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1. INTRODUCTION 

This work starts investigations devoted to the axiomatic 

approach to the concept "parallel transport (translation)". In 

particular, it considers, maybe, the simplest case, namely the one 

of "flat linear transport over a manifold" in tensor bundles over 

it which, on the one hand, is sufficiently rich in concrete proper­

ties and, on the other hand, admits an "easy" straightforward gene­

ralization in different directions. 

Section 2 contains the definition of a "flat linear transport" 

in tensor bundles as a map having the properties described there. 

This definition is independent of the existence of some additional 

structures such as metrics or connections. Further, the general 

form and structure of these transports is derived. 

In section 3, it is proved that to any flat linear transport 

there corresponds a unique flat linear connection defining the 

parallel transport that coincides with the initial flat linear 

transport (see propositions 3.1, 3.3 and 3,6). Moreover, as it is 

established there, for any flat linear connection there exists a 

flat linear transport the corresponding to which linear connection 

coincides with it. Said in other words, this means that the para­

llel transports generated by flat linear connections are flat 

linear transports. 

Section 4 deals with some local aspects concerning flat linear 

connections or transports in tensor bundles. Here are derived nece­

ssary and sufficient conditions for the existence of local, in some 

cases holonomic, bases in which the matrix of a given flat linear 
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~ransport is constant (and hence unit - see proposition 4.1) or the 

components of some flat linear connection are zeros. The obtained 

here results concerning the nonholonomic case are, probably, new as 

the author failed to find them in the available to him literature. 

In section 5 we present our conclusions. 

2. DEFINITION AND SOME PROPERTIES OF FLAT LINEAR 

TRANSPORTS IN TENSOR BUNDLES 

Let M be a real smooth, of class C1
, differentiable manifold 

(1,2). By T:'q(M) ·we denote the tensor space of type (p,q) over M 

at XEM; in particular T1
'

0 (M)=T (M) and T0
'

1 (M)=T*(M) are the tan-
x X X X 

gent and cotangent, respectively, spaces to M (see, e.g., (1,2)). 

Definition 2.1. A flat linear transport (of tensors) over Mis 

a map L: (x, y) 1-+L , x, yEM, where L · is a map from, the x-+y , x-+y 

tensor algebra at x into the tensor algebra at y having the proper-

ties: 

L (Tp'q(M) )S:Tp'q(M), x-+y X • y (2. 1) 

L (AA+µA')=AL A+µL A' A µER A A'ETp'q(M) 
X -+y • ·X -+y X ----.y I I I ' X I 

(2.2) 

p ,q 
L ~ (A ®A

2
)=(L A )®(L A ) , A ET a a(M). a=1, 2, x~y 1 x-+yl x-+y2 ax (2.3) 

L oC=CoL , 
X -+y X -+y (2.4) 

LY -+z oLx -+y =Lx -+z, X, y, ZEH, (2.5) 

L =id, x-+x (2.6) 

where C is any contraction operator and id means the identity map 
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( in this case of the tensor algebra at x). The map Lx -+y will be 

called a flat linear transport from x toy. 

Remark 1. This definition admits different generalizations to 

the case of arbitrary fibre bundles but such generalizations will 

not be needed for the present part of our investigation. 

Remark 2. As in this work we consider only flat linear trans­

ports, we shall call them simply (linear) transports. Here the 

meaning of the adjective "flat" will be made clear below (see e.g. 

proposition 3.3). 

In other words, we can say that a transport over Mis a family 

of homomorphisms which in fact are isomorphisms (see below), 

between the tensor algebras at different points of M which preserve 

the tensor's type, commute with contractions and have the special 

properties (2;5) and (2.6). 

·Putting z=x in (2.5) and taking into account (2.6), we get 

(L )- 1=L , 
X -+y y-+x 

(2,7) 

i.e., the mentioned homomorphisms have inverse maps which are of 

the same £amily, and hence, they are (linear) isomorphisms. 

The following proposition establishes the general functional 

form of the transports over Mas it is specified by (2.1), (2.2), 

(2.5) and (2.6). 

Proposition 2.1. The linear maps LP' q :Tp'q(M) -Tp'q(M), 
X --+y X y 

x,yEM satisfy (2.5) and (2.6) (with Lp,q instead of L ) if 
. X --+y X -+y 

and only if there exist linear isomorphisms Lp'q:Tp'q(M) -v, V 
X X 

being a vector space, such that 

Lp,q =(Lp,q J- 1 oLp'q. 
x--+y y X 

(2.8) 

Proof. Let (2,5) and (2.6) be satisfied by Lp,q Then, the 
X --+y 

substitution of (2.7) into (2.5) gives Lp,q =(Lp,q )- 1 oLp,q 
X ---+z Z ---+y X ---+y 1 
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for every x, y, zeM. Therefore,. fixing some x
0

eH, we see that (2. 8) 

is valid for V=TP' q and LP' q=LP • q • on· the contrary, if we have 
XO X X --+xo 

the decomposition (2.8), then a straightforward calculation shows 

that it converts (2.5) and (2.6) into identities. ■ 

Proposition 2.2. If the representation (2.8) of Lp,q is true x-+y 
(see proposition 2.1) and 'Vis any isomorphic with V vector space, 

then 

L p,q =('Lp,q 1-1
0 ('Lp,q1 (2. 9) x-ty y X ' 

where 'Lp'q:Tp'q(H) --+'V are isomorphisms, iff there exists an 
X X 

isomorphism f:V--+'V such that 

'Lp'q=foLp,q. 
X X 

(2.10) 

Proof. This proposition is almost evident: if (2.10) is true, 

then from (2.8) it follows (2.9) and vice versa, if (2.8) and (2.9) 

are both valid, then L!'~Y=(L:•q1- 1 o(L:•q):=('L:•q)- 1 o('L:•q) and 

hence f: = (' L:•q 1 o (L:•q1- 1 = (' L:•q) o (L:• q 1-1 is the needed isomor­

phism which does not depend either on x or on y. ■ 

So, if we define LP' q to be the representation of L on . x_-+y x ~ 
Tp'q(H), then proposition 2.1 shows that it decomposes according to 

X ' 

(2.8) into a composition of two maps depending separately on y and 

x. The arbitrariness of these last maps is described by proposition 

2.2. 

Letting A
1

=A
2
=1ER in (2.3), we find Lx--+y1=1 which, by virtue 

of (2.2), is equivalent to 

L ,_, . 
X --+y"-"• AER. (2.11) 

I * Let {E
1
(x)} and {E (x)} be dual bases in Tx(H) and Tx(H), res-

pectively, where here and below the Latin indices run from 1 to 

4 
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n:=dim(H) and the usual summation rule will be assumed. As a conse­

quence of (2.1) for every x,yeH there exist uniquely defined func­

tions H1 (y,x) and H"J(y,x) such that 
• J , t. . 

L (EJ(x))=H1 (y, x)E
1 
(y), 

X --+y • J L (EJ(x))=H-J(y,x)E1 (y). 
X --+y I. 

(2.12) 

If o1 are the Kroneker's deltas and C1 is the contraction ope-
k 1 

rator over the first super- and first subscript, then due to (2.4), 

(2.5) and (2.11), we have o~=Lx -/o~)=Lx --+y (E
1 
(x)(E/x)) )= 

=L (C 1 (E 1 (x)®E (x)))=C1 oL (E 1 (x)®E (x))=C1 ~((L E1 (x))® x--+y 1 J 1 x--+y J 1 x--+y 

®(Lx --+yE/x)) )=C~ ((H\(y, x)Ek(y) )®(H/ (y, x)E
1 
(y) )=H\(y, x)H/(y, x), 

i.e. 

H1 (y,x)H"k(y,x)=o 1 

• k J. J 
(2.13) 

or, using the matrix notation, 

!H1 (y,x)ll·IIH"k(y,x)!=D:=llc5 1 II, 
• k J. J 

(2.13') 

where as a first matrix index is considered the superscript and as 

a second one the subscript. 

From (2.12) and (2.2) it follows at once that H1 
( y, x) and 

• k ' 

H;~(y,x) are components of bivectors [6] defined at (y,x)eHxH, or 

more precisely, we have 

H(y,x):=H1 (y,x)E (y)®Ek(x)ET (H)®T*(H), 
. k l y X 

(2.14a) 

H- 1 (y,x):=H-k(y,x)EJ(y)®E (x)eT*(H)®T (H), 
J. k y X 

(2.14b) 

i.e., H(y,x) is a vector at y and a covector (1-form) at x and 

H- 1 (y,x), its inverse bivector, is covector at y and vector at x. 

The bivectors (2.14) uniquely define the action of L on 
x~. 

any tensor TeT:'q(H). 

Proposition 2.3. If 
l 1 • ••. • i j 1 

T=T PE (x)®• · •®E (x)®E (x)®• · ·181 
Jl, .... ,Jq 11 . IP 
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J 
®E q(x), then 

p p 

Lx---ty(T)=[ TI u\ (y,x>)[ 
a-=1 a 

TI u;·Jb(y,x)JT:1·:::·>Ek (y)® 
b= 1 b 1' ' q 1 

®•••®Ek 
p 

1
1 

I 
(y)®E (y)®• • •®E q(y) • (2.15) 

Proof. This result is a simple corollary from (2.12) and a 

multiple application of (2.2) and (2.3). ■ 

If p=q+1=1, then from (2.8) and (2.15), we get 

L1,o (T)=(L1,o)-1o(L1,o)(T)=HJ.(y,x)T'(x)E (y). 
x--ty y X .I J 

Hence, letting F :=l(F ) 1 U==l(L1
'

0
)

1 ft to be the 
X X .J X .J 

matrix elements of L1' 0 when some bases {E (x)} in 
X I 

in V are fixed, i.e., L1' 0 (E (x))=:(L1 •
0

) 1 e, 
X J X • J I 

H(y,x):=IH'·cy,x)I, we see that 
• I 

H(y, x)=F-1F , 
y X 

where a matrix multiplication-is understood. 

matrix of the 

T (M) and {e } 
X I 

and defining 

(2.16) 

Proposition 2. 4. Some map Lx -+y of the tensor algebra at x 

into the tensor algebra at y is a linear transport from x toy if 

and only if in the corresponding local bases it acts according to 

(2.15) in which the bivectors (2.14) are inverse to one another, 

i.e., (2.13) is valid, and (2.16) is true for some nondegenerate 

matrix F . 
X 

Proof. If L is a transport from x to y, then, as we 
X ---ty 

already proved, (2.13)-(2.16) are valid, the components of tne 

mentioned bi vectors being defined by (2.12), and vice versa, if 

(2.13)-(2.16) take place, then, as can easily be proved, (2. 1)­

(2. 6) and (2.12) are satisfied for every F x' i.e., the so con­

structed Lx -+y is a linear transport from x to y. ■ 
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Proposition 2.5. Every manifold admits linear transports. 

Proof. In the proof of proposition 2. 3, we saw that to any 

nondegenerate nxn matrix function F on Mand any local basis in 
X • 

its tangent bundle there corresponds, in conformity with (2.15) and 

(2.16), a linear transport Lx-+y from x. toy for every x,yEM. So, 

defining L: (x, y) ~Lx -+y' we conclude that L is a linear trans­

port over M. ■ 

Remark. If F defines some linear transport over M, then the 
X 

matrix function 

'F =DF, det(D)~O,m, 
X X 

(2.17) 

D being a nondegenerate nxn constant matrix, defines the same 

linear transport, i. e the transport itself defines Fx up to the 

constant left multiplier. This is a simple corollary from proposi­

tion 2.2 (see (2.10)). In particular, for 'V=V the matrix D may be 

considered as a matrix by which the basis {e
1

} in Vis transformed. 

So, as a conclusion of the above discussion, we infer that the 

definition of a linear transport over Mis equivalent to defining 

in it a pair of inverse to one another bivector fields, the local 

representation of which is defined by (2.14) and one of which is 

given by (2.16). 

Below we everywhere assume the manifold M to be endowed with a 

linear transport L. 

3. THE EQUIVALENCE BETWEEN FLAT LINEAR TRANSPORTS 

IN TENSOR BUNDLES AND FLAT LINEAR CONNECTIONS 

Let us first of all remember some simple facts about linear 

connections (in tensor bundles) which can be found, e.g., in [1,2). 

7 



Let Tp'q(H) be the tensor bundle of type (p,q) over H. By 

Sec"(Tp'q(H)) and Sec(Tp'q(H)) we denote, respectively, the set of 

c" and the set of all sections of Tp'q(H). Let T(H) be the algebra 

of tensor fields on H. 

From a lot of equivalent definitions of a linear connection on 

T(H) we choose the following one (see, e.g., [3] or [2], ch. III, 

§2]. 

A linear connection on T(H) is a map V such that if Ve 

eSec(T1
'

0 (H)), then V: Vi--+VY where the covariant derivation (di­

fferentiation) VY along V has (here by definition) the properties: 
0

(1) V :T(H) -T(H) is a type preserving derivation, i.e., 
y . 

Vy: Sec1 (Tp'q(H)) -sec(Tp'q(H)), (3.1) 

VyoC:CoVY, (3.2) 

V y(A®B) =( V YA)®B+A®( VYB)·, (3.3) 

Vy(A+A')=VyA+VyA', (3.4) 

where C is a contraction operator, A, B and A' are arbitrary C1 

tensor fields ·on H, A and A' being of one and the same type. 

(2) If f:H---+IR is a C1 function, V,WeSec(T1
'

0 (H)) and A is a 

C1 tensor field on H, then 

Vyf=V(f), (3.5) 

VY+w=VY+Vw' (3.6) 

V rvA=f • V YA. (3.7) 

If {E
1

} is a field of bases in a neighborhood of some·point of 

H, then the components (coefficients) rJ of V in it are defined 
• kl 

by 

8 

, 
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'l' 

~I 

V E =:rJ E • 
E

1 
k • kl J 

(3.8) 

Every transformation {El Ix-El, lx=E:,(x)EI I), xeH leads to 

the transformation of r 1 into r 1
' , , given by 

• J k •• J k 

1' 1' J k I 1' ( I )I r J' ,Cx)=E (x)E ,(x)E ,(x)r +E (x) E ,CE,) , 
.• k I J . k .Jk I k J x 

(3.9) 

1 I 1 
where IE: cxn:=~El,(x)r. 

Any set of functions {rl } 
.Jk 

transforming according to (3. 9) 

defines a unique linear connection whose components in {E
1

} are 

I 
r.Jk [1,2]. 

Now we shall turn t9 the topic of the present section. 

Let L be a linear transport over M, vesec(T1
'

0
(H)) and S be a 

C1 tensor field on M. 

We define a map 

L L 
V :Vi--+Vy, (3.10a) 

where V~ maps the C1 tensor fields on Mon the set of tensor fields 

on M according to 

(V~S)(x).:= lim [½(Lx _xs(x )-S(x))], 
C --+O C C 

(3.10b) 

where xeM and in some local coordinates in a neighborhood of ,x the 

coordinates of xc are 

neighborhood of OeR and 

x 1 :=x1 +cV1
1 in 

C X 

VI =V
1 

I a/ax
1

• 
X X 

which c belongs· to some 

Hereafter, for the existence of the 1 imi t in ( 3. 10b) we shall 

suppose the transports over M to be smooth, of class C1
, in a sense 

that such are the bivectors (2.14) or, equivalently, the matrices 

F, xeH in (2.16). 
X 

From (2.6) and (3.10), we find the simple representation . 

(V~S)(x):=~c (Lx _xs(xc))J lc=o 
C 

9 
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from where it follows that if {x1} are any local coordinates in a 

neighborhood of x, then the components of (V~S)(x) are 
ax 1 

[(VLS)(x)] .. "=[~ ((L S(x »--·)_c, = 
V • • • ax~ X C -x C • • • ac C=O 

=V1 I · ~((L S(y»···) I , (3.11) 
X ayl y -X • • • y=x 

where by dots we denote the indices corresponding to the type of S, 

and the components of Ly_xs(y) are explicitly given by (2.15). 

Proposition 3.1. The map VL defined by (3.1) is a linear 

connection on the tensor algebra T(M) which means that V~ satisfies 

(3.1)-(3.7), i.e., that V~ is a covariant derivation along V. 

Proof, Eqs. (3.1) and (3.2) are simple corollaries from (3.10b) 

and (2.1) and (2.4), respectively. 

From (2.2) and (3.10b), we get 

V~(i\A+µA')=i\V~A+µV~A' (3.12) 

which results, for i\=µ=1, in (3.4). 

The equality (3.3) is a consequence of (2.3) and (3.10b) or 

also, in a coordinate language, of (3.11), (2.15) and the fact that 

the components of a tensor product of tensors are the product of 

the corresponding tensor components. 

And at the end, (3. 5)-(3. 7) follow directly from the local 

representation (3.11) and, in the case of (3.5), from (2.11). ■ 

About the connection VL we shall say that it is generated by 

(or associated to) the transport L. 

Proposition 3.2. If {x1} are local coordinates in a 

neighborhood of xeM, then in the basis {a/ax1} the components of 

the linear connection VL are 

1 aH
1
,cx,y)I 

ff (x)= · • 
. J k ayk . y=x . 

(3.13) 

where the matrix H(x,y):=IH1 (x,y)I represents, according to 
'J 

(2.12), the linear transport in this basis. 

IO 

j 

,j 
·1 
I 

1 I 

Proof. If we apply (3.11) to TeSec1 (T1
'

0 (M}}, then using (2.15} 

and (2.16}, we get 

[(VLvT)(x}J1=Vklxi!_k [H1,<x,y}T'(y}J I - = 
ay . y-x 

=Vklx [~T1(x} + (~<H1,(x,y})I _ T1(x)]. 
a'l:' ay . y-x 

So, the comparison of this re_sult with (3, 8} shows that in the 

considered case the connection's components are exactly (3.13). ■ 

Remark. If {E1} is an arbitrary (local} basis in T1
'

0 (M}, then, 

as can easily be seen, instead of (3.13}, we shall have 

H'.,k(x)=[Ek ly<H'.,(x, y)) J ly=x· (3.13') 

An important property of a linear connection VL generated by a 

transport L is that if we put H (x}:=!H1 (x} r , then due to 
k ,Jk 1,J=l 

(2.16) the following local representation is true 

H (x>=(~k H(x,y>) _ =F- 1(x) aF(x) = - (-a-H(y,x)) . (3.14) 
=it ay Y-X axk ayk y=x 

Proposition 3,3. The linear connection VL generated by a linear 

transport Lis flat. 
1 0 . 

Proof. If V is a linear connection, A,BeSec(T • (M)) and 

[A,B] :=AoB-BoA is the commutator of A and B, then the curvature 

operator is [2] 

R(A, B): =VA oV
8
-V8 oV,. -V1 A, Bl. 

(3.1S) 

If {E
1
} is a field of arbitrary local bases, [E E ]=:Ck E and 

I' J I j k 

rk are the components of V in {E } , then the components of the 
• I J I 

curvature tensor Rare [2,5) 

R'. Jkl (x)=-2 {E, cr'.,k> Ix+~ ,/x>r'._, (x)) lk, 11-c:, (x>r\.<x), (3.16} 

ll 



where ' antisymmetrization is performed, e.g. {Akl)lk,11:= 

:=2.(A -A ), over the indices included in square brackets. 
2 kl lk 

Defining r (x):=ft,1 (x)ln 
k ,Jk 1,J=l and B.kl (x): =IIR'. JkJ (x) II; ,J=t' 

where as a first matrix index is considered the superscript, in any 

coordinate basis we find 

~ 1(x)=-2(~rk+r1(x)rk(x))
1
k 11 • (3.16') 

ax ' 

In particular, for the connection VL {3.14) is valid the sub­

stitution of which into (3.16') gives 

R (x) I ,;,_2 [_a_ (F-1(x) BF(x))-F-1(x) BF(x) ,F-1(x) BF(x)] . =O, 
"7<l V=VL ax1 axk ax1 axk lk,il 

~ere the use of BF-1/Bxk=-F- 1(BF/Bxk)F-1 is made. ■ 

Proposition 3.4. A linear connection Von Mis flat if and only 

if it is generated by some linear transport L, i.e., iff for some 

transport L we have V=VL 

Proof. The sufficiency was already established in proposition 

3.3. So, let's suppose that ~
1
=0 for some connection V. 

there exists a matrix function F such that 
X 

Then, 

rk(x)=F-1BF /axk. 
X X 

(3.17) 

Actually, the integrability conditions for this equation with 

respect to F are 
X 

o2 F 
. O=( oXk

0
:l)lk,ll=[ 

0
:k (Fx1 1(x))](k.ll=-Fx~l(X) 

which in the considered here case are satisfied due to ~ 1=0. 

So, if we define a linear transport L whose matrix 

basis is H(y,x):=F- 1F, we see that the associated to 
y X 

port connection VL has, in accordance with (3.14), 

in the used 

this trans­

components 

H (x)=F- 1oF /oxk which 
""it X X 

by virtue of (3.17) coincide with the ones 

of V, so that V=VL. ■ 

In other words, the last proposition states that the definition 

12 

of a (flat) linear transport in the tensor bundles over Mis equi­

valent to the definition of a flat linear connection in T(M). 

Proposition 3.5. If Lis a linear transport and 

L :Sec(Tp'q{M)) --+Sec(Tp'q(M)), yeM 
y 

is such that for every tensor field A 

(LYA)(x):=Ly---+xA(y)), x,yeM, 

(3.18a) 

(3.18b) 

then (3.19) VLoL =0, 
V y 

Proof. This result is a simple corollary from (3.18b), (2.6) 

and (3.10). ■ 

Proposition 3.6. If Lis a (flat) linear transport generating 

the connection VL, then the parallel transport defined by VL 

coincides with L. 

Proof. Let 7: J --+M, JclR be a C
1 path and s, teJ. The parallel 

transport for some connection V along 7 is a map P~ls>,'rltl:T;;:>--+ 

--+T;;:> such that if A0eT;;:,, then P~lsl,'rltl(A0 )=B71 tl, where 

the tensor field Bis defined along 7 by the initial-value problem 

V.B=O, B71 •
1
=A

0 
in which 7 is the tangent to 7 vector field (cf. ., 

(1-5)). 
As the generated by L connection VL is flat ( see proposition· 

3.3), the defined by it parallel transport does not depend on the 

path 7 but only on the points 7(s} and 7(t) (4,5). This means that 

the action of this parallel transport is LP7
1 1 71 1(A )=B , 

'1 • , t O 71 t I 

where the tensor field Bis a solution of VLB=O, B =A for every 
V 'Tis) 0 

VeSec(T1' 0 (M)). By (3.19) and (2.6) this solution is B=L A, 
71 • I 

where A is any tensor field with the property A
71 

.. >=A
0

• Fro111 all 

this we find Lp'r (A )=(L A)(7(t))=L A and 71•1,'rltl o 'Tisi 'rial --+71tl o 
hence Lp'r =L ■ 1 71al,71tl 71•1 --+71t)' 
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From propositions 3.4 and 3.6 we infer that any parallel trans­

port defined by a flat linear connection coincides with some flat 

linear transport and vice versa. This means that the (flat) linear 

transports in tensor bundles, defined in section 2, realize the 

axiomatic approach to such parallel transports, i.e., that (2.1)­

(2.6), when taken as axioms, define uniquely the set of these pa­

rallel transports. 

4. SOME RESULTS CHARACTERIZING THE FLAT CASE 

In this section we shall investigate problems concerning the 

question when in a (local) basis it is possible for the matrix 

describing in it a (flat) linear transport to be constant or for 

the components of a (flat) linear connection'in it to be zeros. 

Elsewhere we shall show that the results presented below are 

specific of the considered here flat case and that in more general 

situations they are valid only locally, namely, at a given point or 

along a given path. 

Proposition 4.1. For every transport L there exists a field of 

local bases {E
1
,} in the tangent bundle in which the components of 

the corresponding to it bivector H(x,y) are Kroneker's deltas, 
l 1 1' i.e., H ,(x,y)=o ,. Moreover, if in some basis the components of 
•• J J 

H(x,y) are constant (with respect to x and y), then they are 

Kroneker's deltas and this basis can be obtained from {E
1
,} through 

linear transformation with constant coefficients and on the con­

trary, in any basis obtained from {E
1
,} by such a transformation 

the components of H(x,y) are Kroneker's deltas. 

Proof. Let {E
1

} be a fixed basis in the tangent to M bundle. 

14 

Due to (2.16) there is a matrix function F 
X 

d Im (NI 

such that 

H1 (x, y)=(F-1
) 

1 (F )" = ' (F- 1
) 

1 (F )" . 
. J x .a y .J L. x .a y .J 

•=1 

Let the basis {E
1
,} be defined at any XEM by 

E
1
,(x):=a7,<F:1 >'..,E

1
(x) 

Then 

E1
' (x)=o

11 
(F )" E1 (x) 

a X • I 

and, because of (2.16), we have 

l I l I a l b -1 J I I a l 1 

H .. J'(x,y)=a., (Fx). 1H.J(x,y)o.J,(Fy >.b=o., oJ,=oJ'' 

i.e., {E
1
,} is a basis with the needed properties. 

(4.1') 

( 4.1") 

Let {E
1

} be a fixed basis in which the transport is described 

by the matrix H(x, y). Then, there exists a nondegenerate matrix 
I I J , I, 

A(x)=IAI (x) I: =IAJ, (X) r 1 such that El (x)=A: (x)El, (x) and E (X)= 

=A:' (x)E1 (x). As a consequence of this, (2.12) and the above defi-
• I 

1 
-1 nit1on of E , (x). we have H(x, y)=A(x) UH , (x, y) U(A(y)) = 

l • • J 

=A(x)l(A(y))- 1=A(x)(A(y))- 1
• From here it immediately follows that 

H(x, y)=const if and only if A(x)=const and if this is the case, 

then, evidently, we have H(x,y)=B. ■ 

Remark. A basis {E
1
,} with the property described in proposi­

tion 4.1 can be constructed also in the followil}g way. Take any 

fixed field- {E
1

} of local bases, fix a point zeM and define (see 

(3.18)) 

- I E
1
,:=o

1
,L/E

1
). (4.1"') 

Then, due to (2.5) and (3.18a), we have E
1
,(y)=Lx--+YE

1
,(x), hence 

H'(x,y)=I. The second part of the proposition can also be easily 

derived from (4.1"'). 
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In the general case the bases in which the components of H(x,y)· 

are constant are nonholonomic, i.e., they are not generated by some 

local coordinates [6]. In a formal language this is expressed by 

Proposition 4.2. In the tangent bundle T(M) there exists a 

field of local holonomic bases, i.e., bases generated by some local 

coordinates in M, in which the components of the bivector ~(x,y) 

are constant if and only if in M there exist local coordinates {x
1

} 

such that in the associated to them basis {a/ax1
} the components of 

one, and hence of all, matrix F =~(F ) 1 I, defining through (2.16) 
X X .j 

the transport L in it, satisfy th_e equations 

(a(F ) 1 1axk)
1 1

=0. 
X • J J •. k 

(4.2) 

Moreover, if the described above coordinates exist, then any local 

basis,· in which the components of H(x,y) are constant, is holo­

nomic. 

. Remark. If we define the 1-forms 

F1 :=(F ) 1 EJ(x), 
X X , j 

H1 (y,x):=H1 (y.x)Ek(x)=(F- 1
)

1 (FJ) 
• k y • J X 

then, as can easily be proved, (4.2) is equivalent to the statement 

that any one of these forms is closed, i.e., to either of 

~1 
dF =O, 

X 

~1 
dx(H (y,x))=O, 

where dx means exterior derivation with respect to x. 

(4.3) 

( 4. 3 1
) 

Proof. Let us take the basis {a/ax1
} associated with some fixed 

local coordinates {x 1
}. If in (4.1') and (4.1") we substitute 

·E
1 
(x)·=a/ax1

, then, by proposition 4.1 and its proof, any basis in 

which the components of H(x,y) are constant is of the form 

E (x)=A11 
aa,(F- 1

)
1 (a/ax 1

), 
J J I X , a 

( 4. 4') 

16 

EJ(x)=AJ' a 1
' (F )a dx 1 • 

l a x • I 
(4.4") 

where IA:' l=IA~' r1 is a constant matrix and the components of Fx 

and F- 1 are referred to {a/ax1
} and {dx1

}. 
X 

By definition the bases (4.4) are holonomic if the 1-forms 

(4.4") are exact [6]. i.e., if there exist ;J=;J(x), such that 

EJ{x)=d;J{x), or equivalently EJ=a/a;J, i.e., that {;J} may be 

taken as local coordinates. Locally, a necessary and sufficient 

condition for that is dE/x)=O {see the converse of Poincare's 

lemma in [3], p. 145; cf. [1,6)) which, as can easily be seen by 

means of {4.4"), is equivalent to (4.3). 

This proves the first part of the proposition. Its second part 

is a trivial corollary from the second part of proposition 4.1 and 

the evident fact that a linear combination with constant 

coefficients of exact 1-forms is an exact 1-form. ■ 

Before the formulation of the .next proposition, which shows the 

meaning of proposition 4.1 in terms of connections generated by a 

linear transports, we would like to remind (cf. [1]) that the tor­

sion tensor T of a linear connection Vis defined by 

T{A,B):=v.s-VBA-[A,B], {4.5) 

A and ,8 being vector fields, and in a local basis {E } its 
. I 

components are 

T1 =-2cr1 > -c1 

.Jk .Jk IJ,kl .Jk {4.6) 

Proposition 4,3, The torsion LT of the connection VL associated 

with some linear transport L vanishes if and only if the conditions 

{4.2) are fulfilled. 

Pro.of. As in a local coordinate basis the connection coeffi­

cients of VL are (see {3.14)} 

Lr'. Jk {x)=H'. Jk {x)={F:
1

) '.a {a{ F x)~ /axk), (4.7} 
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the local components of LT in the same basis are 

LT! (x)=-(H1 (x))[ l=(F- 1
)

1 (a(F )a /axk)[ 1· ,Jk ,Jk J,k x .a x .J J,k (4.8) 

The comparison of this result with (4.2) shows the equivalence 
. L 

of (4.2) and the equality T=O. ■ 

Corollary 4.1. The torsion LT of the associated with a linear 

transport L connection VL to be zero is a necessary and sufficient 

condition for the existence of a field of local holonomic bases in 

which the matrix (2.16), describing that transport L, is constant. 

Proof. This result follows from propositions 4.2 and 4.3. ■ 

Corollary 4.2. If the curvature of a linear connection is zero, 

then a necessary and sufficient condition for the existence of a 

local holonomic basis in which the components of the connection are 

zeros is its torsion to vanish. 

Remark 1·. If the connection is not curvature free, then due to 

(3.16) a basis with the described property does not exist (see also 

below corollary 4.3). 

Remark 2. This is an old classical result which in a somewhat 

different formulation can be found, for instance, in (6), p. 142 or 

in (5), §106, p. 519. 

Proof. As for a holonomic basis C1 =0, the necessity directly 
• Jk 

follows from (4.6) • 

On the contrary, let T\k=O. As R=O, then by proposition 3.4 

there exists a transport L such that V=VL. But then LT 1 =T 1 =O . Jk . Jk 
and due to proposition 4. 3 there is a local holonomic basis in 

which the components H1 (y,x) of the matrix representing the trans­
• J 

port in it are constant. So, due to (3.13), in this local holonomic 

basis r 1 (x)=Lr1 (x)=H 1 (x)=aH 1 (x)/axk=O. ■ . Jk ,Jk .Jk .J 
Corollary 4. 3. A linear connection is curvature free if and 

only if there exists a basis in which its components are zeros. 

18 

Remark 1. Corollary 4.2 tells us when the mentioned basis is 

holonomic. 

Remark 2. If one considers ~nly holonomic coordinates (6), t~en 

this is a known result; cf. (6), p.142 or (5), §106, p.519. 

Proof. If the connection Vis curvature free, then by proposi­

tion 3.4 there is a transport L such that V=VL. For L, by proposi­

tion 4.1, there exists a basis {E
1

} in which the defined through it 

matrix (2.16) is constant. In this basis, by (3.13') the components 

of V are r 1 (x)=H 1 (x)=E {y)(H1 (x,y))=O, ,Jk .Jk . k .J as in it H\(x,y)= 

=const. 

On the contrary, 'if for V there exists a basis in which its 

components are zeros, then from (3.6) it follow that Vis curvature 

free. ■ 

5. COMMENTS 

In.this work, we have axiomatically defined "flat linear trans­

ports" in tensor bundles the class of which, as was proved, coin­

cides with the one of parallel transports generated by flat linear 

connections. A feature of our approach is that we have fixed for 

the mentioned definition only those properties of the l~tter trans­

ports which describe them completely. This consideration of pa­

rallel transports generated by flat linear connections turns out to 

be rather fruitful because it is independent of the standard 

connection theory and it gives possibilities for different genera­

lizations which will be a subject for forthcoming papers. 

On the basis of the developed formalism we have expressed a 

number of properties of flat linear connections in terms of flat 

linear transports. As the latter are global (integral) objects, the 
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proofs of these properties are considerably simplified with respect 

to the ones made by means of connections. 

Possibly, part of the mentioned properties are new at least in 

their formulation, but the proofs of -all of them are new in spite 

of that some of them are close to the ones in the references. 
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