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1. INTRODUCTION 

The corresponding to linear connections parallel trans­

ports are linear isomorphisms between the tensor spaces along 

the paths they act [ 1, 2). In the present work we appro­

priately generalize these transports, preserving the property 

that they are linear isomorphisms between vector spaces. As a 

ground for this we take the basic properties of the consi­

dered in [3) (parallel) transports along paths generated by 

derivations of tensor algebras. In some places we also follow 

the idea of this reference by transferring mutatis mutandis 

definitions and results. .Part of the material of the present 

investigation was realized, in the case of the tangent bundle 

of a differentiable manifold, in [ 4). That reference also 

conta.ins possible applications to physics· which, through some 
-; ., 

,._, •. ;-1, • -

changes, have a place also with respect to this work. 
,'·,'.t;!·;_·": !_,,_,, 

In Sect. 2, we define and find the· general, invariant 

and in components, form of the linear transports along paths 

in vector bundles. In Sect. 3,is proved the existence of ba-
: -•~ ' ... 

ses in which these transports look like a. usual parallel 

transport in an Euclidean space. In the pointed sense every 

linear transport along, paths turns out to be locally (along 

any fixed path) Euclidean. (In particular, this is true 

for paral.l~l transports generated by linear connections.) 

Sect. 4 contains investigation of two equivalent descriptions 

of the studied transports along paths. Firstly, the local 

description .in terms of their local ~oefficients, which are 

analogous to the ones of a linear connection, and, secondly, 
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the one in terms of derivations along paths in vector 

bundles. At the end, in Sect. 5, some comments on the consi­

dered here problems are made. 

Many problems, such as the comparison with the general 

connection's theory, integrability conditions (connected with 

the concepts curvature and torsion) and application to 

mathematical or physical questions, remain out of the field 

of this paper and will be considered elsewhere. 

2. DEFINITION AND GENERAL FORM OF LINEAR TRANSPORTS 

ALONG PATHS IN VECTOR BUNDLES 

By (E,rr,B) we denote a general real vector bundle (5,6), 

p.44. Here the base Band the total bundle space E are topo­

logical spaces, the projection rr:E-B maps E onto Band the 

structure of E is such that the fibres rr- 1 (x)cE, xeB are 

isomorphic real vector .. spaces. By J and 7:J-B we denote, 

respectively, an arbitrary real interval and a path in B. 

Definition 2.1 of Ref. [3] describes the s-transports 

along paths in tensor bundles as maps having the mentioned in 

it properties. A simple overview on them reviles that part of 

them are specific for the considered in [3] tensor bundles, 

" the other ones being independent of this fact. A deeper ana-

lysis of the above-cited definition shows that its straight­

forward generalization leads to the concept of a linear tran­

sp;rt along paths in vector bund~'es which is fixed by 

Definition 2.1. A linear transport (L-transport) along 

paths in·· the. real vector bund.le (E, rr, B) is a map L which to 

any path 7: i-B assigns a map L7 , L-transport along 7, s;ch 
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that ,Lr.: (s, t) -L: -)t, . where for every s, tEJ the map 

Lr :rr- 1 ('r(s)) -rr- 1 (7(t)), 
s~t (2. 1) . 

called an L-transport along r from s tot, has the following 

three properties: 

Lr· (i\u+µv)=i\S 7 u+µs 7 v, i\,µEIR, u,verr- 1 (-r(s)), (2.2) 
s ---H B ~t s ~t 

Lr oLr =L7 , r,s,teJ, 
t --+r s ~t , s, ~r (2.3) 

Lr =id 
• -· rr-1(,(s)) 

(2.4) 

where idx m:ans the identity map of the set X. 

Remark. If in this definition we admit (E,rr,B) to be a 

complex vector bundle [6] and i\,µEIC (instead of i\,µEIR), we 

get the definition of a (IC-)linear transport along paths in 

complex vector bundles. Almost all further definitions and 

results are valid also in the complex case (and, ge~erally~ 

in a case of.· an arbitrary field IK) but, for the sake of 

shortness, we shall investigate only the real case. 

Evident examples of L-transports along paths are the 

considered in [ 3) restrictions of S-transports' on concrete 

tensor bundles. 

Putting r=s in (2.3) and using (2.4), we get 

(·r J-1 r L =L , s, teJ. 
s -)t t -)s (2.5) 

So, the linear ti:ansports along a path are linear iso-

morphisms of the fibres over the poi,nts of that path. 

The following two propositions establish the general 

form of the linear transports along paths. 

Proposition 2.1. A map {2.!) is a linear transport along 

7 from s tot for every s,tEJ if and only if there exist an 
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isomorphic with rr- 1 (x), xeB vector space Vanda family of 

linear isomorphisms {F7 :rr- 1 (7(s)) -v, seJ} such that 
s 

L' =(F'f 1 o(F') s tEJ. 
B --.+t t ■ I I 

(2.6) 

Proof. If (2.1) is an L-transport along 7 from• s tot, 

then fixing some s
0
eJ and using (2.3) and (2.5), we get 

L7 =L7 oL7 =(L7 J- 1 oL7 , i.e. (2.6) holds 
s -+t s

0 
---+t a ---+s

0 
t ---+s

0 
s ---+s

0 

for V=rr- 1 (7(s )) and F7=L7 . On the contrary, if (2.6) is a s s ---+s
0 

valid for some linear isomorphisms F7 , then a straightforward 
s ' 

calculation shows that it converts (2.3) and (2.4) into iden-

tities and (2.2) is true due to the linearity of F7 , 
s 

i.e. 

L7 is an L-transport along 7 from s to t fo'r every 
s ---H 

s,teJ. ■ 

Proposition 2.2. Let in the vector bundle (E,rr,B) be 

defined an L-transport along paths with a representation 

(2.6) for some vector space V and linear isomorphisms 

F::rr- 1 (7(s)) -v, seJ. Then for a vector space Y ther~ exist 

linear isomorphisms E7 : rr- 1 (7(s)) ~Y. seJ for which 
s 

L7 =(F7)- 1 o(F7) s teJ. 
s ---+t -t -s , ~ 

(2,7) 

iff there exists a linear isomorphism D7:v-y such that 

F7=D7 oF7 , seJ. 
-s s 

(2.8) 

Proof. If (2.8) holds, then substituting F7=(D7)- 1F7 
s -s 

into (2. 6), we get (2. 7) and vice versa, if: ·c2. 7) is valid, 

then from its comparison ·with (2.6) follows D7 :=<E:)(F:)-1 = 

=<E:HF:)- 1 to be the needed (independent of sand t) isomor-

phism. ■ 

So, the linear transport along 7 forms tot decomposes 

into a composition of linear maps depending separately on s 
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and t (cf. proposition 2.1), the arbitrariness of these maps 

being described by eq. (2.8) (see proposition 2.2). 

For some purposes is useful the linear transports along 

paths to be described by their matrix elements in corres­

ponding bases, which we are going to do now. 

Let {e
1
}, where here and henceforth the Latin indices 

run from 1 to dim(rr- 1 (x)), xeB and the usual summation rule 

from 1 t'o dim(rr- 1 (x)) over repeated on different levels in_: 

dices is assumed, be a field of bases along 7:·J -a, i.e. 

for every seJ the set of vectors {e
1
(s)} to be a basis in the 

vector space rr- 1 (7(s)). 

Due to (2.1), we have L7 :______ e (s)Err- 1 (7(t)), hence there 
s~t 1 

exists a unique matrix H(t,s;7):=UH1 (t,s;7)ll such that 
• J 

7 ,: '' J ; 
L e (s)=H (t,s;7)e (t), s,teJ. •-t 1 ,1 J 

' ,.. ') ' ~ 

(2.9), 

From here. immediately follows that H\ (t, s; 7) are ele:­

ments of a (two-point) tensor from the tensor.space rr- 1 (7(t))® 

®(rr- 1 (7(s)))*, where ® is the tensor product sign and the 

asterisk.means the dual of the corresponding vector space. 

Definition 2.2. The matrix function H:(t,s;7)­

-H(t,s;7), s,teJ will be called a matrix of the considered 

L-transport along paths. 

The matrix of the L-transport 'uniquely' defines its ac-
. ,· · 1 ·-1 ' ; · 

tion. In fact, if u=u e
1 
(s)err (7(s)), then from (2. 2) · and 

(2. 9), 'we 'get 

i 7 u=H 1 (t s• "')UJe ·(t). 
a---+t .J ''" l 

(2.10) 

In terms of the mat~ix 'functi<;>n H, due to'. (2. 9); the basic 

properties (2.3) and (2.4) take, respectively, the }o~m 

H(r, t; 7)H(t, s; 7f=H(r/s; 7), r, s, teJ, (2.11) 
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H(s,s;7)=D, seJ, (2.12) 

where o is the unit matrix and in the matrix multiplication 

as a first matrix index the superscript is understood. 

On the contrary, due to (2.10), from (2.11) and_ (2.12) 

follow, respectively, (~.3) and (2.4). So, we have proved 

Proposition 2.3. A linear map (2.1) is a linear trans­

port along 7 from s tot iff its matrix H, defined by (2.9), 

satisfies (2.11) and (2.12). 

Let us introduce the matrices F(s;7):=IIF1 (s;7)~ and 
. • j 

I ff I I E.(s;7):=IIE._/s:7)u, where F_
1
(s;7) and E._/s:7) are the 

matrix elements, respectively, of the maps F7 and F7 , i.e. 
s -. 

F!e/s)=:F\(s;7)1
1 

and E.!e
1
(s)=:.E.\(s;7)1_

1 
in which {1

1
} and 

{1
1

} are, respectively, bases in V and y_. Then, using (2.2) 

and (2.9), we see that in terms of matrix elements 

propositions 2.1 and 2.2 are, respectively, equivalent to 

Proposition, 2;4. The linear map (2.1) with defined by 

(2.9) matrix elements in some bases is an L-transport along 7 

from s to t iff there exist nondegenerate matrices. F( s; 7), 

sEJ such that 

H(t,s;7)=(F(t;7))- 1F(s;7), s,teJ. (2.13) 

Proposition 2.5. Let the matrix Hof some L-transport 

along paths has the representation (2.13). Then for certain 

nondegenerate matrices E.(s;7), seJ is valid the equality 

H(t,s;7)=(.E.(t;7))- 1.E.(s;7), s,teJ (2.13') 

_if and only if. there exists a nondegenerate matrix D(7), de­

~ending _only on 7, such that 

.E.( s; 7) =D( 7) F( s; 7)., ?EJ, detD( 7)_¢0, 00 •. (2.14) 
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3. SPECIAL BASES FOR LINEAR TRANSPORTS ALONG PATHS 

Special bases for an L-transport along paths we call 

bases in which it (generally locally; see below) looks like a 

parallel transport in an Euclidean space. The existence of 

such bases is expressed by 

Proposition 3.1. For every L-transport along a path 7 

there exis't. ·a basis in which- the trapsport• s matrix is unit. 

If-· fn· ~ given basis al,ong ·a· path ··7 ·the· ma-trix·.or" some L­

transport is constant or depends only on 7, then it is unit. 

All bases along 7 in.which the matrix of an L-transport is 

unit are obtained from the above one, and, consequently, from., 

'' one another, by a nondegenerate linear transformations with 

constl~t or' depending on 7 coefficients. 

As from the view point of the applications this propo­

sitio~ is' an impor.tant ·one, we shall give two its proofs. The 

first proof a·dmi ts a straightforward application fo,r diffe­

rent purposes, and the second one distin:guishes by its 

shortness and clearness. 

Proof 1. Let {e
1
(s)} be an arbitrary basis in rr- 1 (7(s)) 

and {e1 (s)} be its dual basis, seJ. By proposition 2.4 there 

exist nondegenerate matrices F(s;7), 

I . ' -1 I . k •• H ( t, s; 7) = ( ( F ( s; 7) ) ) ( F ( s; 7) ) ; If the 
• J . • k •• _J 

seJ are defined through 

e
11 

(s):=0
11 

(F(s;7)) 1 e 1 (s)), 
· I .I 

~$ ~ .. 
! • : 

seJ, 

bases 

such that 
1'' . 

{e (s)}. 

(3.1) 

where 51 are the Kronecker deltas (o 1=1- f:~r-- i=j and o 1=0 for 
I · I I 

i;tj);, then 
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.. -1 J e1,=o1,((F(s;7)) >_ .. e
1 

(3.2) 

and due to the fact that. H1 (t, s; 7) 
• J 

are components of a 

tensor from rr- 1 (7(t))®(rr- 1 (7(s)))*, we get. 1' H_ 
1
,(t.,s;7)= 

=[0~
1 

(F(t;7))~
1
][0;,((F(s;7))- 1

)~
11

]H'.
1
(t,s;7)=0~, i.e. in the 

basis {e
1
,} the matrix of the considered L-transport along 7 

is unit. 

Let now in {e
1

} to be fulfilled H(t,s;7)=A(7), A( 7) 

being a nondegenerate matrix depending possibly on the path 

7. According to (2.13) A(7)=(F(t;;))- 1F(s;;) and consequently 

F(s;;)=A(;)F(t.;;)=:B(7), where, due to the arbitrariness of s 
-1 and t., B(7) depends only on 7. Hence H(t.,s;7)=(B(7)) B(7)=D 

. and taking into account the above definition of {e ,(s)}, we 
• . , I .. 

get e =(B(;)) 1 0
11 

e, which shows that all bases in which. the 
J • J I I 

matrix of the L-transport is constant (unit) are obtained 

from {e
1
,(s)} by linear transformations with constant or de­

pending on the path coefficients, flO they themselves -are 

connected with such transformations. To enci this proof it 

remains only to be noted that due to (2.14) the dependence of 

B(;) on; is insignificant and it may be considered only the 

case B(;)=const, which is . equivalent. to the not changing 

H(s,t;;) redefining F(s;;). ■ 

Proof 2. Let us fix s
0
eJ and a basis {f;} in rr- 1 (;(s

0
)). 

Along 7:J-B we define a basis {e;} such that in rr- 1 (;(s)) 

it has the form 

• f' '(s)•-I t e • - • ----+s 
I 0 

(3.3) 

I 7 e'(s)=I' oI 7 f'=I' f'=e'(t), • -t I s -t s -• I s -t · I I 0 0 

Then 

hence, due to (2,9), the matrix of Lin {e;} is H'(t,s;;)=D. 

Let {e:} be arbitrary basis along; in which the matrix 
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of Lis H(t.,s;7)=B(;) for some, may be depending on;, nonde­

generate matrix B(;). Then there exists a nondegenerate 

matrix ~A-1(s;7) 11 such that e'(s)=A1(s;;)e'(s). The substitu-
1 U I I J 

t.ion of,the last equality into I' e'(s)=(B(;)) 1e 7(t) (see ·· · •-t I · · I J 

(2.9)), due to (2.10),. gives A1(s;;)=(B(;))kAJ(t;;); From 
• I ·· I k . 

here for t=s, we get _l3(7)=D, so the. same equality i:-educei; te> 

A1(s;;)=A1(t.;;) and consequent.ly.A1(s;7) are constants. or may 
· I I - · I • ·· . · 

depend only on;. ■ 

In connectio.n with the fact .that generally the, .global 

version of proposition 3.1,,which will.be considered else-:­

where, is not. tz:ue it is. convenient. to be, introduced .the 

concept o_f · an Euclidean case concerning L-tra_nsports along 

paths, i.e. whep in ,.a vector. bundle _(E, rr, B)_ is given an 

Euclidean (_L-)t.ransport along pa~hs defined~y 

Definitio_n . 3, 1. An L-transport. . in a vector bundle 

(E,rr,B) is .Euclidean over the set. UcB, or it _is-.Eucli_dean if 

U=B, if in rr- 1 (U) .. there exists a field of bases {e }, i.e. . . . .. , I 

{e
1
(x)} ,is a basis in rr- 1 (x) for xeU, .in which; the, matrix of 

the transpo;t is unit along any path,in U,-.i.e.,. if. ;:J-B 

and there is ._an IR-interval J' cJ such that ;(J'·)cU, then 

H(t,s;7)=D, for s,teJ'. 

Definition 3,2. Let {e
1

} be a basis in a vector bundle 

(E,rr,B), i.e. {e (x)} is a basis in rr- 1 (x),1 xeB. A, generated . I . 

by.(associated to) {e
1

} Euclidean (L-)transport in (E,rr,B) is 

an .L-transport .in· this. fibre bundle the matrix of which in 

the,basis {e
1
}:along any path is-unit, i.e .. H\(s,t;;)=o~. for 

every:path.;:J-B'·and-.every.s,teJ. 

The name "Euclidean transport" is connectedc,_with the 

fact that if above we put B=IRn and identify T (IRn) and IRn, 
X 

then in any orthogonal basis, i.e. in Cartesian coordinates, 
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the Euclidean transport coincides with the standard parallel 

transport in IRn under which the vector's components are left 

unchanged. 

Proposition 3.2. Every basis in a vector bundle gene­

rates a unique Euclidean transport in it. The opposite state­

ment being valid only locally, i.e along a given path. 

Proof. The first path of the proposition is a corollary 

of proposition 2.4 and definition 2.2. 

By proposition 3.1 for every L-transport along a fixed 

path there exists a basis along it in the bundle in which the 

transport's matrix is (locally) unit and, hence, the genera­

ted from this basis Euclidean transport along the pointed 

path coincides with the initial L-transport. ■ 

The importance of the last proposition is in the fact 

that in the above sense fillY L-transport is locally Euclidean. 

Proposition 3.3. Two (or more) bases generate one and 

the same Euclidean transport in a given vector bundle if and 

only if they can'be obtained from each. other through linear 

transformations with constant coefficients. 

Proof.· This result is a direct consequence from proposi­

tion 2.4 and definition 3.1. ■ 

The-above results show that any L-transport is Euclidean 

over ·any point of the base (see (2.12)), as well as over an 

arbitrary path in'it (see proposition 3.1). For other subsets 

UcB this is, generally, not true. In particular, for U=B ana­

logous result holds only· for "flat'! L-transports, whose cur­

vature operator vanishes, a result which will be establish in 

another paper. 
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4. THE EQUIVALENCE OF LINEAR TRANSPORTS 'ALONG PATHS 

AND DERIVATIONS ALONG PATHS 

Let a linear transport along paths L in the vector 

bundle E=(E,rr,B) be given. Let it to be smooth of class c1 in 

a sense that such is its matrix H with respect to its first, 

and consequently to its second (see .. (2.13)), argument.· Let 

El :=(rr-
1
-(7(J)),rrj 

1
,7(J)) be the restriction of E on 7!J) 7(J · · · 

the set 7( J_), defined by ,the path 7: J ~B. Let S,ec( E) ( resp. 

Seck(E)) be the set of all~(resp. of.~lass Ck) sections of E 

[ 6, 1]. 

Definition 4.1. The derivation along paths generated by 

Lis a map V s~ch_ that V:7-V7 , where the assigned to a,ny 

path 7 map 

v
7
:sec

1 (El 71 J 1 ) -sec(El
7

u
1
), (4.1) 

called derivation along , 7 generated by, ,L; ·for every 

ueSec
1

(EI ) is defined by v 7:u-v7u in which for s,s+ceJ 7(J) 

. (V
7
u)(7(s)):=V7u:=lim [!(L7 cr(7(s+c))-u(7(s)})], 

·· __ s, C s+C~s ,. 
C-0 

, , (4.2) 

The derivative of u along 7 with respect to L is v 7 i, ' 

whose· value at 7(s),' i.e. , (V7u)(7(s)), is determined• by the 

map 

v:: Sec
1
(Ej 71 JJ) ,-:.·;-m~

1
(7(s)). (4.3) 

The limit ·in (4.2)', due to the above condition of 

smoothness,· aiways' exi'sts. ":_l,!,' 

Proposition"4.'1: .The. derivation v 7 is an IR-linear map, 

i.e. for',\ ;;\,-'EIR anc:i u ,u·eSec1(El.,.,J)y·rs fulfilled , 
1 2 · 1 2 · • · 

If, 



i 

'D7 0,. CT H. CT )=;\. 'D7 CT +A 'D7 CT , 1 ·1 2 2 1 . .1 2 2 
(4.4) 

and its value at every teJ satisfies the identity 

'D7 oL7 =0, s,teJ. 
t a ---+t (4.5) 

Proof. (4.4) and (4.5) follow from (4.2) and, respec­

tively, (2.2) and (2.3). ■ 

Let along 7: J -B be given a field of bases {e
1
}, i.e. 

{e
1
(s)} to be a basis in rr- 1 (7(s)), in which the L-transport 

along paths L to be defined by its matrix H:(t,s;7)1---+ 

.. I B 1---tH(t,s;7):=fiH (t,s;7) . Then along 7 every CTESec(~I < 
1

) 
.J 7 J 

has a unique representation in the form CT=CT
1e, where 

• I 

CT 1 :7(J) -Rare the components of CT in {e
1
}. Hence CT(7(s))= 

=CT1 (7(s))e (s) and from (4.2) and (2.10), we get 
I 

('D7 CT)( 7( S)) : ='D7 CT=('D7 CT)1 e ( s) = 
s s I 

=<!ccI.H'.;<s,s+c;7)CT1(7(s+c))]}lc=Oel(s). 
j 

From here immediately follows 

Proposition 4.2. The· explicit action of 

eSec1~1 71 J
1

) is 

'1)7 

· ('D7CT}(7(s))=[dCT
1 

~!(s)) + r\ (s; 7)CT1(7(s)) ]e/s), 

where 

aH1.(s,t;7) 

1 
r 1 

( S; 7) : =-----'• j'-----

• j at t=s 
= 

aH1. (t, s; 7} 

1 

. 
• j 

at 

(The last equality follows, e.g., from (2.13).) 

(4.6) 

on CTE 

(4.7) 

(4.8) 

,It _is convenient in any basis to introduce the matrix 

function r 7 :st---tr7(s):=fir\(s;7)ft, sEJ. If the matrix.Hof 

the linear transport along paths has a representation (2.13) 

(see proposition 2.4), then, due to (4.8), we obtain 

12 

J 
IJ 
1 

) 
d 

ll 
( 

r (s) H(s,t;7)I =F-1(s•¥) dF(s;7) 
7 at t=s • • ds (4.9) 

As we shell prove (see below proposition 4.5) the quan­

tities (4.8) give an adequate description of.the transport L. 

They also have a sense of a "dependin~ on the path 7 coeffi­

cients of a linear connection" (cf. [6, 1]) which is confirmed 

by 

Proposition 4.3. Let the basis {e (s)} in rr- 1 (7(s)) be. 
. 1 . 

changed to {e
1
,(s)=A~,(s)e

1
(s)}, A(s):=IIA~,(s)ll being a 

nondegenerate matrix and A-1(s):=fiA
11 

(s)fi. The transformation 
I . . 

{eJ-{e
1
,=A:,e

1
} l.eads to the transformation of Hand r 7 , 

respectively, into 

'H' (s, t; 7)=A-1(s)H(s, t; 7)A(t), 

r'(s;7)=A-1(s)r(s;7)A(s)+A(s)-1 dA(s) ds 

which in component form, respectively, read 

I I I I j I 
H ,(s,t;7)=A (s)A ,(t)H (s,t;7), 
.. J I j .j 

I • 
1 1 1 1 1 1' dA ,(s) 

r __ 
1
,(s;7)=A

1 
(s)A~,(s)r./s:7)+A

1 
(s) -~s 

,•, (4.10) 

"(4.11) 

(4.10') 

,(4.11') 

. , I . 
Proof. Eq. (4.10) expresses the fact that H (s,t;7) are 

• j 
1 1 . '. .( * 

components of a tensor from rr- (7(s) )®(rr- (7(t))) and eq. 

(4:11) is a corollary of (4.10), ·c2.12) and (4.9). The equi­

valence of (4.10) and (4.10') and (4.11) and (4.11') follows 

from the definitions of the corresponding matrices. ■ 

So, any (smooth) L-transport along paths generates along 

every path 7 functions (4.8) transforming according to 

(4.11'). Here, naturally, arises the opposite problem. Let 

along every path 7 in any basis {e} along it be defined fun-
1 . 

ctions r 1 (s;7) which, when the basis is changed, transform 
• j 

13 
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through (4.11'~. Does ther,e exist a·n L:-transport along paths 

generating these functions by means of eq. (4.8)? The answer 

of this question is given by 

Proposition 4.4. Let in any basis {e
1

} along a path 

7: J -B be given ( continues with respect to s) functions 

r 1 (s;7) ~hich, ·when {e} is changed, have the transformation 
• J I 

law (4.11') and r (s):=~r1 (s;7)1l. Then there exists a unique 
7 . '. . J 

L-transport along paths 

(4.9) and the matrix 

=F- 1 (s; 7)F(t·; 7), is 

generating along 7 the matrix r
7 

by 

of which, H:(s.t;7)1----?H(s.t;7)= 

H(s.t;7)=Y(s,s
0
;-r

7
)[Y(t,s

0
;-r

7
)]- 1

, s, tEJ, (4.12) 

where •.s
0
eJ is• fixed and for any continuous· matrix function 

Z:sl--)Z(s) the matrix Y:=IIY
1
Jll:=Y(s.s

0
;Z) is the unique 

solution of the initial-value problem 

dY ds-Z(s)Y, Y=Y(s.,s
0
;Z), seJ, (4.13a) 

Y(s
0

, s
0
;z);,D. (4.13b) 

Proof. Let us note at the beginning· that the existence 

and uniqueness of the, solution of (4.13) is proved in [7]. 

At first _we_ shall P;ove that (4.12) is the unique solu­

tion of (4.9) when r is given. In fact, ·using H(s.t;7)= 
', ', ' 7. ' . 

=F- 1 (s; 7)F(t; 7) (see proposition 2.4) and dF- 1 /ds= 

=-F- 1 (dF/ds)F- 1 [8], we see eq. 
, .. 

equivalent to the equation ,, . 

(4.9) with respect to H to be 

d~-<~; ;)/ds=-r (s; 7)~- 1 (s; 7). 
., .1 • ' i _, • 7' - . 

Arbitrary fixings eJ and comparing this equation (with res-
·: . •.- . . , .. , :,O· . • . . • / . , , 

pect to F- 1
) with (4.13), we see that it's solution is 

. . . . . 

f"~_\s;7)=(;~~;~a;-r7 ). Substituting this expression for F-
1 

into (2.13), we get (4.12), which is independent of the con-
' (' l ' 

crete choice of F(s
0
;7) and s

0 
(see proposition 2.5 and the 

given in [7] properties of Y). 

14 

So, in any fixed basis only the matrix (4.12) generates 

the given r 
7 

by ( 4. 9). Hence ,defining an. L-transport along 

paths which is such that in some basis has·a matrix(4.12),we see,in 

conformity with (4.10) and (4.11), that in every basis along 

7 it generates the functi ens r 1 
( s; 7) through ( 4. 8) . . By con-

. . • J 

struction this L-transport along paths is unique. ■ 

From propositions 4,3 and 4.4 directly follows 

Proposition 4.5. Let in any basis along 

7: J -B be given a set. of functions {r\ ( s; 7)}. 

every 

Then, 

path 

when 

the basis is changed, they transform in accordance with 

(4.11') iff there exists a (unique) linear transport ·along 

paths generating them through its matrix by (4,8). 

Consequently, the definition of an L-transport along a 

path 7 is equivalent to the definition in any basis along 7 

of functions r' (s;7) having the transformation law (4.11'). 
. J 

This is a reason to give 

Definition 4.2. The functions r\ : < s; 7) ~r\ < s; 7 > 

assi_gned to any linear transport along paths through (4. 8) or 

defining such a transport by means of (4.12) will be called 

coefficients of that L-transport along paths. 

In proposition 4.2 we saw that the coefficients r
1 

of . • J 

an L:-transport along paths_ uniquely define _the action of the 

operator {4.1). Besides, _i_f e
1
eSec(~l 7 <J 1 ) form a basis along 

7:J--+B, i.e. if {e (s)} is a basis in rr-
1
(7{s)), then (4.7) 

I ·. 

results in 

'D7e =(r ) 1 e 
J 7 , J I' 

which is equivalent to 

'D7e ~r1 (s•;)e (s) 
s J • J ' I 

{4.14) 

(4,14 1
) 

15 



and can be used as an equivalent to (4.8) definition of the 

coefficients r 1 (s;7). 
. j 

·As the coefficients r 1 (s; 7) give an adequate descrip-
• j 

tion of the L-transports along paths, the eq. (4.14) suggests 

that such a description can be done also in terms of opera­

tors ( 4. 1) .with an "~ppropriate properties". Before formula­

ting the corresponding result we need to give one definition. 

If o-esec1
(t:j < ) and f:J-IR is a C1

. function, then .. 7 J) . 

from (4.7), we find 

D7(f.,o-)= ddf(s) •<1(7(s) )+f(s) • ('D7o-). (4.15) 
s s s 

If Bis a differentiable manifold, , is a C
1 path and 7 

is the tangent to 7 vector field, then (4.15) is equivalent 

to 

v{(f•o-)=(r(f))•o-+f•(D7o-). (4.16) 

Definition 4.3. A derivation along a path , (in the 

vector bundle E=(E,rr,B)) is a linear map (6 .. 1) 'satisfying 

(4.15) in· which 'D' is defined by D7o-:'=('D70-H7(s)) · for o-e 
s s 

esec1 
( E 17( J)). ' A ·:derivation along paths is a map assi~ning to 

any path a derivation along it. 
·. 

Evident example of derivations along a path are the de-
. .. ' .. . ' . : . . . ,· .. , , ~ 

rivations of the tensor algebra (over a manifold) restricted 
' '~ C ' > 

over that path [3,1), as well as the maps (4.1) generated by 

L-transports along paths by means of (4.2). 

Proposition 4.6. The map D7:Sec1 (EI ) -sec(EI ,> 
7(J) 7(J 

is a derivation (in a sense of definition 4.'3) iff there 

exists an L-transport L7 along 7 generating it through (6.2). 
i >- • I ' 

Proof. If D7 is generated through ( 6. 2) by some L-

transport along 7, then, as we proved, it satisfies (4.4) and 

(4.5), so it is a derivation along 7. Vice versa, let 'D7 be a 

16 

derivation along 7. Defining the functions r 1 
( s; 7) through • j 

(4.14') in any basis along ,, we find, due to (4.4) and 

(4.15), the eq .. (4.7) to be valid in any basis {e
1

} along 7. 

Thus we see that in the basis {e ,=A1 ,e} is fulfilled 
I I I 

r 1 ' ,(s;7)e ,(s)='D7(e ,)='D'(AJ,eJ) 
•• J I B j s J· 

and using (4.4) and 

1 1 I (4.15), we get that r , and r are connected by eq. 
•• j • j 

(4.11'). Hence, r'.J are coefficients of _some L-transport 

along paths L, which by .proposition 4.5 exists, is unique, 

and.generates them through (4.8). Besides, by· proposition 

4.2, the action of the assigned to it operator (4.1) is given 

also by (4.7), i.e. that operator, given explicitly by (4.2), 

coincides with D7 . ■ 

In the above proof of proposition .4. 6 we saw that for 

any derivation 'D7 along 7 its action is uniquely defined, by 

the functions r 1 , determined uniquely by (4.14'). That is. 
• j 

why we call them coefficients of D7 . From proposition 4.4 and 

the same proof immediately follows 

Proposition 4. 7. Every L-transport L 7 along 7 defines 

through (4.2) a unique derivation along 7. whose. explicit 

action is given by (4.7) and whose coefficients coincide with 

those of L7 and, vice versa, any derivation D7 along 7 

defines a unique L-transports along 7 who generates D
7 

by 

{4.2), whose coefficients coincide with those of 'D' and whose 

matrix is given by (4.12). 

Practically, the last proposition establishes the equi~ 

valence between the set of all linear transports along paths 

and the.one of all derivations along paths. 
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5. com:LUDING REMARKS 

We defined the linear transports along paths in vector 

bundles as maps satisfying part of the basic axioms of the 

s-transports (parallel transports generated by derivations of 

tensor algebras) [3]. The ties of the L-transports aiong 

paths with the connection and parallel transpo_rts_ th'eor-i·es' 

will be examined from a more general- view-poillt elsewhere-.· 

Here we- want only to present ·these connections in the special 

case - of: linear connection and the corresponding to them 

parallel transports. 

Let the base of the vector bundle (E,rr,B), i.e. B, be a 

differentiable manifold and' -r: J-B be a -C1 path 'in it with 

a: tangent vector field -i-. Let us consider those ·-L-transports 

along- paths whose coefficients in some basis_ along; i have the 

form, 

dim ( B) 

r\c~:-r>=. l r\a<-r<s>>,;.a<s>. (5.1) 

CX= 1 

where r'. J<X: 7( J)~IR, i,j=1,: .. ,dim(rr- 1 (x)), xeB, ex= 

=1, .· .. ,dim(B) are some rea_l functions and ,;.cx(s) are the local 

components of r(s) in some basis in the tangent to B space at 

-r( s) • 

Proposition 5.1. If the representation (5.1) holds in 

one basis {e} along -r, then it is true in a basis 
I 

{e ,=A1-;e} along -r iff under the change- of the bases 
I I I 

{el }·-{el I} and of the coordinates {x(X} -{xcx'} - in a 

neighborhood of x=-r(s)EB the {unctions r 1 ' (x) trans{orin· iiito· . Jex 

-1 
d I m ( 7I ( x )) (d I m ( B ) ) 

1' 1' J axa 1 
r , , (x)= ' ' A (s)A , (s)--;;;-, I r (x) + 
.. J_CX L. L. I J ·ax~ X .JO: 

I , J = 1 <X= 1 
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- 1 
d I m ( 7I ( X) ) , aA I , ( s) 

+ ' A
1 

(s) J I , x=-r(s)eB 
L. 1 axa x 

(5.2) 

I= 1 

the right-hand-side of which depends on the map -r only 

through the point x=-r(s). 

Proof. The proposition is a consequence of the substi­

tution of (5.1) (in {e1} and in {e
1
,}) into (4.11'). ■ 

The transformation law (5.2) is a straightforward gene­

ralization of the one of the coefficients of a linear connec-

tion [1,2]. 

In particular, if (E,rr,B) is the tangent bundle to the 

manifold B, i.e. E=T(B) and rr- 1 (x)=T (B). XEB, then dim(B)= 
X 

=dim(rr- 1 (x)), xeB and putting A:' (s)=ax1' fax 1 lx='l'<s> in 

(5. 2). we see I 
that r.Jcx(x), i,j,cx=~ •... ,dim(B) are coeffi-

cients of a linear connection ( covariant differentiation) V 

[i]. In this case, due to (4.7), the assigned to the trans­

por_t operator 'D7 is simply V., the covariant differentiation 
1' 

along 7, and hence the transport itself _coincides with the 

corresponding to V parallel transport [1] (cf. [4]. Sect.5). 

In Sect. 3 we proved that for any liner transport along 

a path -r -in a vector bundle there is along -r a class of 

special bases in which the transport's matrix 'is unit, i.e 

H(s,t;-r)=D. In every such basis the transport•s coefficients 

vanish as in them (see (4.9)) 

r7's)=an/as=O (5.3) 

and vice versa, __ any basis in which ( 5. 3) h_olds belongs to -

this class. 

So, in these bases (4._7) is equivalent to 

I 
('D'l'u)(-r(s))= du ~!(s)) e1(s), 

19 

(5.4) 



i.e. v7 behavas like a derivative along 7 of vectors in an 

Euclidean space (in Cartesian coordinates). 

Thus we proved 

Proposition 5.2. In a given basis along a fixed path the 

following three statements are equivalent: 

a) The matrix of the L-transport is unit. 

b) The coefficients of the L-transport vanish. 

c) The action of the assigned to the L-transport deriva­

tion reduces to a simple derivation of the components of .the 

sections with respect to -the path's parameter, i.e. (5.4) 

.holds. 

If in a vector bundle over a manifold the coefficients 

of an L-transport alpng paths have the form (5.1) in some of 

the .. above special along 7 bases, then (5.3) leads to· 

d Im ( B) : . , , 

\' r 1 (7(s))7<X(s)=O, i, j=1, ... ,diin(rr- 1 (7(s))). (5.5) L . J<X 
. <X= 1 .' 

But, nevertheless of the arbitrariness of 7, from· here 

does not follow r 1 (7(s))=O as the basis itself, generally, , . J<X . " .. 

depends on the path, 7. 

In this connectio~ let us no;te that bases .in which 

(5. 3), or in some more special cases (5. 5), is _valid, are a. 

far going ge_ne_ralization, of the coordinates ( or base:3) in 

which the,.component~ of a symmetric affine connection vanish 

[ 2]. _,, 

Let us also mention that to operation~ with vector 

bundles_ endowed with transports a_long pa.tbs there correspond 

analogous operations.with these transports. In particular, to 

':he .. direct_sum_and the_tensor product of vector bundles [6] 

correspond, _respective1y;:'the direct ·sum and the tensor pro­

duct'Of the linear transports in.them, the matrices of which 

20 

are, .respectively, the direct sum and the tensor product of 

the matrices of the initial transports along paths. 

More-concrete properties of the linear transports along 

paths in vector bundles, suchas their curvatur~ andtorsion, 

as well as applications will be a subject of other works. 
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