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I, INTRODUCTION 

In connection with the equivalence principle [ 1] ,. as well as 

from purely mathematical reasons [2-5),ofimportanceisthe problem 

for existence of local (holonomic or anholonomic [2]) coordinates 

(bases) in which the components of a linear connection [3) vanish 

on some subset, usually submanifolds, of a differentiable mani-

fold [3]. This problem has been solved for torsion free, i.e. 

symmetric, linear connections [3, 4) in the cases at a point [2-

5), along a smooth path without selfintersections [2, 5) and on a 

neighborhood [2, 5). These results were generalized in our pre

vious works [6, 7) for arbitrary, with or without torsion, deriva

tions of the tensor algebra over a given differentiable manifold 

[3) and, in particular, for arbitrary linear connections. General 

results of this kind can be-found in [8]. where a criteria for the 

existence of the above-mentioned special bases (coordinates) on 

submanifolds of a space with a summetric affine connection is 

given. 

The present work generalizes the results from [6-8) and deals 

with the problems for existence, uniqueness and holonomicity of 

special bases in which the components of a derivation of the tensor 

algebra over a differentiable manifold vanish on some its subset of 

a sufficiently general type (Sect. II and III). In particular, this 

derivation may be a linear connection (Sect. IV). In this context 

we also mak~ conclusions concerning the general validity and the 

mathematical formulation of the equivalence principle in a class of 

gravity theories (Sect. V). 
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For further reference purposes, as well as for the exact 

statement of the above problems, we reproduce below a few simple 

facts about derivations of a tensor algebras that can be found in 

[6, 7) or derived from the ones in [3]. 

Every derivation D of the tensor algebra over a differen

tiable manifold M admits a unique representation in the form (see 

[3), ch.I, proposition 3.3) D=Lx+S, in which Lx is the Lie deriva

tive along the vector field X and Sis tensor field of type (1,1) 

considered here as a differentiation [3]. Both X and Sare uniquely 

defined by D. 

If s is a map from the set of C1 vector fields into the 

tensor fields of type (1,1) and s:x~sx' then the equation 

D5 =L +s X X X ( 1) 

defines a derivation of the tensor algebra over M for any C1 vector 

field X [3]. As the map Swill hereafter be assumed fixed, such a 

derivation, i.e. D!, will be called an S-derivation along X and 

will be denoted for brevity by Dx. An S-derivation is a map D such 

that D: X~Dx where Dx is an S-derivation along X. 

Let {E
1

, ·i=1, ... ,n:=dim(M)} be a (coordinate or noncoordinate 

[2]) local basis of vector fields in the tangent to M bundle. It is 

(an)holonomic if the vectors E, .,., E (do not) commute [2]. 
1 n 

The local components (W )~J of D with respect to {E} are 
X I 

defined by the equation 

Dx(EJ)=(Wx)\E 1 , (2) 

and their explicit form is 

(W ) 1 =(S ) 1 -E (X 1 )+C 1
. xk, 

X.J X.J j .Jk 
(3) 

where X(f) denotes the action of X=XkEk on C1 functions f, i.e. 

2 

cl 

~ 

X(f): =XkEk ( f), 

tors, i.e. 

and C1 define the commutators of the basic vec-· 
. j k 

[ E , E ]=C 1 E 
· j k • j k I 

(4) 

If we make the change {EJ-{E
1

, =A: ,E
1
}, where A: =ff A:, 11=: 

=:IIA:' n-l is a nondegenerate matrix function, then from (2) we can 

see that (W ) 1 transform into 
X • j 

(W ) 1 , ,=A 1 'AJ (W ) 1 +A 1 ,X(A1 ) 
X •• j I J' X j I J' ' (5) 

which, w :=ll(W >1 II X • j 
if we introduce the matrices and W' ·-

:=ll(W ) 1
, ,II, will read 

X •• J 

W'=A- 1 [W A+X(A)], 
X X ( 5') 

where as a first matrix index is understood the superscript and 

X(A):=XkEk(A)=IIXkEk(A:,>11. 

If Vis a linear connection with local components r 1 (see 
. j k 

e.g. [2-4)), then is fulfilled [2, 3) 

V (E )=(r1 Xk)E . 
X j • j k I 

(6) 

Hence, comparing (2) and (6), we see that Dx is a covariant diffe

rentiation along X iff 

(W)I =rl xk 
X • j • j k (7) 

for some functions r 1 

• j k 

Let D be an S-derivation and X and Y be vector fields. The 

torsion operator T of Dis defined as 

T0 (X,Y):=D Y-D X-[X,Y]. 
X y (8) 

The S-derivation Dis called torsion free if T0 =0. 

3 



For a linear connection V, due to (7), we have 

(Tv(X,Y)) 1=T'.
1

kx1Yk, (9) 

where [2, 3] T 1 :=-(r1 -r1 )-C 1 are the components of the tor-
. • k I , k I • I k • k I 

sion tensor of V. 

Further we shall investigate the problem for existence of 

special bases {E
1
,} in which W~=O for an S-derivation D along any 

or fixed vector field X. Hence, due to (5'), we shall have to solve 

the equation Wx(A)+X(A)=O with respect to A under conditions that 

will be presented below. 

of 

II. DERIVATIONS ALONG ARBITRARY VECTOR FIELDS 

This section is devoted to the existence and some properties 

special bases {E
1
,}, defined in a neighborhood of a subset U of 

the manifold M, in which the components of an S-derivation D along 

an arbitrary vector field X vanish on U. 

Proposition 1. If for some S-derivation D there exists a 

basis {E
1
,} in which W~lu=O for ~very vector field X, then Dis a 

linear connection on the set UcM. 

Remark. On the set UcM the derivation Dis a linear connec

tion if (cf. (7)) in some, and hence in any, basis {E
1

} is 

fulfilled 

k 
Wx(x)=rk(x)X (x), (10) 

where xeU, X=XkE and r are some matrix functions on U. (Evident-
k k 

ly, a linear connection on Mis also on U a linear connection for 

every U; see (7)). 

Proof. If we fix a basis {E
1

} and E
1
j=A:,E

1
, then by the 

4 

' 

,. 

; 

definition of {E
1
,}, we have W~lu=O, i.e. W~(x)=O for xeU, which i~ 

conformity with (5') is equivalent to (10) with r =-(E (A))A- 1
, 

k k 

A=~A:,fi. ■ 

The opposite statement to proposition 1 is generally not true 

and for its exact formulation we shall need some preliminary 

results and explanations. 

Let p be an integer, p~1, and the Greek indices a and~ run 

from 1 top. Let JP be a neighborhood in RP and {sa}={s 1
, ••• ,sP} be 

(Cartesian) coordinates in RP. 

Lemma 2. Let Z :JP~L(m,R), GL(m,R) being the group of mxm a· 

matrices on R, be a C1 matrix-valued function on JP. Then the 

initial-value problem 

~1 =Z (s)Y, YI =D:=fio
1 r . asa s a s;s

0 
J 1,J;1 

(11) 

in which is the unit matrix of the corresponding size, seJP, 

soeJP is fixed and Y is mxm matrix function on JP, has a solution, 

denoted by Y=Y(s,s0;Z
1

, ••• ,ZP), which is unique and smoothly depends 

on all its arguments, if and only if 

Ra~(Z 1 , ••• ,ZP):=aZa/as~ - az~/asa + zaz~ - z~ Za=O. (12) 

Proof. According to the results in [9], ch. VI the integra

bility conditions for (11) are 

o = a 2Y/asaas~ - a 2Y/as~asa = acz~Y)\asa - a(ZaY)\as~= 

= caz~\asa)Y - caza\as~)Y + z~zay - zaz~y = -Ra~(Z1 , ••• ,ZP)Y. 

Hence (11) has a unique ·solution iff (12) is satisfied. ■ 

Let psn:=dim(M), a,~=1, ... ,p and µ,v=p+1, •.. ,n. Let 7:J---+M 

be a C1 map. We shall suppose that for any seJP there exists its 

(p-dimensional) neighborhood J
9
cJP, seJ such that the restricted 

map TIJ :J
8
---+H is without selfintersections, i.e. in J

9 
does not 

s 

5 



and S ¢S 
2 1 

equivalent 

with the property 7(s 1)=7(s
2
). This 

to the one that the points of 

exist points s 1 

assumption is 

self intersections of 7, if any, can be separated by neighborhoods. 

With JP we shall denote the union on all neighborhoods J with the 
s s 

above property; evidently J: is the maximal neighborhood of sin 

which 7 is without selfintersections. 

Let at first suppose Jp=Jp 
s • i.e. 7 to be without silfin-

tersection, and that 7(JP) be contained in only one coordinate 

neighborhood V of M. 

Let us fix some one-to-one C
1 map ~:JPxJn-p-M such that 

~(·,~
0

)=7 for a fixed i
0
EJn-p, i.e. ~(s,i

0
)=7(s), seJP. In 

vu~(JP,Jn-p) we define coordinates {x1
} by putting (x1(~(s,i)), 

... ,xn(~(s,i))):=(s,i)ERn, seJP, iEJn-p. 

Proposition 3. Let 7:JP--tM be C1, without selfintersections 

and 7(JP) lies in only one coordinate neighborhood. Let on 7(JP) 

the derivation D be a linear connection. Then there exists a de

fined in a neighborhood of 7(JP) basis {E
1
,} in which the compo

nents of D along every vector field vanish on 7(JP) if and only if 

in the above-defined coordinates {x 1
} is fulfilled 

[R o<-r 07, ... ,-r 07)] I =O, ap 1 p JP 
a,{3=1, ... ,p, (13) 

where Ra
13

( ••• ) is defined by (,12) for m=n and (s 1 , ... ,sP)=seJP, 

i.e. 

[R 0 (-r 07, ... ,-r 07)](s)=ar (7(s))/asf3 - ar0 (7(s))/asa + ap 1 P a P 

+ crarf3 - r{3ra> 171s). (14) 

Remark. In the case when Dis a symmetric affine connection 

this result was obtained by means of another method in [8]. 

Proof. The following considerations will be done in the above-

6 

J 

'I' 

., 

h 

j' 
l 

defined neighborhood Vn~(Jp,Jn-p) and coordinates {x 1
}. Let 

E =d/dx1
• We shall look for a basis {E ,=A1 ,E} in which 

I I I I 

W~(7{s))=O, seJP. By eq. (5') the existence of {E
1
,} is equivalent 

to the existence of the A=UA:,n. transforming {El} into {El,}, and 

such that [A- 1 (WxA+X(A))] 1
7
,s

1
=O for every X. But as on 7(JP) Dis 

a linear connection, the eq. (10) is valid for some matrix-valued 

functions rk and xe7(JP), consequently A must be a solution of 

r~,(x)=O, i.e. Qf 

cr/7(s) )A(7(s) )+(aA/axk) 171s>=O, seJP. (15) 

By expanding A(~(~,i)), seJP, iEJn-p into a power series with 

respect to (i-i
0

) it can be shown that (15) has a solution if and 

only if the integrability conditions (13) are valid. Besides, if 

(13) take place, than the general solution of (15) is 

n A A 
A(~(s,i))={D- [ rA(7(s))[x (~(s,i))-x (7(s))]}x 

A=p+l 

n µ 
xY(s,s

0
;-r107, ... ,-rP07)B

0 
+ [ Bµv<s,i;~)[x (~(s,i))-

µ,v=p+1 

-xµ(7(s))][xv{~(s,~))-xv(7(s))], (16) 

wheres eJP and the nondegenerate matrix B are fixed and the mat-
o 0 

rices B . µ.,v' µ, v=p+1, ... , n, together with their derivatives, are 

bounded when i-¾· (The fact that into (16) enter only sums from 

p+1 to n is a consequence from xa(~(s,i))=xa(7(s))=sa, i.e. 

a a a a x (~(s,~))-x (~(s,~
0

))=x (~(s,i))-x (7(s))=O, a=1, ... ,p.) 

Thus, bases {E
1
,} in which W~=O exist iff (13) is satisfied. 

If (13) is valid, then the bases {E ,} are obtained from {E =d/dx 1
} 

I I 

by means of linear transformations the matrices of which must hav~ 

the form (16). ■ 

Now we are ready to consider a general smooth (C 1
) map 

7 



• 7:JP-M whose points of selfintersection, if any, can be sepa-

rated by neighborhoods. Let for any reJP be chc:isen a coordinate 

neighborhood V of 7(r) in M. Let there be fixed a C1 one-to-one 
7(r) 

map Tl :JPxJn-p-M such that 71 =11 (·,1.,.) for some t,.EJn-p. In 
r r .JP r O -o .. 

the neighborhood v 71 ,.
1
n11,.(J~,Jn-p) of 7(J~)nv

71
,.

1 
we introduce 

local coordinates {x 1
} defined by ( x 1 

( 71 ( s, t)), ... , xn ( 71 ( s, t))): = 
r rr - rr -

:=(s,.t_)ERn, where 

11,. ( s, 1.)EV71 ,. 1 • 

SEJP .. and .t_eJn-p are such that 

Theorem 4. •Let the points of selfintersection of the c 1 map 

7:JP_M, if any, be separable by neighborhoods and let on 7(JP) 

the S-derivation D be a linear connection, i.e. eq. (10) to be 

valid. Then in some neighborhood of 7(JP) exists a basis {E ,} in 
I 

which the components of D along every vector field vanish on 7(JP) 

if and only if for every_reJ in the above defined local coordinates 

{x 1
} is fulfilled .. 

[Ra~(-r
1

07, ... ,-rP07)](s)=O, a,~=1, ... ,p, (17) 

where r are calculated by means of (10) in {x1
}, R

O 
are given by a ,- a,. 

(14) and seJP is such that 7(s)EV . 
r 7( r l 

Proof. For any reJP the restricted map 71 :'JP_M, where 
,Jp r .. 

'Jp:={sEJP, 7(s)EV }. 
r r 7Cs) 

above definition of JP) 
r 

nate neighborhood V71 ,.J 

is without selfintersections (see the 

and 71 ('JP)=7('JP) lies in the coordi-
, p r r 

J " . 
r 

So, if a basis {E
1
,} with the described property exists, 

then, by proposition 3, eqs. (17) are identically satisfied. 

On the 

proposition 3, 

opposite, if (17) are valid, then, again by 

for every reJP in a neighborhood 'V,. of 7('J~) in 

V71 ,.
1 

exists a basis {E~,} in which the components of Dx along 

8 

.{ 
~ 

every vector field X vanish on 7('JP). From the neighborhoods 'V ,. r 

we can construct a neighborhood V of 7(JP), e.g. we can put 

V= 0 'V,., but, generally, Vis sufficient to be taken as a union of 
rEJP 

'v,. for some, but not all rEJP. On V we can obtain a basis {E
1
,} 

with the needed property by putting E
1

, lx=E~, Ix if x belongs to 

only one neighborhood 'V,. and if x belongs to more than one neigh

borhood 'V we can choose {E, I } to be the basis {Er, Ix} for some 
r l X l 

arbitrary fixed r with this property. (Note that generally the so-

obtained basis is not continuous in the regions containing inter

sections of several nei_ghborhoods 'V,.. ) ■ 

Proposition 5. If on the set UcM there exist bases in which the 

components of some S-derivation along every vector field vanish on 

U, then all of them are obtained from one another by linear trans

formations whose coefficients are such that the action on them of 

the corresponding basic vectors vanishes on U. 

Proof.The proposition is a simple corollary from (5'). ■ 

Proposition 6. If for some S-derivation D there exists a local

ly holonomic basis in which the components of D along every vector 

field vanish on the set UcM, then Dis torsion free on U. On the 

opposite, if Dis torsion free on U and bases in which the compo

nents of D along every vector field vanish on U exist, then all of 

them are holonomic on U, i.e. their basic vectors commute on U. 

Proof. If {E
1
,} is a basis with the mentioned property, i.e. 

W~(x)=O for every X and xeU, then using (2) and (8) (see also eq. 

(15) from (6]), we fined T0 (E
1
,,EJ,>lu=-[E

1
,,EJ,llu and consequen

tly {E ,} is holonomic on U, i.e. [E ,,E ,] I =O, iff O=T
0

(X,Y)lu= 
I I J U 

={X
11

YJ
1

T0 (E ,,E ,)}I for every vector fields X and Y, which is 
I J U 

equivalent to T0 1u=O. 

On the opposite, let T0 1u=O. We want to prove that any basis 

9 



• 
{E

1
,} in which W~=O is holonomic on U. The holonomicity on U means 

O=[E ,,E ,JI ={-Ak' (E ,(Ak,)-E ,(Ak,))E ,}I . But (see proposition 
I JU k JI I J k U 

1 and (10)) the existence of {E
1
,} is equivalent to Wxlu=(rkxk)lu 

for some functions rk and every X. These two facts, combined with 

(2) and (8), show that er ) 1 =er ) 1 
• 

k • J J • k 
Using this and {rkA+ 

+aA/axk}I =0 (see the proof of proposition 1),we . u find E1 ,(A~,) lu= 

[E
1
,,E

1
,Jlu=O (see -A1 A1 er >k 1-E CAk >I -- J , I I j . I u - I I j , u and therefore 

above), i.e. {E
1
,} is holonomic on u. ■ 

III. DERIVATIONS ALONG FIXED VECTOR FIELD 

As it was said in our previous works [6, 7) the problem for 

existence and the properties of special bases for derivations along 

fixed vector field is not very interesting from the viewpoint of 

its applications. By that reason we shall briefly outline only some 

results concerning it. 

The following two propositions are almost evident (cf. resp. 

propositions 1 and 5). 

Proposition 7. If for the S-derivation Dx along a fixed 

vector field X exists a basis {E
1
,} in which the components of Dx 

vanish on the set UcM, then on U Dx is a covariant differentiation 

along X, i.e. for the given X the eq. (10) is valid on U. 

Proposition 8. If on the set UcM there exist bases in which the 

components of an S-derivation along a fixed vector field vanish, 

then all of them are obtained from one another by linear transfor

mations, the matrices of which are such that the action of X on 

them vanishes on u. 

The existence of special bases in which the components of Dx, 

IO 

L 

with a fixed X, vanish on some set UcM significantly differs from 

the same problem for Dx with an arbitrary X (see Sect. II). In 

fact, if {E
1 

,=A: ,E
1
}. {E

1
} being a fixed basis on U, is such a 

basis on U, i.e. W~lu=O, then, due to (5'), its existence is equi

valent to the one of A:=~A 1 ,! for which (W A+X(A))I =O for the 
I X U 

given X. As Xis fixed, the values of A at two different points, 

say x,yeU, are connected through the last equation if and only if x 

and y lie on.one and the same integral path (curve) of X, the part 

of which between x and y belongs entirely to U. Hence, if 7:J--+M, 

J being an R-interval, is (a part of) an integral path of X, i.e. 

at 7(s), seJ the tangent to 7 vector field 7 is 7(s):=XI , then 71s) 

along 7 the equation (W A+X(A))I =O reduces to dA/dsl =7(A)I = 
X U 71s) s 

=(X(A))l
71

s>=-Wx(7(s))A(7(s)). The general solution of this equa-

tion is 

A(s;7)=Y(s,s
0

;-Wx 0 7)8(7), (18) 

wheres eJ is fixed, Y=Y(s,s ;Z), with Z being a C
1 matrix function 

0 0 · 

of s, is the unique solution of the initial-value problem (see [9], 

ch. IV, §1) 

dY/ds=ZY, Yjs=s =D, 
0 

(19) 

and the nondegenerate matrix 8(7) may depend only on 7, but not on 

s. (Note that (19) is a special case of (11) for p=1 and by lemma 2 

it has always a unique solution because of R
11

(Z
1

)=0 for p=1.) 

From the above considerations follows 

Proposition 9. For any S-derivation along a fixed vector 

field on every set UcM there exist bases, in which the components of 

that derivation vanish on U. 

11 



IV. LINEAR CONNECTIONS 

The results of Sect. II can directly be applied to the case 

of linear connections. As this is more or less trivial, we shall 

present without proofs only three such consequences. 

Corollary 10. Let the points of selfintersection of the C1 

map 7:JP-M, if any, be separable by neighborhoods, V be a linear 

connection on M with local components r 1 (in a basis {E }) and 
• J k I 

r :=ffr
1 In . Then in a neighborhood of 7(JP) exists a basis 

k .Jk 1,J=l 

{E 1 ,} in which the components of V vanish on 7(JP), i.e. rk, 1
7

<JPJ 

=O, iff for every reJP in the coordinates {x 1
} (defined before 

theorem 4) ( 17) 

components of V 

Corollary 

r 

is satisfied in which ra, a=1, ... ,p are part of the 

in {x
1

} and seJP is such that 7(s)eV < 
1 r 7 r 

11. If on the set UcM there exist bases in which the a::rn-

ponents of a linear connection vanish on U, then all of these bases 

are obtained from one another by linear transformations, the 

matrices of which are such that the action of the corresponding 

basic vectors on them vanishes on U. 

Corollary 12. Let for some liriear connection on a neighborhood 

of a set UcM exist local continues bases in which the connection's 

components vanish on U. Then one, and hence any, such basis is 

holonomic on U iff the connection is torsion free on U. 

V. CONCLUDING REMARKS 

As the main result of this work is expressed by theorem 4, we 

shall make some comments on it. First of all, it expresses a suf

ficiently general necessary and sufficient condition for existence 

12 

of the considered here special bases for derivations, in particular 

linear connections. For instance, it covers that problem on arbi

trary submanifolds. In this sense, its special cases are the re

sults in our previous papers [6, 7). 

If p=O or p=1, then the condition (17) is identically 

satisfied, i.e. Ra~=O (see (14)). Hence in these two cases special 

bases, we are searching for, always exist (respectively at a point 

or along a path), which was already established in [6] and [7] res

pectively. 

In the other limiting case, p=n:=dim(M), it is easily seen 

that the quantities (14) are simply the matrices formed from the 

compoents of the corresponding curvature tensor (cf. [6, 3, 4)) 

and that the set 7(JP) consists of one or more neighborhoods in M. 

Consequently, now theorem 4 states that the investigated here spe

cial bases exist iff the corresponding derivation is flat, i.e. if 

its curvature tensor is zero, a result.already found in [6]. 

In the general case, when 2sp<n (if n~3), special bases, even 

anholonomic, of the considered here type do not exist if (and only 

if) the conditions (17) are not satisfied. Besides, in this case 

the quantities (14) cannot be considered as a "curvature" of 7(JP) 

as they are something like "commutators" of covariant derivatives 

of a type V, where Fis a tangent to 7(JP) vector field (i.e. 
F 

FeT(7(JP)) if 7(JP) is a submanifold of M), and which act on tan-

gent to M vector fields. 

Let us also note that the bases in which the components of 

some derivation vanish on a set U are generally anholonomic, if 

any, and only in the torsion free case (the derivation's torsion 

vanishes on U) they may be holonomic. 

The above results outline the general bounds of validity and 
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are the exact mathematical expression of the equivalence principle, 

which states [1] that the gravitational field strength, theoreti

cally identified with the components of a linear connection, can 

locally be transformed to zero by a suitable choice of the local 

reference frame (basis), i.e. it requires•the existence of local 

bases in which the corresponding connection's components vanish. 

The above discussion, as well as the results from [6, 7], show 

the identical validity of the equivalence principle in zero and one 

dimensional cases, i.e. for p=O and p=1. Besides these are the only 

cases when it is fulfilled for arbitrary gravitational fields. In 

fact, for p~2 (for n~2), as we saw in Sect. IV, bases with the 

above 

fied. 

property do not exist unless the conditions (17) are satis

In particular, for p=n~2 it is valid only for flat linear 

connections (cf. [6]). 

Mathematically the equivalence principle is expressed through 

corollary 10 (or, in some more general situations, through theorem 

4). Thus we see that in gravity theories based on linear connec

tions this principle is identically satisfied at any fixed point or 

along any fixed path, but on submanifolds of dimension greater or 

equal two it is generally not valid. Therefore in this class of 

gravity theories the equivalence principle is a theorem derived 

from their mathematical background. It may play a role as a 

principle if one tries to construct a gravity theory based on more 

general derivations, but, generally, it will reduce this theory to 

one based on linear connections. 
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