





1. Introduction

Realistic physical problems are almost always so complicated that it is
very rare occasion when they can be solved exactly.‘ The standard way of
attacking them is to invoke perturbatioﬂ theory. The standard situation
is that the use of the latter yields a divergent series. When a number
of terms in a series are known, about ten of them, then one may find
an effective sum of the asymptotic series by means of some resummation
technique. However, in the majority of realistic, that is complicated, .
cases one is able to extract only the first few terms of perturbation theory,
mainly not more than two of them. In the situation like that the usual
resummation t‘;echniques are not applicable at all. A thorough discussion
of these difficulties has been done by Stevenson[1].

To find out an effective sum of a divergent series, or é.n effective lirnitl
of a divergent sequence, having only a few terms, a method has been
recently suggested[2]. The latter was called the method of self-similar
approximations since it is based on self-similar relations for subsequent
terms, which force a divergent sequence to become convergent. This
method|[2] Qas shown|[2-5] to be quite successful for various problems
of statistical physics and quantum mechanics, where the ground-staté
energy is of main interest.

Here we shall demonstrate that the method of self-similar approxima-
tions[2] works well for calculating not solely the ground-state energy but

the whole spectrum. To this end, we consider the problem whose math-




ematical structure is typical of many problems of statistical mechanics

and field theory. This is the three-dimensional anharmonic oscillator.

The divergences arising in applying perturbation theory to it are of the
same nature as those appearing in 'the. perturbation-theory calculations
for the majority of statistical models with Hamiltonians containing four-
operator interactions and also for quantum field theories having the ¢*
structure. A review of these- ’questions has been given by Simon[6].
In Section 2 we present the scheme of the method of self-similar
apprommatxon all details of Wthh have been expounded in the early
papers[2-5]. In Section 3 we apply thls method to thethree—d1mens1onal

anharmonic oscillator with the vspherical symmetry We show that our

method, invoking only two terms of perturbatlon theory, allows the calcu-

lation of the whole spectrum with a very good accuracy, w1th1n the order
- of 107 -3 for arbltrary anharmon1c1ty constants ranging from zero up to
infinity and for all energy levels. In Sectlon 4 we analyse the other known
analytlcal methods the modlﬁed perturbatlon theory, the quasxclassxcal
_ approximation, the large-dlmensmnal expansion and the shifted large-

dimensional expansion. The analysm proves that among these methods

ours is the most simple and accurate, if the accuracy is deﬁned by the

- maximal error for all anharmomclty consta.nts and energy levels but not

only for some of them Section 5 is a conclusion:

H
§

2. Scheme of method to be used -

We shall not repeat here the foundation and nuances of the method of self-
similar approximations which have been explained in detail in Refs.[2-5],
but we shall formulate its scheme needed for further investigation.

Assume that we are interested in a function f(n,g), in which n is a
multiparameter, for instance enumerating the energy levels, and g is a
coupling constant. By perturbation theory or an iterative procedure we
get a sequence of approximations fi(n,g) with k = 0,1,2.... Introduce
an additional sequence of-functions zx(n,g) whose role is to govern the
convergence of the sequence of functionalsr

Te(n, g) = fe(n, g, z(n, g)). (1)

The governing functions are to be defined by one of the fixed-point con-

ditions, for example by the equation

d
Thi(1,9,2) =0, 2= 2z(n,g). 2)

Define the coupling function 9(n, f) by the equality

) fO(nvgv z(nig)) = f; g= g(nvf)y . (3)

in which

z(n,9) = z0(n, g) = 21(n, g).

Introduce the distribution of approximations



Yks = {f,(n,g(n,f),Zk(n,g(n,f)))_- fe(n, 9(n, f), <k(n, g(n, f)))}—l (4)

satisfying the normalization

Je(n,g)
[ wtnna=1 ©)
fk(n._q)
The function f.(n,g) in Eq.(5) is just the sought self-similar approxi-

mation for the function f(n,g). Function (4) is called the distribution
of approximations since it describes, according to (5), their distribution

between fi(n,g) and the self-similar approximation.

3. Spherical anharmonic oscillator

The three-dimensional anharmonic oscillator with spherical symmetry
can be réduced, as is known, to the one-variable problem with the radial
Hamiltonian
1 & (1+1)  mw?
H=———+ ( ) +

2m dr? 2mr? 2

in which m,w, A are positive parameters; the radial variable r € (0, o0);

24 amirt, (6)

the azimuthal quantum number { = 0,1,2,....
As an initial step for perturbation theory it is reasonable to choose

the harmonic form

1 42 I(1+1) + mwgr2
T 2m dr? 2mr? 2 ’

Hy = (7)

whose energy levels are given by the expression

3 ‘ X . ey
E,(:,))=(2n+l+§)wo; n,1=0,1,2,... (8)
For what follows it is convenient to introduce the dimensionless cou-

pling, g, and trial, z, parameters,

L 9)

g
w

as well as the dimensionless Hamiltonians

H H, 1 .
19=2, =2 =i )
Then, Egs.(6) and (7) read
e Il
HE) = g+ gt 3 ot

142 I(l+1 1
H0(€)=_§EEE+ (262) 92

€2, (11): )
The eigenfunctions of Hy(¢) are

1
I+3 2 1
(0) _ 2nlz't2 141 _E 2 LH—; 2
Xnt [I\(n +I+ %)] 6 Czp( 26 ) n (Z& ))
where L! (-) is an associated Laguerre polynomial.
Using the Rayleigh-Schrodinger perturbation expansion, we can find

the approximate expressions



()
ex(n,l,9,2) = E‘:, ; kE=0,1,2,... (12)

for the eigenvalues of H(£),starting from the zero approximation

eo(n,l,9,2) = (v + g)z; v=2n+1l (13)

For the first approximation we get

3

2 2z 2

21 3\ 3
el(n; l7g7z) = CO(n) l)g,z) - (V + ") z + (V+ —) 5’5—2'77111 (14)

where

Tt = (v + g) [1

12“_%]. (15)

a 3(v +3)?
Expression (15) has the following limiting properties:

im ot = o
Sim, = 3,
Tnt = 2m; n—o0 (I <o),
l
Yrl 23—; o000 (n<o0)

The second approximation of (12) is
3

(22 = 1
ex(ny1,9,2) = ex(m, 1,9,2) - ( * 5) St

3\ 39(z?-1)
+ (V + 5) o T

3\ ¢ 3 3,
A 2 fat — 2y 16
(u + 2) ype [10 +27(v + 2)%: 10(v + 2) (16)

The fixed-point condition (2), i.e.

%ei(n,l,g,Z)'= 0; z = z(n,l,g), ) (17)

yields the equation

23

= 6gqm=0. (18)

The solution to the latter gives the governing function

Zcos(%3Y); g < gy
z(n,l,g) = (19)
AL+ AL 92 G
in which

Q) = arccos (—g—)

’
nl .

S
3

2% = (30) e - ],

1
g = (9V37) 7! = 0.064150—.

Perturbation theory corresponds to the weak coupling limit, that is

to g < g,u. However, as is seen |vy,;| — o0, as n,{ — op,because of which
Gt — 0; n,l — co.

Therefore, the weak coupling region practically disappears for higher

eigenvalues.

Using for brevity the notation



ek("y l,g) = ek(n’ Ivgv z(n,l,g)),

we define the coupling function from (2), which is now

eo(n,lag)=f; g=g(n,l,f).

The latter, together with (13), is equivalent to the equation

(v+ g)z(n,l,g) = f.

(20)

(21)

(22)

For the distribution of approximations (4), which can be written as

yl?(nvls f) = [ eZ(n)Iag(n,laf)) - el(n‘)l’g(n’l,f)) ]_1 ’

we obtain

4813 /(v + 3)*
au [f2/(v +2)2 - 1)°

N9 [, 5\ 10
= —-) —_ - - — 6.
ot = (V+ 2) Yl (V vt 4) 374

The limiting properties of (25) are

ylZ(n) I') f) ==

where

li 3
1M Qyuy = <
n,d—0 i 153 !
. 1 .
lim ay = -2, lim an; = 0.
n=—+0 3 l—o0

(23)

(24)

(25)

|
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i
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Substituting distribution (24) into normalization (5), we come to the

equation
ed(nlg)/(v+3)? -1
A L)+ =1

— ex 1 _ 1 _ Gn
= p{dMJwV@+%P—1 b+ =1 ) e

for the self-similar approximation e.(n,l, g) of the anharmonic oscillator
spectrum. The function e,(n,!,g) in (26), according to (14) and (18),

can be written as

z= zl(n7l,g)7

- 3\ 3241
el(nwl»g) - (V+ 'é') 4z )

- where the governing function is given by (19).

The asymptotic forms of the spectrum e.(n,l, g) can be easily found

from (26) yielding in the weak coupling limit

3 3
e*(nvl7g) =~ (V + '2_) (1 + '2'97111) )

and in the strong coupling limit

g—0 (27)

3 4, -
e.n,l,g) ~ 1 (u -+ -—) exp (—u) (6g7,,,)~"’ ; g — oo. (28)

The weak coupling limit (27) coincides with the corresponding exact
expansion in powers of g, which can be checked by putting z = 1 into

(14).

For the ground state energy from (27) and (28) we have

3 15

e.(0,0,g) ~ st79% 90



.1 1 1 :
e.(0,0,9) ~ %exp(’——g—('))(lOg)5 = 2.393631g7; g—o0.  (29)

For the highly excited levels and in the strong coupling limit, from (28),
taking account of (15) and (25), we get

' e,.(ﬁ,_l,g) ~

[\
| H

et (3n)% g5 = 3.45807angl;  gm— oo (30)

”'.I‘he accuracy of the self-similar approximation given by (26) can be
eval‘uat.éd by comparing it with exact numerical calculations. The lat-
ter have beenl done by a direct numerical solution of the corresponding
Schrodinger equation written in the matrix form[7,8]. The low lying levels
have been accurately computed using Hill determinants[9] and recurrence

relations [10,11].

Comparing the self-similar vapproximatioryl e.(n,l,g) defined in (26)

- with the numerical results[7-11], we find that for any value of the an-
harmonicity parameter g € (0,c0) and for any energy levels (n,! =

0,1,2,...) the maximal error is about 0.3%.

4. Comparison with other methods

It would be worth to compare the results obtained with those given by

“other analytical methods. In this comparison, it is natural to define °

the accuracy of a method by the maximal error of its results for all

anharmonicity parameters and energy levels. That is, we shall define the

accuracy of an approximate method,yielding e,,,(n, [, ¢), by the maximal

10

error

€app(1, 1, 9) -1
e(n,l,9) ’

in which e(n,[,g) is an exact numerical result.

€app = SUPp  Sup
g€(0,00) n,[=0,1,2,...

- Consider first the quasiclassical approximation applied to the three-
dimensional anharmonic oscillator[12-14]. The Bohr-Sommerfeld condi-
tion for the energy levels leads to a very cumbersome transcendental
equation, invoking the complete elliptic integrals of the first, second and
third kinds, and in addition, a system of complicated equations for the
turning points expressed ‘through the Jacobian elliptic functions. An
analysis of these equations shows[15,16] that the quasiclassical approxi- »
mation is quite accurate for high energy levels and strong anharmonicity,
yielding an exact asymptotic expansion in the limit g,n — oco. How-
ever, its accuracy drastically worsens for the low lying energy levels and
moderate anharmonicity. For example,its accuracy for the ground state -
energy is about 20%. In this way, the maximal error of this method is
€app ~ 1071,

‘Another known approach for treating systems with strong interac- -
tion is the modified, or renormalized, perturbation theory[17-21]. In this
approach one renormalizes the sequence of approkimations according to

(1) and define the governing functions either from the principle of mini-

‘mal difference[17-19] or from the principle of minimal sensitivity[20,21].

The latter, as applied to the anharmonic oscillator, gives more accurate
results than the former[4,20]. The accuracy of the modified perturba- -

tion theory with the principle of minimal sensitivity of the form (2) has

11



been carefully analyzed[15,16,20] for the anharmonic oscillator. The first-
order modified perturbation theory gives the energy spectrum (14) with
the governing function defined by (17).. The maximal error of spectrum
(14) és 2%. The second-order approximation corresponds to the energy

spectrum (16} with the governing function defined by the condition
d ‘
(—i;eg(n, lg,z) = »0.

The latter equation has no positive solutions for v < 2 and for v > 2 its
solution being substituted into (16) leads to the maximal error of about
1%.

In recent years it has been shown that even if the results of phys-

ical interest are in three dimensions, it is advantageous to work in D

dimensions and use 1/D as a perturbation expansion parameter. This

large-dimehsion technique has been briefly called the 1/D expansion.
The latter provided, in particular, a new way of solving the Schrédinger
equation for spherically symmetric potentials. The 1/D expansion for
the anharmonic oscillator was used in Refs{22,23]. The results for the
energy are written in the form of quite complicated series, even for low
lying levels. It must be admitted that the accuracy of the 1/D expansion
is, if to put it mildly, not so good. For example, when seven terms of
the 1/D expansion are taken into account and, in addition, the resulting
series are summed by means of the Padé-Borel transformation, even then
the accuracy of the ground-state energy with g = 1 is about 1%, and the

error quickly increases as g — oo. For higher energy levels the 1/D ex-

12

pansion also becomes less accurate with an error increasing fdgéthér 'withv'
the quantum number n since higher-order perturbation contributions to.
the energy contain powers of n in the numerator.

The accuracy of the large-dimension expansion can be drastically im-
proved invoking the so-called shifted 1/D expansion[24,25). In the latter,
the expansion parameter is modified by the replacing the space dimen-
sionality D by D — a , where a is a suitable shift chosen so that the
first-order shifted expansion would give the exact result for the energy of.
the harmonic—oscillator potential. It is necessary to stress that in order
to obtain the shifted 1/D expansion, one needs to resort to the Rayleigh-
Schrédinger perturbation theory as well. Using the approach of Ref.[25]
we have calculated the spectrum of the anharmonic oscillator. The first-
order shifted expansion needs the second-order perturbation theory; its
maximal error is about 10%. For the second-order shifted expansion one
needs to invoke the fourth-order of the Rayleigh-Schrédinger perturba-
tion theory, which is quite complica.fed and even so gives the maximal er-
ror about 0.6%. Thus, if we use, as in our method, only the second-order
perturbation theory, we have for the shifted large-dimension expansion
the maximal error of the order 10~. It is worth also to note that the
1/D expansions, including the shifted one, are applicable only to spher-
ically symmetric potentials, therefore, being useless for one-dimensional

problems.

13



5. Conclusion .

The method of self-similar approximations[2] gives an elegant equation
for the energy eigenstates of the three-dimensional spherical anharmonic
oscillator. With an equal success it can be a.pplie‘d to the one-dimensional
anharmonic oscillator{16]. In all the cases the accuracy of the method is
within the maximal error of the order of 10~3. The method of self-similar
approximations surpasses other analytical approximation methods in its

domain of applicability, the accuracy of its results and its simplicity.
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