


1. INTRODUCTION

The corresponding to linear connections parallel trans-
ports are 1inear isomorphisms between the tensor spaces along
the paths they act [1,2]. In the present work we appro—
priately generalize these'transports, preserving the property
that they are linear isomorphisms between vector spaces. As a
ground for this we take the basic properties of the consi-
dered in [3] (parallel) transports along paths generated by
derivations of tensor algebras. In some places we also follow
the idea of this reference by transferring mutatis mutandis
definitions and results. Part of the material of the present
investigation was realized, in‘the case of the tangent bundle
of a differentiable manifold in [4] That reference a1so.

contains possible applications to physics which, through some

- P

changes, have a place also w1th respect to this work

Fegne

In Sect. 2, we define and find the general, invariant

and in components, form of the 1inear'transports’along paths
1n vector bund1es. In Sect. 3,is proved the eXistence of ba-
ses in which these transports looh‘like a. usual parallel
transport in‘an Euclidean space. In the pointed sense every
linear transport along paths turns out to be locally (along
any fixed path) Euclidean. (In particular, this is true

for parallel transports generated by 1inear connections )
Sect -4 contains investigation of two equivalent descriptions
of the studied transports along paths. Firstly, the 1oca1
description in terms of their local coeffic1ents, which are

analogous to the ones of a 1inear connection, and, secondly,




. L]
the one in terms of derivations along paths in vector

bundles. At the end, in Sect. 5, some comments on the consi-
dered here problems are made. ‘

Many problems, such as the comparison with the general
connection s theory, integrability conditions (connected with
the concepts curvature and torsion) and application to
mathematical or physical questions, remain out of the f1e1d

of this paper and will be considered elsewhere.

2. DEFINITION AND GENERAL FORM OF LINEAR TRANSPORTS

ALONG PATHS IN VECTOR BUNDLES»

By (E n,B) we denote a general real vector bundle [5 6],
p 44, Here the base B and the total bundle: space E are topo—
logical spaces, the proJection n: E———eB maps E onto B and the
'structure of E is such that the f1bres n (x)cE X€B are
1somorph1c real vector;spaces. By J and r J-——%B we denote,
respectively, an arbitrary rea1 1nterva1 and a path 1n B
‘ Def1n1tion 2 1 of Ref [3] describes the S— transports
along paths 1n tensor bundles as maps hav1ng the mentioned in
1t properties. A s1mp1e overv1ew on them rev11es that part of

them are spec1f1c for the cons1dered in [3] tensor bundles,

the other ones being 1ndependent of th1s fact A deeper ana-

1ys1s of the above- c1ted definition shows that its stra1ght—

forward generallzation 1eads to the concept of a 11near tran-

sport along paths in vector bundles which is flxed by »
: Definition 2 1. A linear transport (L- transport) along

.paths 1n the real vector bundle (E n B) is a map L wh1ch to

any path 7 J-——%B as51gns a map LT L- transport along 7, such

i

that -L%: (s,t) ——L?

s —t* -Where for every s,teJ the map -

LY

e T HEEN i)y, T (2

called an L-transport along 7 from s to t, has the following

three properties:

7 T T -
Ls__ﬁt(xu+uv) AS u+uS . — eV A, MER, Uu,VeET l(r(s)), (2.2)
LY S X S 1 , T,s,ted :
t —r s —t s‘ﬁr' ' e ’ N N (2.3) .
7 P . . . ) ;
L, _,=id ; (2.4)

7l ris)
where 1d means the 1dent1ty map of the set X.
Remark. If 1n this definition we adm1t (E, n, B) to be a
complex vector bundle [6] and A, ueC (1nstead of A, MER), we
get the_definition of a (C-)linear,transport along paths‘in

complex vector bundles Almost all further definitlons and

$8

results are valid)also in the complex case (and, generally,)
in a _case of -an. arbitrary f1e1d K) but, for the sake: ofp
shortness, we sha11 1nvest1gate only the real case

Evident examples of L-transports along paths are the
considered in [3] restrictions of S-= transports on concrete
tensor bundles. . .

Putting r=s in (2.3) and using (2.4), we get

{LZ-—ﬂt]-l=LZ-—ﬂs' s, teJ. | (2.5)

So, the linean transports along_a pathrare linear iso-
morphisms of the fibres over the points of that path. )

The following vtwol propositions "establish the general
form of the linear transports along paths.

Proposition 2.1, A maprﬂgfi) is a linear transport along

¥ from s to t for every s,teJ\if and only if there exist an



isomorphic with n'(x), xeB vector space V and a family‘of

linear isomorphisms {FZ:n’l(r(s))-——av, s€J} such that

L:’ _n=(1:':')"o(F:'), s, ted. (2.6)

Proof. If (2.1) is an L-transport along 7 from's to't,

then fixing some s,€J and using (2.3) and. (2.5), we get

T 7 7 7 -1 .7 -
Ls t-Lso toL‘ so-[L: so] °Ls 50, i.e. (2.6) holds
-1 T T : . . s
for V=m (1(30)) and F_=L’ . + On the contrary, if (2.6) is

[}

valid for some linear isomorphisms F:, then a straightforward

calculation shows that it converts (2.3) and (2.4) into iden-

tities and (2.2) is true due to the 11near1ty of FT i.e.

LZ-—»@ is an L- transport along v from s to t for every

s,tel.m

Proposition 2,2, Let in the vector bundle (E n,B) be

deflned an L- transport along paths with a representatlon

(2.6) for some vector space 'V and linear 1somorphlsms

FT'n'l(r(s))-——ev s€J. Then for a vector space V there exlst»

linear 1somorphlsms FT n (7(s))-——4V seJ for whlch

‘LZ_,‘=(£Z)' o(E7), s,teJ. o , (2.7)

iff there exists a linear isomorphism DT:V-——eg such that

ET=p7oF7, seJ. ‘ © (2.8)

Proof. If (2.8) holds, then substituting Fi=(D")7'E’
into (2.6),‘we'get (2.7)'and’vice'versa, if°(2.7) is validq,
then from its comparison with (2.6) follows DT:=(£Z)(FZ)'1
=(EZ)(FZ)-1,t° be the needed (independent of s and t) isomor-
phism.n

So, the linear transport alongyv form s to t decomposes

into a composition of linear maps depending separately on s

and t (cf. proposition 2.1), the arbitrariness of these maps
being describeo by ed. (2.8) (see proposition 2.2). B

‘For some purposes is useful the linear transports along
paths to be described by .their matrix elements in corres-
ponding bases, which we are going to do now.

Let'{el}, where here and henceforth the Latin indices
run from 1 to dim(n'l(x)){ x€B and the usual summation rule
from 1 to dim(m"'(x)) over repeated on different levels in-
dices is assumed, be a field of bases along ¥:J—>B, i.e.
for every seJ the set of vectors {e;(s)} to be a basis in the
vector space n’f(%(é))- )

Due to (2.1), we have L7 L8 (s)en '(7(t)), hence there

exists a unique matrix H(t,s;#):=|n’ J(tgsi?)n such that = *

L ey oy, o e .
Ls——atel(?)’H.i(t'S’?)ej(t)f s, ted. ‘ (22?)

1From here;immediately,follows that~H?J(t,s;75¢arerelee
ments of a (tno-point) tensor. from the tensor;space'n’l(r(t))s
é(nﬁ(v(s)))*,'where ®7is the tensor product sign and the‘
asterisk:means the dual of the corresponding vector space.

Definition 2.2. The matrix function Hﬁ(t;s;r)k——a
—H(t,s;¥), s,ted willhbe called a»matrix of the considered
L-transport along paths.k .

" The matrix of the L-transport iniquely defines its ac-

tion.  In fact;.iffn=ule#s)éﬁd(f(s)); then from (2.2) “and
(2.9), We 'get o Heo

e ol . 3 EER
L. _nu-H_J(t.s.r)u e (v). (2.10)

In terms of;the‘natrik"funétion H, 'due to' (2.9)) ‘the basic

properties (2.3) and (2.4) take, respectlvely, ‘the form"

H(r, t; P)H(L, s; 9)=H(T,s;9), r,s,ted, . 7 (2.11)



H(s,s;7)=0, seJ, ' (2.12)
where I is the unit matrix and in the matrix multiplication
as a first matrix index the superscript is understood.

On the contrary, due to (2.10), from (2.11) and (2.12)
follow, respectively, (2.3) and (2.4). So, we have proved

Proposition 2.3. A linear map (2.1) is a linear trans-
port along ¥ from s to t iff its matrix H, defined by (2.9),
satisfies (2.11) and (2.12). _

.Let us introduce the matrices F(s;v):;ﬂFfJ(s;v)ﬂ and
E(si):=]E! (si®)], where F' (s;7) and F! (si7) are the
_matrix elements, respectively, of the maps FZ and EZ, i.e.
FZeJ(s)::FfJ(s;v);‘ and EZe)(s)::Ef)(s;v);r in which {11} and
{;l} are, respectively, bases in V and V. Tnen,‘using (2.2)
and 7(2.9), ‘we’ see that in terms ofvbnatrix elements
propositions 2.1 and 2.2 are, respectively, equivalent to

Proposition<2.4. The linear map (2.1) with defined by
(2.9) matrix elements in some bases is an L-transport along ¥
from:s to.t iff there exist nondegenerate matrices: F(s;7),
s€J such that

H(t,s;7)=(F(t; 7)) 'F(si7), s, ted. _ ©(2.13)

EVEEN

Proposition 2.5. Let the matrix H of some L-transport
along paths has the representation (2.13). Then for certain

nondegenerate matrices F(s;7), s€J is valid the equality

CH(t,s;9)=(E(t; 7)) 'E(siv), s,ted (2.13")
_if and only if there exists a nondegenerate matrix D(7y), de-
pending only on 7, such that

1 E(s;7)=D(7)F(si7), s€J, detD(7)#0,m. . ?';<z.14>

3. SPECIAL-BASES FOR LINEAR TRANSPORTS ALONG PATHS

Specfal bases for an L—transbort along paths we call
bases in which it (generally locally; see belon) looks like a
para11e1 transport in an Euclidean space. The existence of
such bases is ekoressed by . : .

Proposition 3.1. For every L-transport along a path v

Ethere ex1st a basis in which- the transport's matrix is unit.

If ‘in a glven basis along a path ¥ the matrix- of some L—‘
transport is constant or depends only on 7 then it is unit.
All bases along 7 "in which the matrix of an L- —-transport is

unit are obtained from the above one, and consequently. fromz

P

one another, by a nondegenerate 11near transformatlons w1thl
constant or dependlng on T coeff1c1ents ‘ ‘
Aé fromvthe view point of the applications‘this propo—
sition is'an important one, we shall give two its proofs. The .
first oroof admits a straightforward application for diffe—
rent purposes, and the second one distinguishes by its
shortness and clearness. - »
Proof 1. Let'(el(s)} be an arbitrary basis'in'n;l(v(s))“
and {e’(s)} be its dual basis, seJ.>ﬁy proposition 2.4 there
exist nondegenerate matrices F(s;7), s€J, such that
K (4 si9)=((Fesia) ™ ' (F(s; MYi 1 the pases {e'’ ()},

%

seJ’ are deflned through

o (syimst (Fesswtiele), | (3f15

where 5‘ are the Kronecker deltas (6 =1- for i= J and 6 =0 for

e

i#j)..then

-1



=5 . -1,) )
ej,-aj,((F(S.v)) )...e, (3.2)

and due to the fact that Hfj(t,s:?) are components of a
tensor from n"(?(t))@(ﬁ"(}(s)))*, we get Hflj,(t,s;7)=
=8} (F(t:9))! 1085 ((Flsia)) ™)) I (t,s50)=8), i.e. in the
basis {e,} the matrix of the considered L-transport along 7
is unit.

Let now in {ex} to be fulfilled vH(ﬁ,s;v):A(v), A(7)
being a nondegenerate matrix depending poséibly on the path
7. Accérdiﬁg to (2.13) A(r):(F(t;r))"F(s;r) angﬂcbnéeduently
F(s;}):A(v)F(t;v)::B(v), where, due to the arbit;arines;_of s
aéd t, B(?) depends only on ¥. Hence H(t,s:7)=(B(7))_lB(7)=u

»and ﬁakingtiﬁto accouﬁt the above defin;tion of {el,(s)}, we
get ej=(B(7))fJa:'e‘, which shows t‘hz_iﬂtiall bases in which the
matrix of the L-transport is constant (unit) are obtained
from {el,(s)} by linear transformatipns with constant or de-
pending on the path coefficients, jso they themselvest:gre

connected with such transformations. To ‘end this proof it

remains only to be noted that due to (2.14) the dependence of

B(7) on 7 is iﬁsignificant and it may be considered only the
cése B(7)=const, 4which is equivalent to the not changing
H(s,t; ) redefining F(s;7).m

Proof 2. Let us fix s €J and a basis {f{} in n'l(v(so)).
Along 7:J ——B we define a basis {e;} such that in»n"(v(s))

it has the form

AI . — 7 7

el(s)°"1-°—)-f: 4 (3.3)
T ’ 17 T s _7 Cfl=al

Then I- te‘(s)—Is ol f/=I f el(t),

—t 5 —3s 1 so—)t»l

hence, due to (2.9), the matrix of L in {e:} is H'(t,s;7r)=tL.

Let {e?} be arbitrary basis along ¥ in which the matrix

of L is H(p,s:v):B(v) for some, may be dgpending on 7, nonde-
generate matrix B(7). Then there exists a nondegeneréte
matrix ﬂA}(s;T)H such that er(s)=A:(s;v)e;(s). The substitu-
tion;ofgpne,last;gquality into IZ___qte?(s);(B(?)):ef(t) (see
(2.9)), due to (2.10),. gives A}(s;i7)=(B()){Al(t;7). From
here for t=s,.we get §(7)=n, so the same equality yedﬁceg to
Af(s:7)=A:(t;7) and consequentlyJA:(s;v):qre constants. or may
depend only on 7.m
.In connection with the fact that .generally .the, global
version of proposition 3.1,;wh;ch\willibe considered . else-
where, is not true it is. convenient to be. introduced ;he.
concept ‘of - an Euclidean case concerning‘L—transports;along
paths, i.e. when -in..a- vector bundle (E,n,B). is. given an
Euclideaﬁ,(L-)trgnqurt along paths defined. by, .
Definition .3.1, An L-transport .in a . vector ..bundle
(E,m,B) is .Euclidean over.the set UcB, or it is.Euclidean if
U=B, if in m '(U).there exists a field of bases {e}, i.e.
{er(x)}:is a basis in n'l(x) for xe€U, .in which;the,matrix:qf
the transpo%t is unit along any path-in U,-i.e.. if. ¥:J-—B
and there 'is .an R-interval . J’<J such that #(J’)cU,- then
H(t,s;»)=10, fof s,teJ’. o oo '
Definition 3.2. Let {e} bé a basis in a,vectar»buhdle
(E,m,B), i.e. {er(x)} is a basis in n"(x),%xEB. A; generated
by: (associated to) {el} Euclidean: (L-)transport in (E,n,B). is
an. L-transport .in-this. fibre: bundle the matrix of, which:in
the: basis {e’}:along any path-is.unit, .i.eu Hfj(s,t;r):&}\for
every.path.y:J—B"and-every. s, teJ.. o - . e L - .
The name  "Euclidean transport" is connected--with :-the
fact that if above we put B=R" and identify Tx(R") and R",

then in any orthogonal basis, i.e. in Cartesian coordinates,



the Euclidean transport coincides with the standard parallél
transport in R" under which the vector’s components are left
unchanged.

Proﬁosition 3.2. Every basis in a vector bundle gene-
rates a unique Euclidean transport in it. The opposite state-
ment being valid only locally, i.e along a given path.

Proof. The first path of the proposition is a corollary
of proposition 2.4 and definition 2.2.

By proposition 3.1 for every L-transport along a fixed
path there exists a basis along it in the bundle in which the
transport’s matrix is (locally) unit and, hence, the genera-
ted from this fasis Euclidean transport along the pointed
path coincides with’the initial L—traﬁsport..

The imbortance’of the last proposition is in the fact
that in the aboye sense- any L-transport ig locally Euclidean.

Proposition‘é.a.,Two (or mofe) bases ‘'generate one and
the séme Euclidean$transport in'a given vector bundle if and
only if  they qaﬁ*be obtained from each other' through linear
trahsformationé with;cbnstant coefficients. '

Proof. This result is a direct consequence from ‘proposi-
tion 2.4 and definition 3;1.i

-The -above ‘results show that any L—transpoft is Euclidean
over ‘any point‘of the base (see (2.12)), as well as over an
érbitrary path in‘it (see proposition 3.1). For other. subsets
UcB this is, generally, not true. In particular, for U=B ana-
‘logous result holds only for "flat" L-transports, whose cur-
vaturé operator vanishes, a result which will be establish in
énother‘paper, - 4 : o ) o

"
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4. THE EQUIVALENCE OF LINEAR TRANSP&RTS&ALONG PATﬁS

AND DERIVATIONS ALONG PATHS

Let a linear transport along paths“i in the ‘Qeétor
bundle‘E=(E,n,B) be given. Let it to_be‘smooth of class C! in
a sense that such is its matrix H with respect to its‘first,
and consequently to its second (see. (2.13)), argument.- Let

EIT(JY s=(n (2 ()), | »¥(J)) be the restriction of ¢ :qnﬂw

7
the set v(J)»defined by the path 7:J-—eeB. Let sec(g) (resp.. -

Sec (E)) be the set of all. (resp of class Ck)xsections<o£a6u,
s, 1. :

P ) L . P
. 8

Definition 4.1. The derivation.along paths generated by ‘.

H

L is a map D such, that D:TF——ADT, where the assigned to any ..

paﬁh ¥ map

N s
b)) .Sec‘(s|7m)——»Sec(slyu,), (4.1)

called derivation along ¢ ¥ generated by fo . for every

oeSec! (EIT(J)) is defined by D7 Uh——%DTU in whlch for s,s+cel

(P?G)(j(S)). o:=lim [ (LZ“_.__) cr(fr(s+c)) cf('r(s)))] \,.'(4\4,-2)

£—0

The .derivative of ¢ along ¥ with respect to L is DV

whose' value at y(s); (Dva)(v(s)), “is determined by ‘the

map

. 1 .
D :sec (£ m)—m (7(s)). . L (4.3)
Thg\ limit;iipn,(4.2f, due to 'fhe above condition :of

[T wo e

smoothness, ' always’ exists. == i Gl R
Proposition’ 4.1:" The derivation ¥ is an R-linear ‘map,

i.ei for 2, h €R and a a esec’ (E] ) is fulfillea .

ren

L3 - B el - o [T . ie o

EREE ] R o

1%



¥ _ 7T 7
D (Alq1+lzqz)-llzyql+azﬂ T, o (4.4)
and its value at every teJ satisfies the ldentity

pfoL? | =0, s, tel.  (4.5)

Proof. (4.4) and (4.5) follow from (4.2) and, respec-
tively, (2.2) and (2.3).:m

Let along 7v:J——B be given a field of bases (el}, i.e.
(el(s)} to be a basis in m'(¥(s)), in which the L-transport
along- paths' L. to be defined by its matrix H:(t,s;7)+—

h_;aH(t,s;1):=uulj(t,s;7)ﬂ.‘Then along 7 every deSec(£|T(”

has a unique representation in the form o=’ e where’

c':r(J)-——aR are the components of o in (e’}. Hence o(7(s))=

=q'(7(s))el(s) and from (4.2) and (2.10), we get

(@79)(7(s)):=0%0=(070)' e, ()=

[Z H (s s+e;7)o) (7(s+c))]}| e (s).. - (4.6)

€=0"4
J

From here immediately follows
Proposition 4.2. The' explicit action of DY on oe

€Sec glth) is

. i y .
@) (3()=[GED o 1 (smyed (s e, (), (4T

where

aH';(s.t;r)

\ GH';(t.S;'a‘) ‘
F_J(S:T)3= . —_—

i
|

. (4.8)
at .

| t=s ’ ot .. t=s
(The last equality follows, e.g., from (2.13).)
Vﬁlt,is convenient. in any basis to introduce .the matrix
function F,’#*‘fﬂ}(s)‘=ﬂfh($F?)ﬂ-»SEJ-,If the matrix H of
the linear transport along paths has a representation (2.13)

(see proposition 2.4), then, due to (4.8), we obtain

12

e & - £ e

r(s)=HEtin))  pi(s;qy) D) (49

As Qe shell prove (see below proposition 4.5) the quane
tities (4.8) give an adequate descrlptlon of the transport L.
They also have a sense of a "dependlng on the path r coeffi-
cients of a linear connection" (cf. [6,1]) whlch 1s conf1rmed
byb

Proposition 4.3, Let the basis {e (s)} in n'l(r(s)) be .
changed to (el,(s)=A:,(s)el(s)}, A(s)::“A‘;(S)l being a
nondegenerate matrlx and A'l(s):=ﬂA:I(s)”. The transformatlon
(el}-——a(e‘,=A:,el} leads to the transformation of H and FT,

respectively, into

‘H’ (s, t;¥)=A"1(s)H(s, t; 7)A(L), T (4.10)

r"(S;a‘)=A"(s)F(S:T)A(s)+A(S)"———dggs) ) S a0 1),

which in component form, respectively, read R “}Q
’ ’
H' (s, t59)=A0 (s)A] (OH (s,t57), S (40107
. ! ) ' ! dA:I‘(S) . ,
F..,'(S”')=A; (s)AJ,(s)F.J(S:7)+A,-(s)T- 2 (4.117)
Proof. Eq. (4.10) expresses the fact that H‘J(s{t;r) are
components of a tensor from n (r(s))e(n  (#(t)))* and eq.
(4.11) is a corollary of (4.10), (2.12) and (4.9). The equi-
valence of (4.10) and (4.10') and (4 11) and (4 117 ) follows
from the aeflnitlons of the correspondlng matrices.m
So, any (smooth) L~transport along paths generates along
every path 7 functlons (4. 8) transformlng accordlng to
(4.117). Here. naturally, arlses the opposite problem. Let
along every path 7 in any ba31s (e } along 1t be def1ned fun—

ctions I‘J(s;r)iwhlch, when the basis is changed, transform

13



through (4.11'5. Does,there exist an LTtransport alongﬁpaths
generatlng these functlons by means of eq. (4.8)? The answer
of th1s questlon is glven by E . o

\ Proposxtlon 4 4. Let 1n any basis {e } along a path

1

7 J-——»B be g1ven (contlnues w1th respect to s) functlons
F (s,v) thch, when {e, } is changed, have the transformation
1aw (4. 11 ) and r. (s) ﬂF (s 7)” Then there exists a un1que
L~ transport along paths generatlng along 7 the matrlx F by
(4. 9) ]and ‘the matrix ofl which, H:(s.t;r)k——ﬁKs.t;r):
=F" (s 7)F(t 7), is o o '

B

H(s t,v)—Y(s s ,—F )[Y(t s ,—F 17, s, teJ, (4.12)

where;soeJ is’ fixed and for any continuous matrix function
Z:s+——Z(s) the matrix Y:=ﬂY‘jH:=Y(s.s°;Z) is the unique
solution of the initial-value problem

dY

i

'Yh(so,so;z)é.n. T - (41131))

) Pfoof. Let us note.at the - beginning- that the existence

and uniqueness of the solutlon of (4 13) is proved in [7]

At flrst we shall prove that (4 12) is the unlque solu-

tlon of (4 9) when F is g1ven In fact u51ng H(s.t,r):

—F (s 7)F(t 7) (see _ proposltlon 2 4) and dF”~ /ds—
_F" (dF/ds)F -1

o

[8],VWe see eq. (4 9) w1th respect to H to be

equivalent to the equatlon dF (s 7)/ds—~r (S.v)F (S 7).

SEY

Arbltrary fixing s eJ and compar1ng th1s equatlon (w1th res—

pect to F ) with (4 13), we see that its solutlon *is

F (s 7)- (s so; F ) Substltutlng th1s express1on for F

1nto (2 13),}we get (4 12). wh1ch is 1ndependent of the con—
crete ch01ce of F(s ,1) and s, (see prop051tlon 2 5 and ther
g1ven in [7] properties of Y).

14

=Z(s)Y, Y=Y(s, s, ;Z2), seJ, . : o (4.13a);

So, in any fixed basis only the matrix (4.12) generates

the g1ven F by (4.9).Hence,defining an L-transport along

paths which is such that in some basis has'a matrlx(4 12)wesee,1n

conformity with (4.10) and (4.11), that in every basis along
7 it generates the functions F (s ) through (4 8). By con-
structlon this L—transport along paths ‘is unique.m = o

From propositions 4.3 and 4. 4 dlrectly follows

Proposition 4.5. Let in any basis along every path
7:J —B be given a set of functions {Ffj(s;r)}. Then. when
the Dbasis is changed, they transform in accordance with
(4.11’) 1iff there exists a (unique) linear transport'along
paths generatlng them through its matrix by (4 8). ;

Consequently, the definition of an L-transport along a
path<7 is equivalent to the definition in any basis along 7
of functions Ffj(s;v)'having‘the transforﬁation law*(é.ll’).
This is a reason to give

Definitionl 4.2, The' functions Ifj:(s;?)b———ﬁfj(s;v)
assigned to any linear transport along paths through (4.8) or
def1n1ng such a transport by means of (4. 12) w1ll be called
coeff1c1ents of that L~ transport along paths

In proposit1on 4. 2 we saw that the coeffxclents F of
an L transport along paths uniquely deflne the actlon of the

operator (4 1). Besldes, 1f e eSec(El ) form a basls along

TN
7:J—B, i.e. if {e, (s)} is a basis in n (7(s)). then (4.7)

results in ‘
Te =(T)' e, . - ‘ . (4.13)
e, (T‘T)'Jel. . .

which is equiualent to

.

p¥e =T (sive (s) (4.147)
- | 2y 1 tioh
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and can be ‘used as an equlvalent to (4.8) deflnitlon of the
coefflcxents F (s 7).

, ‘ ‘As the coeff1c1ents F (s 7) give an adequate descrlp—
At;on}of‘the L—transports}along paths, the eq. (4.14) suggests
that such a desoription can be done also in terms of opera-
tors (4.1) with an ﬁappropriate properties". Before formula-
ting the corresponding result we need to give one definition.

1 X
If oeSec (&) ) and f:J—R is a Cf‘ function, then

T
from (4.7), we find

df(s)

o’(f o)= co( ()Y +E(s) - (D'o—) . .(4.15)

If B is a dlfferentlable manlfold, r is a ¢! path and 7

B

is the tangent to 7 vector f1e1d then (4 15) 1s equlvalent
to; l
D¥(f-0)=(7 . 7

Definition 4.3. A derivation along a path' ¥ (in “the
vector bundle £=(E,n,B)) is a linear map (6:1).satisfying
(4.15)  in“which DT is definea by ple E—(D"czr)(r(s)) for oe

eSec (E] A derlvatlon along paths is a map a551gn1ng to

T(J)
any path a derlvatlon along 1t

- Ev1dent example of der1vat10ns along a path are the de-
r1vat10ns of “the tensor algebra (over a manlfold) restrlcted
dver”that4path f3’1],.as well as the maps (4.1) generated by
L~ transports along paths by means of (4 2)
7(J))_—_Asec(€‘T(J))
is-a derivation (in a sense . of definition 4.3) “iff there

Proposit1on 4.6. The map D7 sec’ g

exists an L-transport A along 7 generating it through (6.2).
Proof. 1If ¥ is generated through (6 2) by some L-

transport along 7, then, as we proved, it satlsfles (4 4) and

(4 5), so it is a derlvation along 7. Vice versa, let 27 be a
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derivation along 7. Defining the functions rfj(s;r) through
(4.14°) in any basis along 7, we find, due to (4.4) and
(4.15), the eq..(4.7) to be valid in any basis {el}galong 7.
Thus we see that in the basis {e ,=A:,el} is fulfilled
rf_ A(sime . (5)=D](e, ,)-a)’(A’,e) nd using (4.4) and
(4.15), we get that F .y and F'J are connected by  eq.
(4.11').  Hence, Ffj are coefficients - of :some L-transport
along paths L, which by .proposition 4.5 exists, 'is unique,
and . generates them through (4.8). Besides, by proposition
4.2, the action of the assigned-to it operator (4.1)‘is given
also by (4.7), i.e. that operator, given explicitly by (4.2),
coincides with D7.m

In the above proof of proposition 4.6 we saw that: for

any derivation o7 -along 7 its action is uniquely defined.by

“the functions FIJ,,determined uniquely by (4.14’).. That .is

why we call them coefficients of D¥. From proposition-4.4:and
the same proof immediately follows

Proposition 4.7. Every L—transportvaﬁalong‘# defines
through (4.2) a ;unique’ derivation along r,vwhose .explicit
action is given by (4.7) and whose‘coefficients coin;ide with
those of LY and,‘ vice versa, any derivation DT along T
defines a unique L-transports along r who . generates ¥ by
(4.2), whose coefficients coincide with those ongT and whose

matrix is given by (4.12).
Practically, the last proposition establlshes the equi-

valence between the set of all linear transports along paths

and the one of all derivations along paths.
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‘5, CONCLUDING REMARKS

We defined the linear transports along paths in vector
bundles ‘as maps satisfying part of the basic axioms of the
S~transports (parallel transports generated by derivations of

tensor algebras) -[3]. The ties of the L-transports along

paths with' the -connection and parallel transports‘théofies;

will ‘be examined from a more general view-point elsewhere.’

Here we want only to- present these connections in.the special

case “of ' linear connection and the 'corresponding to  them

parallel transports.

Let the base of the vector bundle (E,n,B), i.e. B, be a

differentiable manifold and’ 7:J——B be a-C! path ‘in it with

a tangent vector field 7. Let us- consider those'*L-transports:-

along:paths whose coefficients in some basis along: 'y have the

form - A S
dim(B) K ! N
1 N 1 e :
r(sin)=. )y T (#(s)i%(s), - . (5.1)
a=1
where F‘Ja:T(J)——ﬁR, i, §=1, ..., dim(n (%)),  xeB,  a=
=1,...,dim(B) are some real functions and 7*(s) are the local

componehtsyof’%(s) in some basis in the tangent td B space at
s, S . . S .

Propositidn“s.i. If the representation (5.1) hblds'in
one basis {e;} along %, then it is true in a baéis
{e‘,=A:fé‘}"along 7 iff under the change of the bases
{é‘}w——a{e‘,} and qf‘ the coordinates {x*} ——{x*} in a
neighborhood of x=¥(s)eB the functions Ffj;(x) traﬁsfbrh'iﬁto‘
: ‘ dlm(ﬂ-l(x))[din(B)

’ . ’ ' o
R OL ) D (s)Aj,(s)—Z—;‘E,lxrfm(x)]«»

1,)=1 a=1
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aA;,(s)
+ z Al (S)——ar— %’ x=7(s)eB (5.2)
9x ’

the right-hand-side of which depends on the map: y only
through the point x=%(s).

Proof. The proposition is a consequence of the substi-
tution of (5.1) (in {e)} and in {el,}) into (4.11").m

The transformation law (5.2) is a straightforward gene-
ralization of the one of the coefficients of a linear connec-
tion [1,2]. '

In particular, if (E,n,B) is the tangent bundle to the
manifold B, i.e. E=T(B) and n '(x)=T (B), x€B, then dim(B)=
=dim(n'4(x)), x€eB and putting- Ail(s)=ax"/ax‘|x=7(s) in
(5.2), we see that rfja(x), i,j,a=1,...,dim(B) -are coeffi-
cients of a linear connection (covariant differentiation) V

[ij; In this case, due to (4.7), the assigned to thé,trans—

port operator ¥ is simply .V , the covariant. differentiation
‘ X2

along 7, and hence the “transport itself coincides with the’
corresponding to V parallel transport [1] (cf. [4], Sect.5).
In Sect. 3 we proved that for any liner transport along
a path 7 -in a vector bundle there is alon_g ¥ a class of
special bases in which the transport's matrix ‘is unit, i.e
H(s,t;7)=1. In every such basis the transport’s coefficients
vanish-as in them (see (4.9))
r(s)=s1/es=0 o (5.3)
and vice versa, . any basisgin which (5.3) ﬁplds?belongs to.
this class. s b

So, in these bases (4.7) is equivalent to.

' 1
(D) (r(s))=2C{TED o 5y, - o (5.4
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;i.e. DY pehaves like a derivative along 7 of vectors in an
Euclidean space (in Cartesian coordinates).

Thus we proved

Proposition 5.2. In a given basis along a fixed path the
following three statements are equivalent: »

a) The matrix of the L-transport is unit.

b) The coefficients of the L-transport vanishﬁ

. c).The action of the assigned to the L-transport .deriva-

tion reduces to a simple derivation of the components of the
sections with respect to the path’s parameter, ile. (5.4)
holds.

If in a vector bundle over a manifold the coefficients

of an'L-transport along paths have the form:(5.1) in some of

the above special along 7 bases, then (5.3) leads to--

dim(B) e ' col -
Y T a(r(s)3%(s)=0, i,3=1,....din(x" (¥(s))). (5.5)
a=1’ : T ) o

... But, nevertheless of the arbitrariness of 7, from here

dqgs not follow F{Ja(j(s));o'as the basis itself, generally,.

depends on the péph37.

In this connection 1let.us note that bases .in. which

(5.3), or in some more special cases (5.5), is valid, are a

far going generalization,;of the coordinates (or bases).. in

which the.components of a symmetric affine connection vanish

[2]. i . . L . V RTINS S

Let us also mention that to operations with vector
bﬁndiés<endoweq with transports along paths there co;fesppnd
analogous operations with these transports. 'In particular, to
the. direct sum and the tensor product of vector bundles [6]
cgrrespond,_feépéétiﬁéiy;“tﬁéEdiréct'sum‘éﬁd‘thé tensor pro-

duct:of the linear transports .in them, the matrices of which

20

are, .respectively, the direct sum and the tensor product of
the matrices of the-initial transports along.paths.

More: concrete properties of the linear transports along
paths - in vector bundles, suchas their curvaturé - and torsion, .

as well as applications will be a subject of other works.
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