path there is a class of bases: 1n which the trans—\

'port's matrix is unit: But in the tensor bundles (Tp (M) n, M)

kwith p+qzl ‘there exists'a privilege set of. bases. the one ho—

13



‘ 1on6ﬁic”basé§ associated wlthbdifferent“local COordinates. In*

»th1s connect1on arises the quest1on, wh1ch 1s a’ subJect of

the present sectlon, when the descr1bed in the ment1oned pro—

pos1t10n bases are holonomlc.

The next result shows that the L transports along paths‘

I

Euclldean not only in a’ sense that they are such along any
f1xed path 7 (see [1], def1n1t1on 3. 1 and propos1t10n 3. 2),V
‘sbut also 1n a sense that along every part of 7 w1thout self—'

.intersections they are generated through the descr1bed 1n'

[1],fdef1n1t1on 2. 4 way, “from local holonom1c bases,fi.e.

from local coord1nates

Proposition 4.1, If p+q 1, ‘then ‘in (Tp (M) T, M) for any

:L-transport eralong a path 7 J-——aM w1thout self1ntersec—i

B t1ons there ex1sts local coord1nates 1n a ne1ghborhood of (a”

,part of) T(J) such that the matr1x of L7 is un1t in the

'(fleld of) holonomlc bases generated by them in: (Tp (M) n M),’

. p+q 1 when they are restr1cted on the ‘same " ne1ghborhood -of

r(J)

Proof. By propos1tlon 3. 1 ‘of [1] in the tangent (resp

cotangent) bundle of M there exists a set of descr1bed in 1t‘

‘(field of ) -bases, defined only on ¥(J), in which the matrix

.of . LT is ‘unit.. By lemma T of [5] in a nelghborhood of “any.

~‘part of r(J) ly1ng 1n some” coord1nate ne1ghborhood for any

“such ba81s there ex1st local . coordlnates for wh1ch the res-

tr1ctlonfon 7(J)jofathe‘generated'by:them'holonom1cybases in

k thé‘ftangentl*(resp.;fcotangent) ‘bundle ;. coincide - with’ the-

prev1ous (f1e1d “of )" bases. T B o

St

Consequently,xln (Tp (M), m, M), ‘p+qg=1: any specials for’ LY

V bases can be extended in:a holonom1c .way-on-a neighborhood-of:

‘(a part of) T(J).l
: 14

“along 7 there does not exist local coordinates with the des-

1n the tangent and cotangent bundles over “a man1fold are

lfkthe path'v has selfintersections,7then.'general1y,

cribed in [5], lemma 7 properties. The cause for this is that
at’ the points ofyselfintersections, as a rule, the bases, in
which the;matrix'of'an'Litransport is unit, are not uniquely -

defined or are not cont1nuous. Therefore along any "piece"‘

‘w1thout self1ntersect1on of ‘an arb1trary path there ex1st

¥

local coordlnates with the descrxbed propertles and whlch are
expl1c1tly constructed in the proof ‘of lemma 7 of [5] ‘But

these coordinates admit continuation not far then the points

Voaes Tl a gt

of selfintersections{ lf'any.

Fron the proof of propos1t1on 4.1 also follows that -in

(Tp (M) m, M). p+q 1 any spec1a1 for LT bas1s can be extended

'1n a holonom1c way outs1de (a part of) T(J) 1f 7 is w1thout

vself1ntersectlons. Ev1dently, nevertheless of the propertles‘

of - 7 such an’ extens1on can be .done also (and globally. 1.e.
on the whole set T(J)) ‘in an anholonomlc way ‘
For the tensor bundles (Tp (M) m,M) with p+q>2 propos1—

t1on 4.1 1s generally not ‘true. The only general exceptlon of

‘th1s are the S transports, i.e. the L transports along paths

in the: tensor algebra over M cons1stent w1th the tensor pro—

- duct and commutlng with the ‘contractions. -In fact the matr1x

)elements of these transports are g1ven by (3 10) and (3 18)

(cf. proposition 3.2): .Therefore " these matrices’ are  unit

matrices of ‘the corresponding size 'in any ‘special for the

‘transport bases in the tangent (or cotangent) bundle over M.

But‘the'last bases :.can ' be. chosen asyholonomicrones (in a
neighborhood (of ;a part)rofvanykpath;‘cf. propositlon 4.1).

Hence in the holonomic bases generated inthis way;in“any’

15
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tensor space over M the matrices of the S- transport are unit

V(of the corresponding Size)

5. LINEARLY TRANSPORTED ALONG PATHS SECTIONS

Let a linear transport along paths L in _the " vector

bundle (E L B) ‘be. given

e

Definition 5 1. The section aeSec(E , B) s{ linearly

transported (L—transported)., or undergoes, an' L-transport,

‘along the path 7:J —5B if for teJ and some seJ, we‘have

B

U(T(t)) L’ LOG(S)) i iy e ,»v.-g(s.i,)

We say that o is L transported if (5 1) holds for every 1.\

PropOSition 5 1. If (5 1) holds for some sEJ then it is

I T

true for every sEJ.
g . e : bt O
Proof The result is a triv1al corollary of (2 3) I .
Sl P N i

.“along 7) section a are uniquely defined by fix1ng its value

a(x ) at an arbitrary given point X, eB (resp x ev(J))

’ Proof ‘RThe result follows from (5 1) for such s for
,which r(s)-x .l )
Proposition 5 3 The ¢! section o is L-transported alongv

‘the path 7¢iff»it satisfies the equation . .
, Dvaﬁo,, ;,LA: v», o - S (s
”where DT is defined from L through (2. 10)

‘vProof. If,a is_L transported along ‘¥, then (5.2)“follows
from'(5.1) and (2.13). . 7 o

On thejopposite, let (5.2) holds. Fixing a basis {e;(s)}

‘16

Proposition 5 2. The values of an L transported (resp o

et

- aeSec(n (7(J),n|

C e

(in T (1(5)),‘ sed, ye Have o=o' el andy'defining;‘3:§s)=

(a(v(s)).....a‘“"“" ”""”’(v(s))), we see that, due to

(2.16), the eq. (5.2) is equivalent to

AT(S) . & rvmroryen T
488l L r(s)3(sy=0.. R S (5.3)

Substituting here F (s)= Fq(s,v)dF(s,T)/ds (see (2. 15)) “and
(2 9)), we get d[F(s,v)a(s)]/ds o, ;i.e.' F(s 7)0(5) const-
—F(s ,7)0(5 ) for a fixed 5, eJ and}k consequently a(s)=
=F" (s,v)F(s ,7)a(s )—H(s s ,1)6(5 ). which,,due to (2 2) and'

(2 6), is equivalent to: (5 1) So, o is L transported along 1

. section |

PropOSition 5 4. The maps (2 1) define an L—transport

along 7 if and only if for every a En (T(s)) the section

Tm,gr(J)) defined by 7

Ll o s

is a solution of the initial- value problem

D’a—o. 0(7(5))—0 , (5.5)

where‘DT is some derivation along Ttvi.e;:for‘itf(zﬁii)'and\

(2.12) hold.

Proof. If (2 1) defines an L transport along 1, then by,
propOSition 5. 3, we have DTU-O, ¥ being the defined from
(2 10) derivation along 1,»and a(v(s)) oy because of (2 4)
0n the contrary,ilet (5 5) holds. By propOSition 4 7 of [1]
there ex1sts a unique L—transport L7 along 7 generating DT“

through (2 10) and haVing the same coeffiCients as D7 There—f‘

solution of (5 5) is a(v(t))— -__qtao

find L7 =LY g for every 7, ,,'

s —t 0_~s-—4t 0- T -
hence the .looked. for L—trahsport along 1 c01nc1des with

8 R
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Let Us ‘noteé the ev1dent corollary from the last proof

that the coeff1c1ents of the L transport along paths,iente-“

ring in (5.4), and of D7, appear1ng in (5.5), ‘coincides and '

that these two operators generate each other in the wajecon—
s1dered 1n [1]

The last prop051tlon g1ves us a. ground to g1ve "

Deflnition 5 2. The equallty DTU—O will be called an‘

equat1on of the l1near transport (the L—transport equat1on)
along 7. ‘ :

. In any. bas1s the matr1x form of . the equatlon of L—

‘ transports along 7 has the form (5 3) v1n wh1ch P (s).—

“F (s,v)“ s the nmtrlx of the coeffl 1ents of ‘some. L-

transport or a der1vat10n along 7.

Accord1ng to prop051t10n 5 3 (or 5 . 4) any L—transported{

(reSp. along ) -sectlon satisfies thet;equatlon of - L--

; .transports (resp. along. 7)
f. The spec1a1 bases ‘for an L—transport along 7 are charac—

: terlzed by ‘(see’ (2 9), (2.15) and [1])

'H(;t‘."s’:i$'=n':or I“,j-(s)=o.*‘* L I R

So,in. them (2 16) reduces to

%o Mgﬂ&:(s) T R T € 150}

,and the equat1on of the L—transport takes the tr1V1al form.

dU (7(s))/ds 0 Hence o 1s L—transported along T 1ff 1n these

bases‘ a const, a fact wh1ch follows‘ also d1rectly from

‘_(5 6). (2 6) and (2 2) o' (7(t)) H (t s; 7)6 (7(5)) ¢ (7(5))—H

,—const Consequently in. any spec1a1 for an’ L transport basis
:along 7 the components of. an L—transported sectlons are con—

stant along the path of transportatlon.‘In thls ‘sense the ‘L~

U i

¢ Sy
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4transported sectlons of a vector bundles are analogous to the

parallelly transported (or (covarlantly) constant)v vector
fields 'in an Euclidean space with respect tovCartesian coor-
d1nates.

Proposxtlon 5.5. If the L-transport LY along r 1n tensor '

‘algebra over M sat1sf1es (3.8), then the funct10n~f.7(J)——aR

is L-transported along ¥ iff it is.a .constant.on (I, o

Proof.. If.f. is—L—transportedwalongrr (see:deflnitiong

5.1),. then f(r(t))= L7 Lf(r(s))= f(v(S))LT (1)¥f(7(S)) for
‘ any,.s,teJ,:,i.e.rzf(v(s))=const;f(1(s°))?‘for ‘fixed . solegand S
“everf seJ., on...the. oppositereaif;yf(v(s))=c%consteh,;:then

fr=et]_ (o= w7 (£(a())), ive. . is L-transported

along 7.H

6. PATHS WITH LINEARLY TRANSPORTED

TANGENT VECTOR (L-PATHS)

" Leta linear transport along paths L in the- tangent

‘bundle (T(M), m, M) -over a differentiable manifold: M be glven.k,

’Below we sketch a scheme for .an 1ntroductlon of . a class of

paths in: M which, with respect to L, behave in the _same .way

_as,the geodes1cs does with respect to the deflnlng them.para-

llel transport or a 11near connectlon [3]
‘ Definltion 6 1. The ¢! path 7 J———eM‘1s a path w1th a
11nearly transported tangent vector, or 51mp1y ‘an L—path 1f

its tangent vector f1eld v 7eSec(T(7(J)) n] L”,v(J))c

c(T(M) n M) is L»transported along 7.

By def1n1tlon 5 1 the path 7 is an L-path 1ff

19



HOAT_ e, sren (6

wh1ch due to propos1tlon 5.3, equivalentiy means that # sa—

tlsfles the L transport equatlon along 7, ifefi

o0, o te1h)

where DY is given by (2.10). -
1f L7 - ‘is a sméoth transport, i.e. if it has a c'
’dependenCe on“t, then through ‘any point XeM in‘any d1rectlon

»XET (M) there is. one and only one’ L~path “More’ prec1se1y,

1s true the” follow1ng theorem which ‘is antevident: generall—

'zatlon of the correspondlng theorem concernlng geodeslc paths .

in manlfolds with afflne connectlon (cf [3])
Theorem 6.1. If xeM, XETX(M), J. is an R- 1nterva1 “and
" s,€d is“fixed, then there exist5a‘unique’L—path 72 I Z5M, 'such
that ' A
Tl FEX e e

Proof. From. (6.1)'for s=s, and (6.2), we see that the
statement of the theorem is:equivalent.to the ex1stence of a

un1que path ¥ hav1ng ‘the propertles
. T(t) z.s : "x R o T Y (6l 3a)

-—N.

“*7(55?=xf'f’ ﬁvv7‘? e nf*HJ' R 3?.3:*'”“F’

Due to (2 2) and (2 6) 1n 1oca1 coordlnates (6 3a) redu—_

ces to a: f1rst order system of ord1nary d1fferent1a1 equa—
‘tlons with respect to the local coordlnates of r(t) whlch,
due to the 1nit1a1 condltlon (6 3b),_1n accordance w1th the
condltlons of the theorem and the theorems for ex1stence and
uniqueness of ;such ;systems [6] “has ‘a‘ unlque 5solution

,'T:J-—ah.-

20

: (6;35)

'function of its parameter.v

‘ jLet,us_write the initial-value problem (6.3) in an equi-

“valent but more convenient from practical -view-point .form, .

which is near to that in a.case ofdgeodesic paths [3]. .

Let DY be the generated from the given L—transport L
along 'y derivation (see (2.10))..Due to proposition 5.4" the
initial-value problem (6:3) is equivalent to

D7(3)=0, i S (slaa)

¥(s)=X, w(s)=x, o CLoht e (6.4b)

i.e. ¥ satisfies the L-transport equation along r.under the
initial conditions (6.2).

If in some local basis the transport,L is»given.byvits‘

:coeff1c1ents F (s,r) (see (2 15)), then. 1n 1t,:according to

(5.3), :the equation (6.4a) takes a form analogous to that of -

the canonlcal .geodesic equatlon [3]

B S )

As a consequence - of :theorem 6.13the§equation7(§:Aa);or

'the\system (6.5) can be called equationor ?~SYSF¢ﬁubf.eqUa*

tions of the p-paths.

Evidently (cf. [3]), the L-paths generaiize the concept
of geodesic . paths (curves) to thch ‘they zreduce when thef
transport L is a parallel transport correspond1ng to .a cova-

riant dlfferentlatlon (linear connectlon) V or, equlvalently,

: when ¥ iis a covarlant dlfferentlatlon along T i e. D7 =V...for"

7

~a covarlant dlfferentlatlon v.:

Propositxon 6: 1. Along any L—path there exlst (a class

of) local holonom1c bases in wh1ch it is deflned ‘as a linear

21



ST R : ; . -
Proof, Let us consider any special for L .basis~along 7.

In it (5{5) holds}ri.e (6.5) reduces to

7 dx' (s)

dSv =O. . - ‘ (6.6)'

By‘lemma-7vfrom [5] locally, i.e. 'in a neighborhood of -any
part  of 7(J5 lying~in~only one coordinate neighborhood in
" which ¥ is without'selfintersections, this basis,cankbe exe
tended'in'a holonomic way outside;i(J) So. there‘are local
coord1nates {x } 'in which 7 (s) d7 (s)/ds and also (6 6) are

true. Therefore, we have

illlé§l=o, (6.7)
ds s .
‘thé general solution of which is .
r (8s)=X (s-s°)+x (6.8)

for some constants. s €J, x! and x " l

Compar1ng (6 8) (see the last proof) and (6 4b) ‘we  see
xl and X to ‘be, respectlvely, the coord1nates of the p01nt
7(56) and’ the - ‘components 'of “the vector 7(so) at..it in the

considered:special holonomic basis. . . @ ullo;

7. CONCLUSION

Here we "have cons1dered only a:few examples of usage of
linear Atransports along paths ‘in" vector bundles Some of
k'them; 1n part1cular the theory of L—paths,_aS'well as the
vapplicat1ons of . the L transport along paths to phys1cal
‘problems w111 be 1nvest1gated 1n deta1ls elsewhere.

At~ the end we want to make a comment on the speclal

bases for a’ 11near transport along paths in the tangent

22

‘bundles over a man1fold when 1t is a parallel transport ‘asso-

-ciated to a 11near connection’ w1th local coeff1c1ents f

In th1s case the transport s coeff1c1ents along ki are

(see [1]. Sect. 5)

T (s (v(s>),7}.“"('?s>. . N

,Ifu{E‘,} is a special along 7 for the transport basis

~‘(see [1], Sect: 3),«then Ff;j,(s;7)=0, ilel e i

r’ y ,(7(5))7 "(s)=0. | (7.2)

_As {El,} itself depends, generally,.on 7, from here one

’
can not conclude that r fk,(w(s))=0._8ut in [5],;corollary

11 we. proved the exlstence,of‘a.class‘of_local bases,..defined .
inra neighborhoodkofnv(J), invanyAonelof‘whlchvthe\connec— o
tlon s components vanish- on 7(J)' «Evidently (see‘b(71l)),

these bases are spec1al for the correspondlng to the‘connec—.‘

' tion parallel transport Comparing the arb1trar1ness 1n the
: def1n1tlons of the bases belonglng to the con51dered tWo sets
‘of spec1a1 bases, for the connectlon (see corollary 11 and
- propos1t10n 2 from [5]) and for ass1gned to it parallel tran-
"sport (see propos1tlon 3.1 from [1]), we conclude these two\

:sets to be 1dentical (on W(J))

[T

;" Hence, for a llnear connectlon on the set w(J), defined.

~Dby . a path 7 J-——ﬁH, 1n any basls 1n wh1ch the connectlon s

coeff1c1ents vanlsh also vanlsh the coeff1c1ents of»vthe

lcorrespondlng to ;t parallel transport and vice versa.
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