





1. INTRODUCTION

This work starts investigations devoted to the axiomatic
approach to thé concept '"parallel transport (translation)". 1In
particular, it considers, maybe, éhe simplestvcaSe, namely the one
of "flat linear transporp over a manifold" in iensor bundles over
it which, on the one hand, is sufficiently rich in concrete proper-
ties and, on the other hand, admits an "easy" siraightforward gene-
ralization in different directions.

Section 2 contains the definition of a "flat linear transport"
in tensor bundles as a map having the properties described -there.
This definition is independent of the existence of somé additional
structures such as metrics or connections. Further, the general
form and structure of these transports is defived. ‘

In section 3, it is proved that to any flat linear transport
there corresponds a unique flat linear connection - defining the
parallel transport that coincides with the initial flat linear
transport (see propositions 3.1, 3.3 and 3.6). Moreover, as it is
established there, for any flat linear connection there exists a
flat linear transport the corresponding to which linear connection
coincides with it. Said in other words, this means that. the para-
llel transports generated by flat 1linear connectidns are flat
linear transports.

Section 4 deals with some local aspects concerning flat linear
coﬂnections or transports in tensor bundles. Here are derived nece-
ssary and sufficient conditions for the existence of local, in some

cases holonomfc, bases in which the matrix of a given flat linear
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transport is constant (and hence unit - see proposition 4.1) or the

components of some flat linear connection are zeros. The obtained
here results concerning the nonholonomic case are, probably, new as
the author failed to find them in the available to him literature.

In section 5 we present our conclusions.

2. DEFINITION AND SOME PROPEI-{TIES OF FLAT LINEAR
TRANSPORTS IN TENSOR BUNDLES

Let M be a real smdeth,’of class C', differentiable manifold

[1,2]. By T?q(M)'we denote the tensor space of type’(p,q) over M

at xeM; in particular T?°(H)=TX(H) and TT‘(M):T:(M) are the tan-
gent and cotangent, respectively. spaces to M (see, e.qg., [1,2]).

Definition 2.1.‘A.f1at linear transport (of tensors) over M is

a map L:(x,y) —L

X,Y€EM, where L is a map from, the

x——)y' x —y

tensor algebra at x into the tensor algebra at y having the proper-

ties:
P q P> q
L (T, (M)ST (M), (2.1)
\ 7y = ’ . P, q
oy (AR+UAY)=AL, | A+uL | A', A, ueR, A,AT€T)'(M), (2.2)
A _ l?'a.':la
—¢ 1®A2)—(7Lx__’yAl)®(Lx_)yAz), AeT ® (M), a=1,2, (2.3)
L _,,°C=CeL _ ., (2.4)
LY—)zoLx—)y-_-Lx—)z' X,Y,2€M, . . (2.5)
L =id, 7 (2.6)

x —Ix

"where C is any contraction operator and id means the identity map
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(in this case of the tensor algebra at x). The map Lx y will be
called a flat linear transport from x to y.

Remark 1. Thls def1n1t1on admits different generalizations to
the case of arbitrary fibre bundles but such generalizations will
not be needed for the present pért ofreur’investigatien.

Remark 2. As in this work we consider only flat iiﬁear trans-
ports, we shall call them simply (linear) trahspofts. :Here the
meaning of the adjective “flat” will be made clear below (see e.g.
proposition 3.3). . ‘

In other words, we can say that a transport over M is a family
of homomorphisms which in fact are isomorphisms >(see below),
between’the tensor algebras at different points of M which preserve
the tensor’s type, commute with contractions and have the special
properties (2.5) and (2.6). '

"Putting z=x in (2.5) and taking into account (2.6), we get

)7'=L ' ' . (2.7

(Lx —y y —/x

i.e;, the mentiohed homomorphisms have inverse méps which are of
the same family, and hence, they are (linear) isomorphiems.

The following propos1t1on establishes the general functional
form of the transports over M as it is spec1f1ed by (2.1), (2.2),
(2.5) and (2.6).

Proposition 2.1. The linear maps LP"¢ T:‘q(M)-——*T;'q(M).

x —3y

X,yeM satisfy (2 5) and (2.6) (with L"’q 2, instead of L __ ) if

and only if there exist linear isomorphisms Lp’q'TP‘q(M) —V, V

being a vector space, such that

Psq _[yPra |-t Pra .8
SN AN BAL (2.8

Proof. Let (2.5) and (2.6) be satisfied by LP:iqy- Then, the

. s 5 e p.q —{1P+ 4 P, q
substitution of (2.7) into (2.5) gives L, (Lz-—ey) oL,



U ! .
for every X,Y,z€M. Therefore, fixing some xoeH, we see that (2.8)

is valia for V=T:;q and LT“:L::L"O. on the contrary, if we have
the decomposition (2.8), then a straightforward calculation shows
that it converts (2.5) and (2.6) into identities.m
Proposiiion 2.2. If the representation (2.8) of L:ZEQY is true
(see propositionvz.i) and ‘V is any isomorphic with V vector space,

then

L :’L?[,L:'q ]-lo[:L:.q], (2.9)

where ’L:’Q:T:‘Q(H) — 'V are isomorphisms, iff there exists an -

1éombrphism f:V—’V such that

TP gL P q : (2.10)
x x .

Proof. This proposition is almost evident: if (2.10) is true,
then from (2.8) it follows (2.9) and vice versa, if (2.8) and (2.9)

are both valid, ‘then LP’9 =[L"“]"o[L"“]=['L"“]“e['L"“] and
x —y y x . y x

hence . f:=[’L:'q]o[L:’q]"={’L:'q]o[L:'q]'l is the needed isomor-
phism which does not'depehd either oﬁ X or 6n y. %
] '

_So, if we Qefine fo_" to be the representation of Lx-—ay on
Ti'q(H). then proposition 2.1 shows that it decomposes according to
(2.8) into a composition of two mapsvdepending sepérately on y and
x. The arbitrariness of these last maps is described by proposition

‘2.2, , L
Lettipg A=A =1€R in (2.3), we find L y1=1 which, by virtue

of (2.2), is equivalent to

Lx yl=l, A€R. . 4 (2.11)

Let {E,(x)} and {E'(x)} be dual bases in T (M) and T:(H), res-

pectively, where here and below the Latin indices run from 1 to

n:=dim(M) and the usual summation rule will be - assumed. AS ‘a conse-
quence of (2.1) for every X,Ye€M there exist uniquely defined func-
tions H’J(y,x)'and H;J(Y.X) such that

| b j] 7_ ] 1
L (B (x))=H (y,x)E(y), L _ , (EN(x))=H"(y,x)E.(y).

x
. ; (2.12)
If 6; are the Kroneker’'s deltas and C: isrthe contraction ope-

rator over the first super- and first subscript, then due to (2.4),

1 | . i -
(2.5) and (2.11), we have &=L _  (s)=L __  (E'(X)(E(x)))=

=L_ y(c:(E‘(x)eEJ(x)))=c:oLx y(E‘(x)sajkk));c:;((Lx JE(x))e

oL, __, E (x)))=C; ((H' (y,x)E"(y))®(H,! (v, x)E (¥))=H (v, %)H*(y,%),

i.e.

1 .k el . . . ' .
H  (y.x)H] (y,x)=8, (2.13)

or, using the matrix notation,

’ "H?k(}'ox)“'||H:|IT(Y.X)“=H:=|I5:", (2.13)

where as a first matrix index is considered the superscript and as
a second one the subscript.

From (2.12) and (2.2) it follows at once that' ka(y,x) and
H;f(y.x) are components of bivectors [6] defined at (y,x)eMxM, or

more precisely, we have

H(Y,x):=Hfi(y,x)E;(y)@Ek(x)eTy(M)®T:(M), (2.14a)

H' (v, %) :=H,"(y, x) E' (y) 0, (x) €T} (M) @T (M), (2.14D)

i.e., H(y,x) is a vector at y and a covector (1-form) at x and
H'l(y,x), its inverse bivector, is covector at y and vector at x.

The bivectors (2.14) uniquely define the action of Li——ay on
any tensor TeT:’q(H).
: | IR | _ J
Proposition 2.3. If T=TJ‘ JE, (x)®: - 8E, (X)6E '(x)e---@

. i Yy »



]
E Y(x), then

- L
k <) | N
L,_,,(T)=[ H H® (y.x)][ l l H, "(y.x)]'rj' :"Ek (y)e
asl a b=1 b 2ec ey q

1 1
: L 1
®---®E_(y)eE '(y)®---eE Y(y)- (2.15)
P
Proof. This result is a simple corollary from (2.12) and a
multiple application of (2.2) and (2.3).m

If p=q+1=1,‘then from (2.8) and (2.15), we get

L:'i,y(r)=(L;'°)‘fo(L:'°)('r):nf;(y.x)'r‘(x)sj(y).

Hence, letting F!:=|(Fx)fjﬂ:=n(L:'°)fjﬂ to be the matrix of the
matrix elements of L:'o when some bases {El(x)} in Tx(H) and {el}
in V are fixed, {.e., L:’°(E,(x))=:(L:'°)’Jel, and defining

H(Y.x):=|Hf;(y.x)|, we see that

H(y,x)=F)'F , ‘ (2.16)

where a matrix multiplication is understood.

Proposition 2.4. Some map Lx of the tensor algebra at x

—3y
into the tensor algebra at y is a linear transport from x to y if
and only if in the éorresponding iocal bases it acts according to
(2.15) in which the bivectors (2.14) ére inverse to one another,
i.e., (2.13) is valid, and (2.16) is true for some nondegeﬁerate
matrix F .

Proof. If Lx is a transport from x to Y, then, as we

—y
already proved, (2.13)-(2.16) are valid, the components of the
mentioned bivectors being defined by (2.12), and vice versa, if
(2.13)-(2.16) take place, then, as can éasily be proved, (2.1)-
(2.6) and (2.12) are satisfied for every F., i.e., the so con-

structed Lx is a linear transport from x to y.m

_)’

k)

(2.16), a linear transport Lx

defining L:(x,y)+—L

Proposition 2.5. Every manifold admits linear transports.

Proof. In the proof of proposition 2.3, we saw that to any

nondegenerate mxn matrix function F_ on M and any local basis in

its tangent bundle there corresponds, in conformity with (2.15) and

from x-to y for every x,yeM. So,

, we conclude that L is a linear trans-
x —dy .

port over M.m

Remark. If Fx defines some linear transport over M, then the

matrix function

'FX=DFX, det(D)#0, , (2.17)

D being a ‘nondegenerate nxn constant matfix; defines the same
linear transport, i.e the transport itself defines Fx up to the
constant left multiplier. This is a simple corollary from proposi-
tion 2.2 (see (2.10)). In particular, for ’V=V the matrix D may be

considered as a matrix by which the basis {el} in v is .transformed.

So, as a conclusion of the above discussion, we infer that the

definition of a linear transport over M is equivalent to defining

in it a pair of inverse to one another bivector fields, the local

representation of which is defined by (2.14) and one of which is

given by (2.16).

Below we everywhere assume the manifold M to be endowed with a

linear transport L.
3. THE EQUIVALENCE BETWEEN FLAT LINEAR TRANSPORTS
IN TENSOR BUNDLES AND FLAT LINEAR CONNECTIONS

Let us first of all remember some simple facts about linear

connections (in tensor bundles) which can be found, e.g., in [1,2].”



Let TP’9(M) be the tensor bundle of type (p,q) over M. By
Sec*(TP*%(M)) and Sec(TP’9(M)) we denote, respectively, the set of
c* and the set of all sections of TP'9(M). Let T(M) be the algebra
of tensof fields on M.

From a lot of equivalent definitions of a linear connection on
T(M) we choose the following one (see, e.g., [3] or [2], ch, III,
§2].

A 1linear connection on T(M) is a map V such that if Ve

_esec(T'*°(M)), then V:Vi——V  where the covariant derivation (di-
fferentiation) Vv along V has (here by definition) the propertiés:

(1) Vv:T(H)-——aT(H) is a type preserving derivation, i.e.,

v, :Sec (TP (M) —sec(T> (M), (3.1)
vvoC%COVv, (3.2)
V,(ASB)=(7,A)eB+AB(V,B), _ ' (3.3)
V,(A+A’ )=V A+ A%, (3.4)

where C is a contraction operator, A, B and A"are arbitrary c!
tensor fields on M, A and A’ being of one and the same type.
(2) If £:M—R is a C' function, V,WeSec(T''°(M)) and A is a

¢! tensor field on M, then

v £=V(£), (3.5)
Vo : o (3.6)
v, A=f-V A (3.7)

If {E|} is a field of bases in a neighborhood of soﬁe~point of
M, then the components (coefficients) P’kl of V in it are defined
by

§ TR

LT

v E=T7 E. (3.8)

Every transformation {Eilx———aEl,|X=E:,(x)E‘|x}, XEM leads to

’
the transformation of F‘J into I 3’ given by

k

s/ ot 3 K 1 1! 1
Ty (=E] (EL (DE, (OT | 4B, (X) (B, AE D), (3.9)
where JE' (x)[:=[E', ()"
1 y i

Any set of functions {F'Jk} transforming according to (3.9)

defines a unique linear connection whose components in {E‘} are
1 o

F'Jk f1,2]. ’

Now we shall turn to the topic of the present section.

Let L be a linear transport over M, VeSec(T“o(H)) and S be a
c' tensor field on M.

We define a map

v‘:v.-—wt. (3.10a)

where V: maps the ¢! tensor fields on M on the set of tensor fields

on M according to

(W5s) (x):= lim [H(L | S(x)-S(x)], (3.10D)

€ —0 €
where xeM and in some local ccordinates in a neighborhood of x the:
coordinates of x, are xé::x‘+cvi|x in which ¢ belongs to some
neighborhood of O€R and V|x=V‘|xa/axﬂ

Héreaftef, for the éxistence of the limit in (3.10b) we shall
suppose the transports over M to be sméoth, of class C', in a sense
that such are the bivectors (2.14) or, equivalently, the matrices
F,, xeM in (2.16). | ' -

From (2.6) and (3.10), we find the simple representation .

(Vi) =[5z (L, SN e (3.10c)



from where it follows that if {x'} are any local coordinates in a

neighborhood of x, then the components of (V:S)(x) are
1

ax
L ce._r 8 ves € -
[(VVS)(x)]"_—[axl ((Lxc-——axs(xc))...)ac |c=o'
[

! . .ee
=V, [:y' ((Ly l,‘S(y))_._)lw‘. (3.11)

where by dots we denote the indices corresponding to the type of S,

and the components of Ly___*xs(y) are explicitly given by (2.15).
Proposition 3.1. The map vt defined by (3.1) is a 1linear
connection on the tensor algebra T(M) which means that V: satisfies
(3.1)-(3.7), i.e., that V: is a covariant derivation along V;
Proof. Egs. (3.1) and (3.2) are simple corollaries from (3.10b)
and (2.1) and (2.4), respeétivelf.

From (2.2) and (3.10b), we get

Vi (AR+UA’ ) =AU A+UVI A _ (3.12)

which results, for a=u=1, in (3.4).

The equality (3.3) is a consequence of (2.3) and (3.10b) or
also, in a coordinate language, of (3.11), (2.15) and the fact that
the components of a tensor product of tensors are the product of
the corresponding teﬁsor components., »

And at the end, (3.5)-(3.7) follow directly from the local

representation (3.11) and, in the case of (3.5), from (2.11)..
About the connection V' we shall say that it is generated by

(or asgssociated to) the transport L.
Proposition 3.2,  If {x'} are 1local  coordinates in a
neighborhood of x€M, then in the basis {8/8x'} the components of

the linear connection vt are
at' (x,y)
— L |y=x (3.13)

H' (%)=
. Jk ay

where the matrix H(x,y)::lH’j(x,y)l represents, according to

(2.12), the linear transport in this basis.

10
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Proof. If we apply (3.11) to TeSecl(T"o(H)),'then using (2.15)
and (2.16), we get '

L §_yk ] 1 J =
(D01 |y 2 ) o T2

ay*

So, the comparison of this result with (3.8) shows that in the

—yk -] i o i 3, »
Wl (25T + (S ) |, 0]

considered case the connection’s components are exactly (3.13).Rm
Remark. If {E‘} is an arbitrary (local) basis in T!*2(M), then,

as can easily be seen, instead of (3.13), we shall have

H' L GO=[E | (! (x,¥)1] (3.13%)

y=x"

ely

An important property of a linear connection v generated by a

: , - then due to
1, )=1

transport L is that if we put uk(x):=anJk(x)ﬂ

(2.16) the following local representation is true

ﬂk<x)=[a—i;u(x.y)]m=F“(x) 2F(x)

8% [ af;u‘ H(Y'X)]y,x. (3.14)

Proposition 3.3. The linear connection v generated by a linear
transport L is flat.
‘ Proof. If V is a linear connection, A,BeSec(T''°(M)) and

[A,B]:=AocB-BeA is the commutator of A and B, then the curvature
operator is [2]

» BYeo - - o (3.19)
R(A,B) 1=V, oV =V 0¥ -V, ..

if {El} is a field of arbitrary local bases, [El,Ej —.C”Ek and

I"‘IJ are the components of V in {Bl}, then the components of the

curvature tensor R are [2,5]

o n 1
R:Jkn(x)='2(Ex(rka)lx+r71k(X)r:-|(x))tk.nl—c‘P(X)r-J-(x)’ (3.16)

11



where antisymﬁetriZation is performed, e.g. (AH)[kJ]‘z

:=-%(A —Alk), over the indices included in square brackets.

kl
Defining r‘k(x):=nr' (x)||‘ y=1 and R (x) —“R (x)n

Jk1 1,)=1'

where as a first matrix index is considered the superscrlpt, in any

coordinate basis we find

I AT (T (X)), - (3.16")

-]
R, (x)=-2( ox’

In particular, for the connection v' (3.14) is valid the sub-

stitution of which into (3.16’) gives

(F-l( ) az)((x)) F-l(x) aFix) F (x) aF(X)]‘k 1]

Ekl(x) —2[
where the use of aF"/axk=-F"(aF/axk)F-' is made.-

Proposition 3.4.»A linear connection V on M is flat if and only

if it is generated by some linear transport L, i.e., iff for some

transport L we have v=v".
Proof. The sufficiency was already established in proposition
3.3. So, let’s suppose that Bx1=0 for some connection V. Then,

there exists a matrix function F_ such that
-1 x :
l"k(x)-Fx an/ax . (3.17)

Actually, the integrability conditions for this equation with

respect to Fx are

o°F,
.o=[__-] -
A ax*ax! e, 13

=-F R, (0

which in the considered here case are satisfieda due to R _ =0.

So, if we define a linear transport L whose matrix in the used
basis is H(y,x)::F"Fx, we see that the associated to this trans-
port connection v' has, in accordance with (3.14), components
Hx(x)-F 1aF /ax which by virtue of (3 17) coincide with the ones
of V, so that v=v".

In other words, the last proposition states that the definition

12

of a (flat) linear transport in the tensor bundles over M is equi:—
valent to the definition of a flat linear connection in T(M).

Proposition 3.5. If L is a linear transport'and

Ly:Sec(Tp’q(H))-——»Sec(Tp'q(H)), yeM (3.18a)
is such that for every tensor field A

(LAY (x):=L __ A(y)), X,yeM, (3.18b)
then .

Lo =

Vv, eL =0. A (3.19)

Proof. This resulp is a simple corollary from (3.18b), (2.6)
and (3.10).m

Proposition 3.6, If L is a (fiat) linear tfanéport generating
‘the connection VY, then the parallel <transport defined by vt
coincides with L.

Proof. Let 7:J—M, JcR be a C' path and s,t€J. The parallel

transport for some connection V along » is a ma Psd
d p PT(-) 7o Tp
——T?'%  such that if AT,
7(t) Ty’ then Pr( ).1(’.)(A )= BT(t) where

the tensor field B is defined along 7 by the initial-value problem

V%B= , 81(-)=Ao in which 7 is the tangent to 7 vector field (cf.

{1-51). .

As the generated by L connection vt is flat (see proposition:
3.3), the defined by it parallel transport does not depend‘on the
path 7 but only on the points 7(s) and 7(t) [4,5]. This means that
the action of this parallel transport is tp? (A )=B

i), 7)Mo Ik

where the tensor field B is a solution of vta:o; BTK)=A for every
o

,0
vesec(T'*?(M)). By (3.19) and (2:6) this solution is B=L_ A,

T(s)
where A is any tensor field with the property AT() Ao. From all -
-
this we find ¥ =
. p’t(-) T(t)(A )= (L A)(T(t))_LT(-) —)T(t)Ao and
hence. PT =L .2 -

T(8),7(t) T(s) —HF(L)

13
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From propositions 3.4 and 3.6 we infer that any parallel trans-

port defined by a flat linear connection coincides with some flat
linear transport and vjce versa. This means that the (flat) linear
transports in tensor bundles, defined in section 2, realize the
axiomatic approach to such parallel transports, i.e., that (2.1)-
(2.6), when taken as axioms, define uniquely the set of these pa-

rallel transports,

4. SOME RESULTS CHARACTERIZING THE FLAT CASE

In this section we shall investigate problems concerning the

question when in a (local) basis it is possible for the matrix .

describing in it a (flat) linear transport to be constant or for
the components of a (flat) linear connection in it to be zeros.

Elsewhere we shall show that the results presented below are
specific of the considered here flat case and that in more general
situations they are valid only locally, namely, at a given point or
along a'given path.

Proposition 4.1. For every transport L there exists a field of
local bases {E‘,} in the tangent bundle in which the components of
the corresponding to it bivector H(x,y) are Kroneker's  deltas,
i.e., Hfjj,(x,y):B;:. Moreover, if in some basis ihe components of
H(x,y) are constant (with respect to x and Y), ihen they are

Kroneker’s deltas and this basis can be obtained from {El,} through

linear transformation with constant coefficients and on the con--

“trary, in any basis obtained from {Ex’} by such a transformation
the components of H(x,y) are Kroneker's deltas.

Proof. Let {El} be a fixed basis in the tangent to M bundle.

14

Due to (2.16) there is a matrix function F_ such that -
dim(H) x
a

i : 141 a -1,
B (=R (F)% = (FOL(FD7)

+a
a=1

Let the basis {El,} be defined at any x€M by
) ~1,1 oo ’
El,(x).—s‘,(Fx )-aEl(x) ‘ (4.17)

Then
E' (x)=s5'" (F)" E'(x) (4.1")
) a x" .1
and, because of (2.16), we have
1! et a ! b -1y _ot sa I
H”J,(x,y)—sa (F,),IH,,(X-Y)s,,'(F, )_b-aa 61, 5,"

i.e., {E‘,} is a basis with the needed properties.

Let {E|} be a fixed basis in which the transport is described
by the matrix H(x,y). Then, there exists a nondegenerate matrix
A(x)=|A:'(x)||:'=|Aj,(x)||'1 such that E‘(x)=A:I(x)El,(x) and E' (x)=
=A:I(x)E‘(x). As a consequence of this, (2.12) ‘and the above defi-
nition of. E . (x), we . have u(x.y):A(x)HHfi],(x.y)ﬂ(A(y))"=
=A(x)I(A(y))”:A(x)(A(y))". From here it immediately follows that

H(x,y)=const if and only if A(X)=const and if this is the case,
then, evidently, we have H(x,y)=t.® ’

Remark. A basis‘{El,) with the property described in proposi-
tion 4.1 can be constructed also in the following way. Take any

fixed field‘{El} of local bases, fix a point zeM and define (see

(3.18))

E st : '1”1
E‘,.—Bl,Lz(El). ‘ (4 )

Then, due to (2.5) andv(3.188), we have El,(y)=Lx_;_*yEl,(x), hence

H’(x,y)=1. The second part of the proposition can. also be easily

derived from (4.17).

15



In the general case the bases in which the components of H(X,Yy)
.~ are constant are nonholonomic, i.e., they are not génerated by some
local coordinates [6]. In a formal language this is expressed by
Proposition 4.2;‘in the tangent bundle .T(M) there exists a
field of local holonomic bases; i.e., bases generated by some local
coordinates in M, in which the components of the bivector H(x,Yy)
are constant if and only if in M there exist local coordinates %xl}
such that in the associated to them basis {a/ak‘} the components‘of
one, and hence of all, matrix Fx=ﬂ(Fx)fJﬁ, defining through (2.16)

the tranéport L in it, satisfy the equations

[a(ijfJ/ax*] 0. (4.2)

ty,kl-

Moreover, if the described above coordinates exist, then any local
basis; in- which the components of H(x,y) are constant, is holo-
nomic.

- Remark. If we define the 1-forms

Fle=(F)! B0, By, 0 =0 (v 0E (0=(F;")! (F))

x
then, as can easily be proved, (4.2) is equivalent to the statement

that any one df these forms is closed, i.e., to either of

dF!=0, . ‘ ' (4.3)

Ca (H'(y,%))=0, g v , (4.3%)

where dx means exterior derivation with respect to x.

Proof. Let us take the basis {8/3x'} associated with some fixed
local coordinates {x'}. -If in (4.1’) and (4.17) we substitute
'El(xf=é/akl. then, bf proposition 4.1 and its proof, any basis ih

.which the components of H(X,y) are constant is of the form

EJ(X)=A;IST,(F;’)fa(a’/ax‘), _ (4.4")

16

E'o=al, sl (F )" ax', ’ , (4.4")

where |1\‘|',|=|)\;I|'1 is a constant matrix and the components of F_
and F;l are referred to {8/8x'} and {dx'}.

By definition the bases (4.4) are holonomic if the 1-forms
(4.4”) are exact [6], i.e., if there exist ;’=;’(x), such that
Ej(x)=d;)(x), or equivalently EJ:a/a§’, i.e..' that {;’} may be
taken as local coordinates. Locally, a necessary and sufficient
condition for that is dEJ(x):O (see the qonﬁerse of Poincaré's
lemma in [3], p. 145; cf..[1,6]) which, as can easily be seen by
means of (4.4”), is equivalent to (4.3).

This proﬁes the first part of the propdsition, Its second part
is a trivial corollary from the second part ofbpfoposition 4.1 and
the evident fact that a 1linear combination with constant
coefficients of exact 1-forms is an exact 1-form.m v

Before the formulation of the .next proposition, which shows the
meaning of proposition 4.1 in terms of connections generated by a
linear transports, we would like to remind (cf. [1]) that the tor-
sion tensor T of a linear connection V is defined by ‘AVV

T(A,B):=V,B-V_A-[A,B], , (4.5)

A and .B being vector fields, and in. a. local basis {El} its
components are

v __ 1 et L )

T.jl_ z(r.Jl)IJ,kl c.]kf ’ (4.6)
Proposition 4.3. The torsion “T of the connéction v associated

with some linear transport L vanishes if and only if thé conditions

(4.2) are fulfilled.

Proof. As in a local coordinate basis'the connection coeffi-

cients of V' are (see (3.14))

Lt . _: 141 a " . A
F_Jk(x)fH.Jk(x)—(Fx )_a(a(Fx)_J/ax ) - R (4-7)

17



L]
the local components of LT in the same basis are

(J.kl=(F;l)fa(a(Fx)TJ/ax‘()(J'kl' (4.8)

T (0=-(H | (x))

The comparison of this result with (4.2) shows the equ;valence
of (4.2) and the equality lr=0.m

Corollary 4.1, The torsion T of the associated with a linear
transport L connection 7" to be zero is a necessary and sufficient
condition for the existence of a field of local holonomic bases in
which the matrix (2.16), describing that transport L, is constant.

Proof. This result follows from propositions 4.2 and 4.3.m

Corollary 4.2. If the curvature of a linear connection is zero,
then a necessary and sufficient condition for the existence of a
local holonomic basis in which the components of the connection are
zeros is its torsion to vanish.

Remark 1. If the connection is not curvature free, then due to
(3.16) a basis with the described property does not exist (see also

below corollary 4.3).

Remark 2. This is an old classical result which in a somewhat
different formulation can be found, for instance, in {6], p. 142 or
in [5], §106, p. 519.

Proof. As for a holonomic basis ijk=0, the necessity directly
follows from (4.6). v

On the contrary, let Thk=0._As R=0, then by proposition 3.4

Ll

there exists a transport L such that v=v"., But then 'T' =T'

SIS .Jk=0

and due to proposition 4.3 there is a local holonomic basis in
which the components H’J(y,x) of the matrix representing the trans-
port in it are constant. So, due to (3.13), in this local holonomic
. t _Lot _yl —an! k_
basis F'Jk(x)— F'J.(x)—H.Jk(x)—aH.J(x)/ax =0.m
Corollary 4.3. A linear connection is curvature free if and

only if there exists a basis in which its components are zeros.

18

Remark 1. Corollary 4.2 tells us when the mentioned basis is

~ holonomic.

Remark 2. If one considers only holonomic coordinates [é], then
this is a known result; cf. [6], p.142 or [S5], §106, p.519.

Proof. If the connection V is curvature free, then by proposi-
tion 3.4 there is a transport L such that v=v". For L, by proposi-
tion 4.1, there exists a basis {E‘} in which the defined through it
matrix (2.16) is constant. In this basis, by (3.13’') the componénts
of V are rfjk(x)=HTJk(x)=§k(y)(Hfj(x.y)):O, as in it‘ Hfj(x,y)=
=const. '

On the contrary, if for V there exists a basis in wﬁich its
components are zeros, then from (3.6) it follow that V is curvature

free.®
5. COMMENTS

'In;this work, we have axiomatically defined “flat linear trans-
ports” in tensor bundleskthe class of which, as was proved, coin-
cides with the one of parallel transports generated by flat linear
connections. A feature of our approach is that we have fixed for
the meptioned definition only those properties of the latter trans-
ports which describe them completely. This consideration of pa-
raliel transports generated by flat linear connections turns out to
be rather fruitful because it is independent of the standard
conﬁéction‘theory and it gives possibilities for different genera-
lizations which will be a subject for forthcoming papers.

Oon the basis of the developed formalism we have expressed a
number of properties of flat 1inear4connections in terms of flat

linear transports. As the latter are global (integral) objects, the

19



pfoofs of these properties are considerably simplified with respect

to the ones made by means of connections.

Possibly, part of the mentioned properties are new at least in

their formulation, but the proofs of all of them are new in spite

of that some of them are close to the ones in the references.

ACKNOWLEDGEMENT

This research is partially supported by the Foundation for

Scientific Research of Bulgaria under contract F 103.

1.

REFERENCES

Dubrovin B., S. P. Novikov, A. Fomenko, Modern Geometry, I.
Methods and Applications, Springer Verlag.

Kobayashi S., K. Nomizu, Foundations of Differential Geometry,
Vol. 1, Interscience Publishers, New York-London, 1963.

Lovélock D., H. Rund, Tensors, Differential Forms, and Varia-
tional Principals, Wiley-Interscience Publication, John Wiley &
Sons, New York-London-Sydney-Toronto, 1975.

Norden A. P., Spaces with Affine Connection, Nauka, Moscow, 1976
(In Russian). '

Rashevskii P. K., Riemannian Geometry and Tensor Analysis,
Nauka, Moscow, 1967 (In Russian).

Schoﬁten J. A., Ricci-Calculus: An Introduction to Tensér
Analysis and its Geometrical Applications, 2-nd ed., Springer

Verlag, Berlin-Géttingen-Heidelberg, 1954.

. Received by Publishing Department

on December 21, 1992.

20



