





I. INTRODUCTION

The existence of local coordinates in which the components of
symmetric 1linear connections [1] vanish along a smooth path
without selfintersections is a known classical result [2, 3]. In
connection with the intensive use of nonsymmetric linear connec-
tions [1, 2] in different physical.theories it is natufal these
results to be generalized to the case of nonvanishing torsion.

This paper investigates the mentioned problem from the more
general viewpoint of arbitrary derivations of the tensor algebra
over a differentiable manifold [1, 2]. In it the existence of
special bases (or coordinates) is proved in which the defined
below components of derivations, in particular linear connections,
vanish along some path. The question when these bases are holof
nomic or anholonomic [2] is investigated. Also the connection of
these topics with the equivalence principle in general relativity
[4] and other gravity theories (see, e.g., [5]) 1is briefly
discussed.

For the explicit mathematical formulation of our problem we
shall remind from [6] some facté concerning derivations of the
tensor algebra over a manifold. |

By proposition 3.3 from ch. I in [1] any derivation D of the
tensor algebra over a differentiable manifold M admits‘a unique
representation in the form D=LX+S,in which Lx is the Lie deriva-
tive along the vector field X and S is tensor field of type (1,1)
considered here as a derivation [1]. Both X and S are uniquely
determined by D.

If S is a map from the set of c' vector fields into the ten-
sor fields of type (1,1) and S:X——S_, then the equation
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D3=L_+§ : (1)
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defines a derivation of the tensorvalgebra over M for any C1 vec—
tor field X [1].As the map S will hereafter be assumed fixed, such
a derivation, i.e. Di will be called an S-derivation along X and
will be denoted for brevity by Dx. An S~derivétion is a map D such
that D:xk——an. where Dx is an S-derivation along‘x.

Let {Es‘ i=1,...n:=dim(M)} be a (coordinate or noncoordinate

[2, 3]) local basis of vector fields in the }angent to M bundle.

It is holonomic (resp. anholonomic) if the vectors El, ey En
commute (resp. don’t commute) [2].
The 1local components (wx)‘J of Dx with respect to {E‘} are

defined by the eqﬁality
_ 1
DX(EJ)—(WX)'JEi. . (2)

With respect to Dx they play the same role as the components.
of a linear connection with respeét to the connection (see below
or [1, 2]). It can easily be computed (see (1) and [1]) that

i, i 1 i k
(wx).J._(sx)'J EJ(X )+c.”x (3)

1
scalar

in which with X(f) we denote the action of X=XkEk on C
functions f, i.e. X(f):=XkEk(f), and CikJ defines the commutators

of the basic vectors, i.e.

1
[EJ,Ek]=C.JkEx. (4)

If we make the change {E‘}———A{Ei,:zA:,Ei}, where A:=uA:,ﬂ=:
’ : : -
=:"A: ||'1 is a nondegenerate matrix function, then from (2) we can
see that (wx)‘J transform into

!

A’y 1 v/ i
(wx)..j"Ax Ajl(wx).j+Ai X(AJ,), . (5)

which, if we introduce the matrices wx:="(wx)iju and W=

:="(WX)T_J,", will read
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~

e A o e

st gt i

A | .

W =A (wa+x(A)), (5')
where as a first matrix index is understood the superscript and
X(A):=x* =|x*E (A

(A):=X"E _(n)=]X E (A ).
If V is a linear connection with local components F‘Jk (see,

e.g., [1-3]1), it is fulfillea

Vx(EJ)=(I‘kaXk)E‘. (6)
Hence, comparing (2) and (6), we see that Dx is a covariant diffe-
rentiation along X iff

(W' =r' x (7)
for some functions Ffjk

Let D be an S-derivation and X and Y be vector fields. The

torsion operator T° of D is defined as

TD(X,Y):zDXY—Dyx—[X,Y], (8)

which in a case of linear connection reduces to the corresponding
classical quantity (see [1-3] and below (11)). The S~derivation D

will be called torsion free if T°=0.

By means of (1) and (2), we find the local expressions:
D 1 RS U gl kol
(TX,Y)) " =(W) Y (W) X C XY, (9)
If D is a linear connection V, then, due to (7), we have:
(rVx, y))t=1t x*y!
s =T , (10)
where [1-3]
T

Yot et ot
k1T (F.kl F.lk) c.kl' (11)

are the components of the torsion tensor of V.



The task of this work is the problem to be investigated when
along a given path 7:J—M, J being a real interval, exist special
bases {Ea’} in which the components w; of an S-derivation D along
some or all vector fields X vanish. In other words, we are going
to solve eq. (5’) with respect to A under certain conditions,

which will be specified below.

II. Derivations along arbitrary vector fields

In this section we shall investigate the problems for
existence and some properties of special bases {E‘,} in which the
components of a given S-derivation D along arbitrary vector field
vanish along a path 7:J—M, with J being an R-interval. Let’s
note that {El,} are supposed to be defined‘in a»neighborhood of
7(J), while the components of D vanish on #(J).

Proposition 1. Along a path 7:J—5M the S-derivation is a
linear connection if and only if along » exists a basis in which
the components of D along every vector field vanish along 7, i.e.
on ¥(J).

Remark. We say that along ¥ D is a linear connection if in

some, and hence in any, basis {El}, we have (cf. (7))

W (7(s))=T (7(5))X"(7(s)) _ (12)

for some defined on ¥(J) matrix functions Fk and every vector
field X, i.e. if (7) is valid for xez(J), but for xer(J) eq. (7)
may not be true.

Proof. Let along 7 the derivation D be a linear connection,

i.e. (12) to be valid. Let at first assume that 7 is without self-

(g A

intersections and that ¥(J) is contained in only one coordinate
neighborhood U in which some local coordinate basis {El=a/ax'} is
fixed.

Due to (5’) we have to prove the existence of a matrix
A:“A:,n=:||A:'||" for which in the basis {E,=A|,E,} W (7(s))=0 to
be fulfilled for every X=XkEk. Substituting (12) into (5’), we see

that the last equation is equivalent to

T, (#(s))A(¥(s))+E (A) | =0, E =8/8x". (1)

The general solution of this equation can be constructed as
follows.

Let V:i=Jx---xJ, where J is taken n-1=dim(M)-1 times. Let us
fix a one-to-one C! map 71:JxV-——M such that n(-,gﬂ):v for some
fixed tev, i.e. n(s,;b)=7(s), seJ, which is possigle iff‘r is
without selfintersections. In Unn(J,V) we introducé}cdordinates
{x'} by putting (x'(n(s,t)),...,x"(n(s,t)))=(s,t), sé}?~ggv, which
again is pbssible iff r is without selfintersections.

If we expand A(n(s,t)) into power series with respect to
(L—;D), we find the generai solution of (13) in the form

A(n(s,£))={- ) T (3(s)[x*(n(s,£))-x"(2(s, 1)) 1¥(s,5,; =T o7)x

k=2

x B(s,, tim+B (s, tim) [x*(n(s,1))-x"(n(s, L)) Ix

x [x'(n(s,0))-x"(n(s,t ) 1. (14)

Here:{f is the unit matrix, s €J is fixed, B is any nondegenerate

matrix function of its arguments, Bkl and their‘derivatives are

bounded matrix functions when L-—a;n and Y=Y(s,so;Z), with Z being

a continuous matrix function of s, is the unique solution of the

matrix initial-value problem [7]



dy _ ‘ _ )
as =ZY, Yls:so"u' o . (15)

So, a matrix A, and consequently a basis {El}, with the
needed property exist.

If ¥(J) doesn’t lie in only one coordinate neighborhood, then
by means of the above described method we can obtain local bases
with the looked for property in different coordinate neighborhoods
which form a neighborhood of 7(J). From these local bases we can
construct a global basis along 7 with tﬁe needed property, but
generally this basis will not be continuous in the regions of
intersection of two coordinate neighborhoods. Far example, if for
some ¥y there doesn’t exist coordinate neighborhood containing #(J)
but there are c&ordinate neighborhoods U’ and -U” such that
r(J)<(U’)U(U”), then in U’ and U” there are (see above) bases
{El,} and {Elu} in which the components of Dx vanish for every X
along 7 and a global basis {E?} in (U’)U(U”S with the same pro-
perty may be obtained by putting ;E?|x:6:FEl,[x for -xeU’ and
E?'X=S:HE:”Ix for =xeU”\U’ (hote that.(U”)n(U’) is not empty as 7
is ¢! path).

Analogously, if 7 has selfintersections, then on any "part"
of 7 without selfintersections exist bases with the needed pro-
perty. From these bases can be constructed a global basis with the
same property along'y. (At the points of selfintersections of 7 we
can arbitrary fix these bases to be the bases obtained above for
some fix part of 7 which is without selfintersections.)

Conseqﬁently, if albng ¥ D is a linear connecfion, thén in a
neighbdrhdéd of ¥(J) a basis {Ei,} exists in which the components
~of D_for every X vanish along 7.
on the opposite, let us assume the existence of a baéis {E:’}

in which w;:o for every X. Fixing some basis {E;} such that

o S

B

E,.=A],E, from (5') we find (WAX(A))|, =0 or W (3(s))=

=—[(X(A))A_1]|1(s) which means that (12) is valid for Fk(v(s))=

=-[(E, (A)A']|

Proposition 2. All bases in which along a path ¥ the compo-

.n
Tis)

nents of an S-derivation along every vector field vanish are
obtained along ¥ from one another by linear transformations whose
coefficients are such that the action of the vectors from these
bases on them vanish along 7 (i.e. on »(J)).

Proof. If {E} and {E,,} are such bases, then w;(v(s))=
=wx(7(s))=0. So, from (5°) follows X(A)|7(5)=0 for every X=XkEk,

i.e. E (A)] 0.m

7is)

Proposition 3. If along a path 7:J-—M for some S-derivation
D there is a local holonomic (on #(J)) basis in which the compo-
nents of D along every vector field vanish on 7(J), then D is
torsion free on #(J). On the opposite, if D is torsion free on
#(J) and é continuous basis with the mentioned property élong 2
exists, then all bases with the same property are holonomic along
7.

Remark. In the second part of the proposition we say that the
basis must be continuous. This is necessary as any holonomic basis
is such.

Pfoof: If {Ex’} is a basis with the mentioned property, i.e.
w;(v(s))=0 for every X and seJ, then, using (8), we find
TD(E:"EJ’) a.(s)=—[12‘,,EJ,]h,(s) and consequently {El,} is
holonomic at #(s), i.e., [Ei,.EJ,]|7(5)=O, iff 0=TD(X'Y)'7(5)=
:x"(7(5))Y"(1(s))(T°(El,.EJ,)|W5)) (see proposition 1 and (12))
for every vector fields X and Y, which is equivalent to TDlT(J!=0

On the opposite, let TD'TL”=0. We want to prove that any

basis {E‘,} along 7 in which w;(v(s))zo is holonomic at #(s), seJ.

- . x’ x
The holonomicity at #(s) means 0=[Ei,,EJ,] 7(s)=[_Ax (EJ,(A‘,)—



_Ex’(A;’))Ek’]IT(;)' But (see proposition 1) the existence of
{El,} is equivalent to wx(w(s))=(Fka)|T(s) for every X. These two
facts, combined with (8), show that (r})fj=(r1)fk. Using this and
: (FkA+aA/axk)|T(s)=0 (see the proof of proposition 1), we find

M x5 pl x - M
EJI(AI = AJIAX/(FJ)" T(S)—Ell(AJI)IT(s) and therefore

[EII'EJl]IT(s)=Q (see above), i.e {E,,} 1is holonomic on ¥(J).m

’)lr(n

It can be proved (see below lemma 7) that for any path
7:J —M every basis {Ef} defined only on ¥(J) can be extended to a
holonomic basis {ET} defined in a neighborhood of %(J) and such

that ETI =E3. In particular, this is true for the restriction

AR

ET;:Ei,IT(J) of the considered above special bases {E‘,}. But in
the general case, the extended holonomic bases {ET,} will not have

the special property that {Ei,} has.

III. DERIVATIONS ALONG PATHS

Let 7:J—M, J being an R-interval, be a c! path and X be a

Cl

vector field defined on a neighborhood of ¥(J) in such a way
that on ¥(J) it reduces to the tangent to 7 vector field ¥, i.e.

X| =y(s), se€J. The restriction of an S-derivation D, on ¥(J) we

7(s)
shall call (S-)derivation along 7 and denote it by 7. Of course,
o7 generally depends on the values of X outside ¥(J), but, as this
dependence is insignificant for the following, it will not be

written explicitly. So, if T is a c' tensor field in a neighbor-

hood of ¥(J), then

(DTT)|T(s,:=DZT:=(DxT)|T(s), Xl ) =7(5). © o (16)

It is easily seen that DZT depends only on the values of T]x

for xey(J), but not on the ones for xg€¥(J), and also that o7 is a

generalization of the usual covariant differentiation along curves
(see [2-4] or Sect. V).

When restricted on #(J), the components of D, will be called
components of ¥,

Proposition 4. Along any c! path ¥:J—M there exists a basis
{E‘,} in which the components of a given S-derivation o7 along 7
are zeros.

Proof. Let {Ex} be some fixed basis in a neighborhood ‘of

7(J). We have to prove the existence of transformation E‘-—aE‘,=

=A:,E‘ such that W’

x|1(u=0’ which, by (5’), is equivalent to the

existence of a matrix_ function A=uA:,“ satisfying along 7 the
equation (A'I(WXA+X(A)))|T(J)=O, seJ, or

N _ dA(¥(s)) __

T(A)IT(S)—————EE——— =W _(#(s))A(7(s)) (17

as klw(s)=%(s). Along 7 the general solution of this equation with

respect to A is

A(s;7)=Y(s,s;-W,o7)B(?), (18)

where Y is the unique solution of the initial-value problem (15),
soeJ is fixed and B(7) is a nondegenerate matrix function of 7.

So, if we take any matrix functidn A with the. property
A(v(s))=A(s;7) for. some 5, and B (e.g. using the notation of the
proof of proposition 1, in any coordinate neighborhood in which %
is without selfintersections, we can put A(n(s.L))=Y(s,s°;-wxor)x
xB(so,Lo,L;r) for a fixed nondegenerate matrix function B), we see
that A carries out the needed transformation. Hence, the basis

,/=A|,E, is the looked for one.m

Proposition 5. The bases along 7:J—M in which the compo-

nents of D¥ vanish are obtained from one another>by linear trans-

formations whose coefficients on #(J) are constant or may depend

only on 7.



Proof. 1If '{El} and {El,} are such bases, then wx(r(s))=
=W, (7(s))=0, X|T(S)=i(s) and from (5’) follows i(A)lT(s)=
=dA(7(s))/ds=0, i.e. A(7(s)) is a constant or depends only on the
maplv.l

From propositions 4 and 5 we .infer that the requirement for
the components of 9% to vanish along a path 7 determines the
corresponding special bases with some arbitrariness only on 7(J)
and leaves them absolutely arbitrary outside the set ¥(J). For
;his reason we can talk for bases defined only on #(J) in which
the components of 9% vanish.

- Proposition 6. Let for a C' path 7:J—M the defined on ¥(J)
basis {E‘,} be such that the components of some S-derivation o7
along ¥ vanish. Let U be ‘a coordinate neighborhood such that on
Un(7(J))#@ the path » is without selfintersections. Then there is
a neighborhood of Un(#(J)) in U in which {Ei’} can be extended to
a coordinate basis, i.e. in this neighborhood exist local coordi-

7

1’ _ i)
nates {x  } such that E‘,IT(S)—B/BX lr(sf

Remark. Said- in other words, this proposition means that
locally any spacial on ¥(J) basis for 9? can be ihought (extended)
as a coordinate, and hence holonomic, one (see proposition 5).

Proof. The proposition is a trivial corollary from the proof
of proposition 4 and the following lemma.

Lemma 7. Let the path 7:J—M be without sglfintersections
and such that 7(J) is contained in some coordinate neighborhood U,
i.e. 7(J)cU, and let {E‘,} be defined on »(J) continuous basis,

i.e. E,'I depends continuously on s. Then there is a neigh-

Tis)
’
borhood of #(J) in U in which coordinates {xl } exists such
X B
=a/ax‘|

that E , | i.e. {E,,} can be extended in it to a

Tis) ris)'

coordinate basis.m

Proof of lemma 7. Let us take a one-to-one C! map 7n:JxXV—U,

10

Vi=Jx---xJ (n-1 times), such that n(-,t )=r for some fixed L.ev,
i.e. U(S,LD)=7(S), s€J (cf. the proof of proposition 1). In the.
neighborhood =(J,V)cU we introduce coordinates {x'} by putting
(xl(n(s.L)),;..,x"(n(s,;))):(s.;), s€J, teV. Let the nondegenerate
matrix nl\:,(s;r)"::||Ajl(s;a‘)"'1 defines the decomposition of {E,,}

over {a/ax'}, i.e.

—aJ . 2] ’
EJ'I’a‘(s)—AJl(S'T)[;x—J]T(S)]' #9)

2

If we define the functions x' :n(J,V) —R by
. .
v/ S R I !
X (nGs,8)):=8) x, +[ Al (wigddush] (s;0) (%) (n(s,1))-x* (#(s)) 1+
. 5, ‘

£, (5, L 1% (n(s, £) %’ (1)) 1Lx* (n(s, 1)) -x*(7(5))) (20)

iﬁ which s,€J and X,€V are fixed and the functions fj; together
with their derivatives are bounded when Ly—ego, then, because of
n(-,t )=y, we find

ax'

'_ax‘ N .
ox! lr(s)'ax; ln(s,;o)-Aj/(S.v). . (21

s 1 .
As detuAJ,(s:v)“io,m, from (21) follows that the transfor-
. i ‘L. . .
mation {x }———){xl } is a diffeomorphism in some’lying in U neigh-
N ,
borhood of ¥(J). So, in this neighborhood {x1 } are 1local coordi-

nates, the basic vectors of which on 7(J) are (see (21) and (19))

° , ( o , ] 2 , ) >
= =) =X =A', (s; =
ax! 17 ax) 1762 ) Gerlwes ™ (s;7) axl,?(s) EJ’ Tis)'

Hence {x’l} are the coordinates we are looking for.m

Lemma 7 has also a separate meaning: -according to it any
locally: continuous basis defined on 7(J) can locally be extended
to a holonomic basis in a neighborhood of w(J). Evidently, such an
extension can be done and in an anholonomic way. Consequently, the'
holonomicity problem for a basis defined only on %(J) depends on

the way this basis is extended in a neighborhood of ¥(J).

11



L
IV. DERIVATIONS ALONG FIXED VECTOR FIELD

Results, analogous to the ones of Sect. II, are true and with
respect to S-derivations D  along a fixed vector field X, 1i.e.
(see Sect. I) for a fixed derivation. As this case is not. very
interesting from the view-point of its application, we shall pre-
sent below without proofs only three results about it.

Proposition 8. Along a path ¥:J-—M the S-derivation Dx along
a fixed vector field X is a linear connection, i.e. (12) is valid
for that fixed X, iff along 7 exists basis {E‘,} in which the
components of D vanish on ¥(J).

. Proposition 9. The bases along 7 in which the components of
Dx for a fixed X vanish on ¥(J) are connected by linear transfor-
mations whose matrices are such that the action of X oﬁ‘ them
vanish on 7(J).'

In a case of Dx for a fixed X the analog of proposition 3 is,
generally, not true. But if for Dx,-X being fixed, is valid (16)
on 7(J), then we can construct a class of S-derivations {’D} whose
components for every X are given by (12). Evidently, for these
derivations the proposition 3 holds, i.e. we have

Proposition 10. If along ¥ for D, X being fixed, is valid
(12) and there is a local holonomic (on 7(J)) basis in which the
components of Dx vanish on ¥(J), thgn the above described deriva-
tions ‘D are torsion free on ¥(J). Vice versa, if ‘D are torsion
free on ¥(J) and there exists a continuous bases in whiéh the
components of D, vanish, then between them exist holonomic- ones,

but generally not all of them are such.
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V. THE CASE OF LINEAR CONNECTIONS

Here we shall apply the results from the previous sections to
the special case of a linear connection V. As the corresponding
proofs are almost evident, they will be omitted.

Corollary 11. Along every path ¥:J—M for any linear connec—

tion V there exist bases in which the components of V vanish on

7(J). These bases are connected with one another in the way
described in proposition 2.

Corollary 12. One, and hence any, continuous basis along a
path 7:J-—M in which the components of a linear connection V
vanish on‘r(J) is holdnomic if and only if V is(torsion free on
7(J).

Remark. When 7 is without selfintersections and (J) lies in
only one ;oordinate neighborhood, then holonomic bases (coordi-
nates) in which the components of V vanish on ¥(J) exist if V is
torsion free and vice versa, which is a well known fact; cf. [1-3,
7].

¢orollary 13. For a torsion free linear connection V along
any path 7:J-—M without selfinpersections and lying in only one
coordinate neighborhood there exist coordinates, or equivalently
holonomic bases, in which the components of V vanish on r(J).

Remark. This corollary reproduces a claséical theorem that
can be found, for instance, in [3] and in [2], ch. III, §8, in the
latter of which references to original works are given.

Corollary 14. If 'gE 7:=vi is the associated to Vicovariant
derivative alo?g the c! path 7:J-—M, then on ¥(J) exist bases,
obtained from one another by linear transformations whose

coefficients are constant or depend only on ¥, in which the



components of «V vanish (on r(J)). If r is without
¥

selfintersections and *(J) lies in only one coordinate
neighborhood, then in some neighborhood of ¥(J) all of these bases
could be extended in a holonomic way. These results generalize a
series of analogous ones, which began with [4] and concern linear

connections.

VI. CONCLUSION

The above investigation shows that under sufficiently general
cbnditions for derivations of the tensor algebra over a differen-
tiable manifold M along a path 7:J —M generally anholonomic bases
exist in which the derivation’s components vanish on ¥(J). It is
important to be noted that when the derivations are along paths,
then the corresponding speéial bases always can be taken as holo-
nomic (or coordinate) ones.

A feature of the considered here case along paths is its
independence of the derivations’s curvature, which even wasn’'t
introduced here. The cause for this is the one dimensionality of
the paths as submanifolds of M. In connection with this it is
interesting the same problems to be investigated as here bqt on
arbitrary submanifolds of M, which will be done elsewhere.

At the end we want to say a few words for the relation of the
obtained in this paper results with the equivalence principle [4,
5], according to which the gravitational field strength, usually
jdentified with the componénts of some linear connection, is
locally transformable to zero by an . appropriate choice of the
local (called inertial, normal, Riemannian or Lorentz) reference

frame (basis or coordinates). So, from mathematical point of view,

14

the equivalence principle states the existence of local bases in
which the - corresponding connection’s components vanish. The
results of this investigation show the strict validity of this
statement along any path (on any curve). Hence, we can make the
following two conclusions: Firstly, any gravity theory based on
space-time with a linear connection is compatible with thé equiva-
lence principle along every path, i.e. in it exist (local) iner-
tial frames along paths; these frames are generally anholonomiél
but under some, not very restrictive from physical point of view,
conditions on the paths (see lemma 7) there exist such holonomic
frames of reference. Secondly, in the gravity theories based on
linear connections the equivalence principle must not be consi-
dered as a principle as it is identically fulfilled because of

their mathematical background.
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