





I. INTRODUCTION

In connection with the equivalence principle [1], as well as
from purely mathematical reasons [2-5],of importanceisthe problem
for existence of local (holonomic or anholonomic [2]) coordinates
(bases) in which the components of a linear connection [3] vanish
on some subset, usually submanifolds, of a differentiable mani-
fold [3]. This problem has been solved for torsion free, i.e.
symmetric, linear connections [3, 4] in the cases at a point [2-
51, alengva smooth path without selfintersections [2, 5] and on a
neighborhood ([2, 5]. These results were generalized in our pre-
vious works [6, 7] for arbitrary, with or without torgion, deriva-
tions of the tensor algebra over a given differentiable' manifold
[3] and, in particular, for arbitrary linear connections. General
results of this kind can be.-found in [8], where a criteria for the
existence of the above-mentioned special bases (coordinates) on
submanifolds of a space with a 3ummetriq affine 'connection is
given. _

The present work generalizes the results from [6-8] and deals
with the problems for existence, uniqueness and holonomicity of
special bases in which the components of a derivation of the tensor
algebra over a differentiable manifold vanish on some its subset of
a sufficiently general‘type (Sect. II and IiI). In particular, this
derivation may be a linear connection (Sect. IV). In this context
we also make conclusions concerning tne general validity and the
mathematical formulation of the equ1va1ence prlnc1p1e in a class of

,grav1ty theories (Sect. V).

: BovcRuneilifi KK ﬂf}'\
¢ tHewHMR BOCasACEABRL ;
_BUBANOTERA



.
For further reference purposes, as well as for the exact

statement of the above problems, we reproduce below a few simple
facts about. derivations of a tensor algebras that can be found in
[6, 7] or derived from the ones in [3].

Every derivation D of the tensor algebra over a differen-
tiable manifold M admits a unique representation in the form (see
[3], ch.I, proposition 3.3) DﬁLx+S, in which L is the Lie deriva-
tive along the vector field X and S is tensor field of type (1,1)
considered here as a differentiation [3]. Both X and S are uniquely
defined by D.

If S‘ is a map from the set of c' vector fields into the

tensor fields of type (1,1) and S:Xk——asx, then the equation
D=L +S. (1)
X X X

defines a derivation of the tensor algebra over M for any ¢! vector

field X [3). As the map S will hereafter be assumed fixed, such a

S

X’ will be called an S-derivation along X and

derivation, i.e. D

will be denoted for brevity by D,. An S-derivation is a map D such

that D:Xr——an where Dx is an S-derivation along X.

Let {E‘,'i=1,...,n:=dim(H)} be a (coordinate or noncoordinate
[2]) local basis of vector fields in the tangent to M bundle. It is
(an)holonomic if the vectors E, -v.r E (do not) commute [2].

The local components (Wx)!j of D with respect to {E\} are

defined by the equation
- 1
DX(EJ)_(wX).jEI' (2)

and their explicit form is

i
(wx) _|=(Sx).

i 1 k
J—EJ(X )+c_”x , . (3)

where X(f) denotes the action of X=XkEk on ¢! functions f, i.e,

-

x(f):=XkEk(f), and c"k define the commutators of the basic vec--

tors, i.e.

i
[E,E]=c' E | (4)

If we make the change {El}———»{El,=A:,E‘}, where A:=ﬂA:,H=:
’ .
=:“A: 1 ! is a nondegenerate matrix function, then from (2) we can

see that (wx)'J transform into

’

)t L=t Al )t sat XA ' (5)
x’..’ 1 3 %% T 3
which, if we introduce the matrices W :=“(wx)‘j“ and W':=

:="(Wx)f'J/H. will read

W =AT W A+X(A) ], : » (5%)

where as a first  matrix index is understood the superscript and
vk . k i
X(A):=X"E_(A)=[X"E_(A ,)].
If V is a linear connection with local components F’Jk (see
e.g. [2-4]), then is fulfilled [2, 3]

X*)E. .

Fp
v, (E)=(r" . (6)

k

Hence, comparing (2) and (6), we see that Dx is a covariant diffe-
rentiation along X iff

x* (7

for some functions F‘Jk.
Let D be an S-derivation and X and Y be vector fields. The

torsion operator T of D is defined as

TD(X,Y):=DXY—Dyx—[x.Y]. ©(8)

The S-derivation D is called torsion free if T°=0.



For a linear connection V, due to (7), we have
(rv(x, 1) '=T' | %Y, (9

where [2, 3] T‘“:=—(I"“—I““)—C’kl are the components of the tor-

\

sion tensor of V.

Further we shall investigate ﬁhe problem for existence of
special Dbases {E:’} in which w;:o for an S-derivation D along any
or fixed vector field X. Hence, due to (5’), we shall have to solve
the equation wx(A)+x(A)=0 with respect to A under conditions that

will be presented below.

II. DERIVATIONS ALONG ARBITRARY VECTOR FIELDS

This éection is devoted to the existence and some properties
of special bases {Ex’}' defined in a neighborhood of a subset U of
the maﬁifold‘u, in which the components of an S-derivation D along
an arbitrary vector field X vanish on U.

Proposition 1. If for some S-derivation D there exists a
basis {E ,} in which W | =0 for eQery vector field X, then D is a
linear connection on the set UcM.

Remark. On the set UcM the derivation D is a linear connec-
tion if (cf. (7)) in some, and hemce in any, basis {El} is

fulfilled

W (x)=T, (x)X"(x), : (10)

where Xxe€U, X=xkEk and Fk are some matrix functions on U. (Evident-
ly, a linear connection on M is also on U a linear connection for

every U; see (7)).

Proof. If we fix a basis {E} and E‘)=A:,El, then by the

definition of {E,.}, we have W;|U=0, i.e. w;(x)=0 for x€U, which in

conformity with (5’) is equivalent to (10) with rk=-(Ek(A))A“,

A=fa,|.=

The opposité statement to proposition 1 is generally not true
and for its exact formulation we shall need some preliminary
results and explanations. )

Let p be an integer, pz1, and the Greek indices « and 8 run
from 1 to p. Let J® be a neighborhood in R® and {s%}={s',...,s"} be
(Ccartesian) coordinates in RF.

Lemma 2. Let Za:Jp———eGL(m,R), GL(m,R) being the group of mxm
matrices on R, be a €' matrix-valued function on JP?. Then the

initial-value problem

=n:=ﬂaluT'J=1’ (11)

in which 01 is- the unit matrix of the corresponding size, seJ?,
soer is fixed and Y is mxm matrix function on JP, has.a soiution,
denoted by Y=Y(s,sé;zl,.u,zp), which is unique and smoothly depends

on all its arguments, if and only if

.= 8 a - =
RaB(zl....,zp)._aza/as - azB/as + ZaZB ZB ZafO. (12)

Proof. According to the results in [9], ch. VI the integra-
bility conditions for (11) are
0 = 8%v/as%sP - 8%v/8sPas® = a(zgn\os* - a(z Y)\asP=
= (82\as™)Y - (3z\osP)Y + 22 ¥ - 2.2, = R o(Z,,....2)Y.
Hence (11) has a unique ‘solution iff (12) is satisfied.m
Let p=n:=dim(M), «,B8=1,...,p and y,v=p+l,...,n. Let r:J——M

be a c’

map. We shall suppose that for any s€J” there exists its
(p-dimensional) neighborhood Jstp, seJ such that the restricted

map 1'|J :Js———eﬁ is without selfintersections, i.e. in J5 does not
a



exist points s, and sz;es1 with the property r(sl)=7(sz). This
assumptién is equivalent to the one that the points of
selfintersections of %, if any, can be separated by neighborhoods.
With J: we shall denote the union on all neighborhoods Js with the
above property; evidently J: is the maximal neighborhood of s in
which 7 is without selfintersections.

Let at first suppose J:=Jp, i.e. 7 to be without silfin-
tersection,” and that (J°) be contained in only one coordinate
neighborhood V of M.

Let us fix some one-to-one C' map 7:J°xJ""P— M such that
n(-;;°)=7 for a fixed LoeJ“'p, i.e. n(s,t))=v(s), seJ?. 1In
vun(J?,J""P) we define coordinates {x'} by putting (x'(n(s,t)),
<o x(n(s,1))):=(s,t)erR”, seIP, te"P,

Proposition 3. Let 7:JP ——M be Cl, without selfintersections
and #(J®) 1lies 1in only one céordinate neighborhood. Let on #(J®)
the derivation D be a linear éonnection. Then there exists a de-
fined in a -neighborhood of #(JP) basis {E,,} in which the compo-

nents of D along every vector field vanish on 7(Jp)\if and only if

in the above-defined coordinates {x'} is fulfilled

[RaB(—Flor,...,-Fpor)] p=0, o,B=1,...,p., (13)

J
where R o(...) is defined by (12) for m=n and (s',...,sP)=sel”,
i.e.
[Ryg(-T, %, ., =T o1) 1(5)=0T (#(s)) /asF - ary(w(s))/as® +
+ (T,Tg = Tl |y, (14)

Remark. In the case when D is a symmetric affine connection
this result was obtained by means of another method in [8].

Proof. The following considerations will be done in the above-

defined neighborhood Vnn(J®,J""P) ‘and coordinates {x'}. Let
El=d/dxl. We shall 1look for a basis {El,=A:,El} in which
W, (7(s))=0, seJ®. By eq. (5’) the existence of {E,.} is equivalent
to the existence of the A=ﬂA:,ﬂ, transforming {E:} into {E‘,}, and
such that [A'l(wa+X(A))]|T(s)=0 for every X. But as on ¥(J”) D is
a linear connection, the eq. (10) is valid for some mat}ix—valued
functions Fk and xer(JP), consequently A must be a solution of

F;,(x)=0, i.e. of

(T, (7(5))A(7(s))+(8A/8x") | 0, seJ®. . (15)

T

By expanding A(n(s,t)), s€J?, teJ" F into a power series with

respect to (L—Lo) it can be shown that (15) has a solution if and
only if the integrability conditions (13) are valid. Besides, if

(13) take place, than the general solution of.(15) is

A(n(s,0))={1- T T, (r(s) IxM(n(s, £)-x* (#(s)) 13x
A=p+1l

n
. _ . H -
xY(s,s ;-T o¥,..., I‘por)Bo + . l)ijnlaw,(s.’_c_.1!1)[x (n(s,t))

-x*(r(s))1x¥(n(s, 1)) -xY(#(sN], - - (16)

v.r‘l'lere’sot's.]'s and the nondegenerate matrix Bovare fixed and the mat-

rices B
T

bounded when ;———4;“. (The fact that into (16) enter only sums from

u,v=p+1,...,n, together with their derivatives, are

p+t1 to n is a consequence from *%(n(s,£))=x%(7(s))=s%, 1i.e.
x%(n(s,£))-x%(n(s, £ ))=x%(n(s,£))-x*(¥(5))=0, a=1,...,p.)

Thus, bases {El,} in which w;:o exist iffv(13) is satisfied.
If (13) is valid, then the bases {El,} are obtained from {El=d/dx‘}
by means of linear transformations the matrices of which must have
the form (16).m | »

Now we are ready to consider a general smooth (chH) map
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7:JP——M whose points of selfintersection, if any, can be sepa-
rated by neighborhoods. Let for any reJ® be chosen a coordinate

neighborhood VT of #(r) in M. Let there be fixed a C' one-to-one

(r)
map m_:J°xJ""P——M such that 7 p=nr(-.L;) for some t’eJ"7P. In
J
r

the neighborhood V7

( )

local coordinates {x:} defined by (x:(nr(s,g)),...,x:(nr(s,;))):=
:=(s,t)er", where seJ: and teJ"P are such that
nr(S.L)evr(r,-

Theorem 4. Let the points of selfintersection of the C! map
7 JP——M, if any, be separable by neighborhoods and let on »(J%)
the S-derivation D be a linear connection, i.e. eq. (10) to be
valid. Then in some neighborhood of ¥(JP) exists a basis {El,} in
which the components of D along every vector field vanish on #(J°)
if and only if for every reJ in the above defined local coordinates

{x:} is fulfilled

(R (T o7, ..., T ©3)1(5)=0, «,8=1,...,p, (17

where Fa are calculated by means of (10) in {x:}, R are given by

ap
(14) and seJ® is such that y(s)ev .
r Tir)
Proof. For any reJ’ the restricted map 7 p:’Ji———eH, where
’
. J
r

’J::={seJ:, 7(s)eV7 .,}» is without selfintersections (see the

(

above definition of Jz) and 7 p(fJf):r(’J:) lies in the coordi-
I
J N -
r

nate neighborhood Vv(r)'
So, 1if a Dbasis {El,} with the described property exists,
then, by proposition 3, eqs. (17) are identically satisfied.
on the opposite, if (17) are valid,. then, again by
proposition 3, for every reJ® in a neighborhood ‘V_of 7(’J:) in

VT(r) exists a Dbasis {E:,} in which the components of Dx along

P n-p P .
r)“"r(Jr'J ) of 'r(.]l_)nv,“l~ we introduce.

=5

R

every vector field X vanish on 7(’J:). From the neighborhoods ’Vr
we can construct a neighborhood V of #(JP), e.g. we can pu{

= u ’Vr, but, generally, Vis sufficient to be taken as a union of
rGJP
‘v for some, but not all reJ’. On V we can obtain a basis {El,}

r
with the needed property by putting E‘,[x=E:,[x if x belongs to
only one neighborhood ’Vr and if x belongs to more than one neigh-
borhood ’Vr we can choose {El,|x} to be the basis {E:,Ix} for some
arbitrary fixed r with this property. (Note that generally the so-
obtained basis 1is not continuous in the regions containing inter-
sections of several neighborhoods 'Vr.)l

Proposition 5. If on the set UcM there exist bases in which the
components of some S-derivation along every vector field vanish on
u, ﬁheﬁ all of them are obtainedkfrom one another by linear trans-
formations whose coefficients are such that the action on them of
thebcorresponding basic vectors vanishes on U.

Préof.The proposition is a simple corollary from (5’).i

Proposition 6. If for some S-derivation D there ekistsa local-
ly holonomic basis in which the components éf D along every vector
field vanish on the set UcM, then D is torsion free on U. On the
opposite, if D is torsion free on U and bases in which the compo-
nents of D along évery vector field vanish 6n‘U exist, then all of
them are holoncmic on U, i.e. their basic vectors commute on U.

Proof. 1If {El,} is a basis with the mentioned property, i.e.
w;(x)=0 for every X and xeU, then using (2) and (8) (see also eq.
(15) from [6]), we fined T“(El,,EJ,)|U=-[El,,EJ,]|UAand cqnseduen-
tly {E.} is holonomic on U, i.e. [E,,E,1|,=0, iff 0=T"(X, V) |,=
={x'IY‘ITD(E‘,.Ej,)}|U for every vector fields X and Y, which is
equivalent to TD|U=0.

On the opposite, let TD|U=0. We want tobprove that any basis



L]
{E ,} in which w;:o is holonomic on U. The holonomicity on U means

i
0=[El,,EJ,]|u={—A:I(EJ,(A:,)—E‘,(A:,))Ek,}|U. But (see proposition
1 and (10)) the existence of {El,} is equivalent to Wx|u=(1"kx_k)|U
for some functions Fk and every X. These two facts, combined with
(2) and (8), show that (Fk)fj=(FJ)fk. Using this and {FRA+
+6A/6xf}]u=0 (see the proof of proposition 1),we find EJ,(A:,)|U=
=—Aj,Ai,(FJ)fl|U=El,(A:,)|U and therefore [El,,EJ,]|U=0 (see

above), i.e. {E1,} is holonomic on U.m

III. DERIVATIONS ALONG FIXED VECTOR FIELD

As 1t was said in our previous works [6, 7] the problem for
existence and the propgrties of special bases for derivations along
fixed vector field 'is not very interesting from the viewpoint of
its applications. By that feasoh'we shall briefly outline only some
vresults concerniﬁg it. ’

k The following two propositions are almost evident (cf. resp.
propositions 1 and 5).

Proposifion 7. If for the S-derivation Dx along a fixed
vector fieldi X exists a basis {El,} in which the components of Dx
vanish on the set UcM, then on U Dx is a covariant‘differentiation
along X, i.e. for the given X the eq. (10) is valid on U.

Proposition 8. If on the set UcM there exist bases in which the.
components of an S-derivation along a fixed vector field vanish,
then all of them are obtained from one another by linear transfor-
mations, the matrices of which are such ihat the action of X on
them vanishes on U.

The existence of special bases in which the components of D ,

10

with a fixed X, vanish on some set UcM significantly differs from
the same problem for D, with an arbitrary X (see Sect. II). In
fact, if {E‘,=Ai,El}, {E‘} being a fixed basis on U, is such a
basis on U, i.e. w;|u=o, then, due to (5’), its existence is equi-
valent to the one of A:=ﬂA:,ﬂ for which (WXA+X(A))|U;0 for the
given X. As X is fixed, the values of A at two different points,
say X,ye€U, are connected through the last equation if and only if x
and Yy lie on one and the same integral path (curve) of X, the part
of which between x and y belongs entirely to U. Hence, if 7:J——M,
J being an R-interval, is (a part of) an integral path of X, i.e.

at ¥(s), se€J the tangent to 7 vector field 7 is i(s)::X]T( then

s)'
along 7 the equation (W, A+X(A))] =0 reduces to dA/dsIr(s)=i(A)|s=
=(X(A))Iw(s)=—wx(7(s))A(1(s)). The dgeneral solution of this equa-
tion is

A(s;9)=Y(s,s ;-W o7)B(7), (18)

where soeJ is fixed, Y=Y(s,so;Z), with Z being a ¢! matrix function
of s, is the unique solution of the initial-value problem (see [9],

ch. IV, §1)

dy/ds=zy, Y| __ =0, (19)
o

and the nondegenerate matrix B(?) may depend only on 7, but not on
s. (Note that (19) is a special case of (11) for p=1 and by lemma 2
it has always a unique §olution because of Rll(zl)EO for p=1.)

From the above considerations follows

Proposition 9. For any S-derivation along a fixed vector
field on every set UcM there exist bases, in which the components of

that derivation vanish on U.

11



IV. LINEAR CONNECTIONS

The results of Sect. II can directly be applied to the case
of linear connections. As this is more or less trivial, we shall
present without proofs only three such consequences.

Corollary 10. Let the points of selfintersection of the ¢!
map 7:JP— M, if any, be separable by neighborhoods, V be a linear
connection on M with local components Ffjk (in ‘a basis {Ex}) and
Fk:=ﬂFkaﬂr’J=1. Then in a neighborhood of 7(J¥) exists a basis

{E‘,} in which the components of V vanish on ¥(JF), i.e. I' ,| =
P
: 7

=0, iff for every reJ® in the coordinétes {x:}'(defined before
theorem 4) (17) is satisfied 'inrwhich Fa, o=1,...,p are part of the
components of V in {x:} and seJ® is such that T(S)Evr(r)‘
Corollary 11. If on the set UcM there exist bases in which the com—
ponents of a linear connection vanish on U, then ail of these bases
are obtained from one another by linear transformations, the
matrices of which are such that the action of the corresponding
basic vectors on them vanishes on U.
Corollary 12. Let for some linear connection on a neighborhood
of a set UcM exist locai continues bases in which the connection’s

components vanish on U. Then one, and hence any, such basis is

holonomic on U iff the connection is torsion free on U.

V. CONCLUDING REMARKS
As the main result of this work is expressed by theorem 4, we

shall make some comments on it. First of all, it expresses a suf-

ficiently general necessary and sufficient condition for existence

12

of the considered here special bases for derivations, in particular
linear connections. For instance, it covers that problem on arbi-
trary submanifolds. In this sense, its special cases are the re-
sults in our previous papers [6, T].

If p=0 or p=1, then the condition (17) is identically

satisfied, i.e. Ra =0 (see (14)). Hence in these two cases special

B
bases, we are searching for, always exist (respectively at a point
or along a path), which was already established in [6] and [7] rés—
pectively. ‘

In the other 1limiting case, b:n::dim(M), it is easily seen
that the quantities -(14) are simply the matrices formed from the
compoents of the corresponding curvature tensor (cf. [6, 3, 4])
and that the set #(J?) consists of one or more neighborhoods in M.
Consequently, now theorem 4 states that the investigated herekspe—
cial bases exist iff the corresponding derivation is flat, i.e. if
its curvature tensor is zero, a result.already found in [6].

In the general case, when 2sp<n (if nz3), speciél bases, even
anholonomic, of the_considered here type gd not exist if (and only
if) the conditions (17) are not satisfied. Besides, in this case
the quantities (14) cannot be considered as a '"curvature" of #(J¥)
as they are something like "commutators" of covariant derivatives
of a type V_, where F is a tangent to 7(JP) vector field (i.e.
FeT(7(J®%)) if #(J®) is a submanifold of M), and which act on tan-
gent to M vector fields.

Let us also note that the bases in which the components of
some derivation vanish on a set U are generally anholonomic, if
any, and only in the torsion free case (the derivation’s torsion
vanishes on U) they-may be holonomic.

The above results outline the general bounds of validity and

13



.
are the exact mathematical expression of the equivalence principle,
which states [1] that the gravitational field strength, theoreti-
cally identified with the components of a linear connection, can
locally be transformed to zero by a suitable choice of the local
reference frame (basis), 1i.e. it requires-the existence of local
bases in which the corresponding connection’s components vanish.

The above discussion, as well as the results from (6, 7], show
the identical validity of the equivalence principle in zero and one
dimensional cases, i.e. for p=0 and p=1. Besides these are the only
cases when it is fulfilled for arbitrary gravitational fields. In
fact; for pz22 (for n22), as we saw in Sect. IV, bases with the
above property do not exist unless the conditions (17) are satis-
fied. In particular, for p=n22 it is valid only for flat linear
connections (cf. [6]).

Mathematically the equivalence principie is expressed thfough
corollary 10 (or, in someAmore general situations, througﬁ theorem
4)., Thus we see that in Qravity theories based on linear connec-
tions this principle is identically satisfied at any fixed point or
along any fixed path, but on submanifolds of dimension greater or
equal two it- is generally not valid. Therefore in this class of
gfavity theories the equivalence principle is a theorem derived
from their mathematical background. It may play a role as a
principle if one tries to construct a gravity tﬂeory based on more
general derivations, but, generally, it will reduce this theory to

one based on linear connections.
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