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I. INTRODUCTION 

The existence of local coordinates in which the components of 

symmetric linear connections [1] vanish along a smooth path 

without selfintersections is a known classical result (2, 3]. In 

connection with the intensive use of nonsymmetric linear connec

tions (1, 2] in different physical theories it is natural these 

results to be generalized to the case of nonvanishing torsion. 

This paper investigates the mentioned problem from the more 

general viewpoint of arbitrary derivations of the tensor algebra 

over a differentiable manifold (1, 2]. In it the existence of 

special bases (or coordinates) is proved in which the defined 

below components of derivations, in particular linear conn~ctions, 

vanish along some path. The question when these bases are holo

nomic or anholonomic (2] is investigated. Also the connection of 

these topics with the equivalence principle in general relativity 

[4] and other gravity theories (see, e.g., [5]) is briefly 

discussed. 

For the explicit mathematical formulation of our problem we 

shall remind from [6] some facts concerning derivations of the 

tensor algebra over a manifold. 

By proposition 3.3 from ch. I in [1] any derivation D of the 

tensor algebra over a differentiable manifold M admits a unique 

representation in the form D=Lx+S,in which Lx is the Lie deriva

tive along the vector field X and Sis tensor field of type (1,1) 

considered here as a derivation [ 1]. Both X and S are uniquely 

determined by D. 

If Sis a map from the set of C1 vector fields into the ten-

sor fields of type (1,1) and s:x~s, then the equation 
~ X :.r... 
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D5 =L +S (1) 
X X X 

defines a derivation of the tensor algebra over M for any C
1 vec

tor field X [1].As the map Swill hereafter be assumed fixed, such 

a derivation, i.e. D! will be called ans-derivation along X and 

will be denoted for brevity by Dx. An S-derivation is a map D such 

that D:X-Dx, where Dx is an S-derivation along X. 

Let {E
1

, i=1, ... n:=dim(M)} be a (coordinate or noncoordinate 

[2, 3]) local basis of vector fields in the tangent to M bundle. 
I 

It is holonomic (resp. anholonomic) if the vectors E
1

, E 
n 

commute (resp. don't commute) [2]. 

The local components (W ) 1 of D with respect to {E} are 
X • J X · I 

defined by the equality 

D (E )=(W ) 1 E. 
X J X • J I 

(2) 

With respect to Dx they play the same role as the components 

of a linear connection with respect to the connection (see below 

or [1, 2]). It can easily be computed (see (1) and [1]) that 

cw )1 :=(S ) 1 -E (X 1 )+c 1 xk 
X • J X • J J . kj 

in which with X( f) we denote the action of X=XkE 
k 

(3) 

on c 1 scalar 

functions f, i.e. X(f):=XkE (f), 
k 

and C
1 defines the commutators 
. k J 

of the basic vectors, i.e. 

[E ,E ]=C1 E. (4) J k . Jk i 

1 1 n If we make the change {E
1
}-{E

1
,:=A

1
,E

1
}, where A:=jjA

1
, 11 =: 

=: !IA: 
1 r 1 

is a nondegenerate matrix function, then from (2) we can 

see that (W ) 1 transform into 
X • J 

(w )11 
=A

11
AJ (W ) 1 +A

11
X(A1

,) 
X •• J' i J 1 

X .J i J ' (5) 

which, if we introduce the matrices w :=jj(W )
1 

II 
X X • J 

and W' ·-x·-
1' . 

:=jj(Wx> .. J•II, will read 

2 

I 
\ 

I 

I 
( 
.. , 
,1 

l 

\ 
i 

) 
;i 

l 
I 
1 

f 

w;=A- 1 (WxA+X(A)), (5') 

where as a first matrix index is understood the superscript and 

X(A):=XkE (A)=jjXkE.(A1 ,)j. 
k k I 

If Vis a linear connection with local components r 1 (see, 
.Jk 

e.g., [1-3)), it is fulfilled 

v (E )=(r1 xk)E . 
X J • J k I (6) 

Hence, comparing (2) and (6), we see that Dx is a covariant diffe

rentiation along X iff 

(W ) I =ri xk 
X • J . Jk 

for some functions r 1 

.Jk 

Let D be an S-derivation and X and Y be vector fields. 

torsion operator T0 of Dis defined as 

D 
T (X,Y):=DxY-DYX-[X,Y], 

(7) 

The 

(8) 

which in.a case of linear connection reduces to the corresponding 

classical quantity (see [1-3] and below (11)). The S-derivation D 

will be called torsion free if T0 =o. 

By means of (1) and (2), we find the local expressions: 

(T
0

(X,Y)) 1 =(W ) 1 Y1-(w ) 1 x 1-c 1 xkY 1
• (9) 

X • I Y • 1 • kl 

If Dis a linear connection V, then, due to (7), we have: 

(Tv(X, Y)) 1 =T\lxkyl, (10) 

where [1-3] 

T
1 

:=-cr
1 

-r
1 

)-c
1 

• (11) . kl . kl . I k . kl 

are the components of the torsion tensor of V. 
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The task of this work is the problem to be investigated when 

along a given path ;:J-M, J being a real interval, exist special 

bases {E1 ,} in which the components W~ of an S-derivation D along 

some or all vector fields X vanish. In other words, we are going 

to solve eq. (5') with respect to A under certain conditions, 

which will be specified below. 

II. Derivations along arbitrary vector fields 

In this section we shall investigate the problems for 

existence and some properties of special bases {E
1
,} in which the 

components of a given S-derivation Dx along arbitrary vector field 

vanish along a path ;: J -M, with J being an IR-interval. Let• s 

note that {E
1
,} are supposed to be defined in a neighborhood of 

7(J), while the components of D vanish on ;(J). 

Proposition 1. Along a path ,.: J -M the S-derivation is a 

linear connection if and only if along ; exists a basis ·in which 

the components of D along every vector field vanish along•• i.e. 

on ;(J). 

Remark. We say that along; Dis a linear connection if in 

some, and hence in any, basis {E
1
}, we have (cf. (7)) 

Wx(;(s))=f'k(;(s))Xk(;(s)) (12) 

for some defined on ;(J) matrix functions f'k and every vector 

field X, i.e. if (7) is valid for xe;(J), but for xE;(J) eq. (7) 

may not be true. 

Proof. Let along; the derivation D be a linear connection, 

i.e. (12) to be valid. Let at first assume that; is without self-

4 

I •• _;, 

\ 

r 

' 

\ 
~ 

\ 
i, 

intersections and that ;(J) is contained in only one coordinate 

neighborhood U in which some local coordinate basis {E =a/ax1
} is 

I 

fixed. 

Due to ( 5') we have to prove the existence of a matrix 

A= 11 A1
, 11 =: 11 A

11
11- 1 for which in the basis {E ,=A1 ,E} W'(7(s))=O to 

U I II II I I I I X 

be fulfilled for every X=XkE. Substituting (12) into (5'), we see 
k 

that the last equation is equivalent to 

f'k(;(s) )A(;(s) )+E/A) l,cs> =O, Ek =a/axk. (13) 

The general solution of this equation can be constructed as 

follows. 

Let V:=Jx·•·XJ, where J is taken n-1=dim(M)-1 times. Let us 

fix a one-to-one C
1 map 1):JxV-M such that lJ(·,t )=; for some 

-0 

fixed 1_
0

EV, i.e. 1)(s,.t_
0
)=;(s). seJ, which is possible iff'; is 

r, 
without selfintersections. In Un1J(J,V) we introduce',cciordinates 

··\f' 
{x 1

} by putting (x1 (1J(s,.t_)), ... ,xn(1J(s,.t_)))=(s,.t_), sEJ~ 1.EV, which 

again is possible iff; is without selfintersections. 

If we expand A( lJ( s, .t_)) into power series with respect to 

(1.-1.
0
), we find the general solution of (13) in the form 

A(1J(s,.t_))={H- I f'k(;(s))[xk(1J(s,.t_))-xk(1J(S,1-a))]Y(s,s
0
;-f'

1
07)x - k=2 

x B(s
0

,1_
0

;1J)+Bk
1
(s,.t.;1J)[xk(1J(s,.t.))-xk(1J(s,.t_

0
))]x 

x [x1 (1J(s,.t.))-x1 (1J(S,1.
0
))]. (14) 

Here:-0 is the unit matrix, s
0
EJ is fixed, Bis any nondegenerate 

matrix function of its arguments, Bk
1 

and their derivatives are 

bounded matrix functions when 1.-1-a and Y=Y(s,s
0
;Z), with Z being 

a continuous matrix function of s, is the unique solution of the 

matrix initial-value problem [7] 

5 



dY -zy y I ' =11 . ds - • s=so 

So, a matrix A, and consequently a basis 

needed property exist. 

(15) 

{El}, with the 

If 7(J) doesn't lie in only one coordinate neighborhood, then 

by means of the above described method we can obtain local bases 

with the looked for property in different coordinate neighborhoods 

which form a neighborhood of 7(J). From these local bases we can 

construct a global basis along 7 with the needed property, but 

generally this basis will not be continuous in the regions of 

intersection of two coordinate neighborhoods. For example, if for 
I 

some 7 there doesn't exist coordinate neighborhood containing 7(J) 

but there are coordinate neighborhoods U' and U" such that 

7(J)c(U')U(U"), then in U' and U" there are (see above) bases 

{E
1
,} and {E

1 
,,} in which the components of Dx vanish for every X 

along 7 and a global basis {E0
} in (U' )U(U") with the same pro-

1 

perty may be obtained 

E0 I =o 1 "E ,, I for xeU"\U' 
i X 1 1 X 

is C1 path). 

by putting Eo I =o i ,.E , I 
1 x l l X 

for XEU' and 

(note that (U")n(U') is not empty as 7 

Analogously, if 7 has selfintersections, then on any "part" 

of 7 without selfintersections exist bases with the needed pro

perty. From these bases can be constructed a global basis with the 

same property along 7. (At the points of selfintersections of 7 we 

can arbitrary fix these bases to be the bases obtained above for 

some fix part of 7 which is without selfintersections.) 

Consequently, if along 7 Dis a linear connection, then in a 

neighborhood of 7(J) a basis {E
1
,} exists in which the components 

of Dx for every X vanish along 7. 

On the opposite, let us assume the existence of a basis {E
1
,} 

in which W~=O for every x. Fixing some basis {E
1

} such that 

6 

i ... 
./I 

l· 
-1 ,. 

~ 

~ 
I 
I> 

I 
El ,=Al ,El. from (5') we find (WxA+X(A))j 7 <•>=0 or 

which means that ( 12) is valid for 

Wx(7(s) )= 

rk(7(s))= =-[(X(A))A-1] l7(s) 

=-[ (Ek(A))A-1] I 7(s) • ■ 

Proposition 2. All bases in which along a path 7 the compo

nents of an S-derivation along every vector field vanish are 

obtained along 7 from one another by linear transformations whose 

coefficients are such that the action of the vectors from these 

bases on them vanish along 7 (i.e. on 7(J)). 

Proof. If {E
1

} and {E
1
,} are such bases, then W~(7(s))= 

=Wx(7(s))=O. So, from (5') follows X(A) 17 <•>=0 for every X=XkEk, 

i.e. E/A) 1 7<•>=0. ■ 

Proposition 3. If along a path 7:J-M for some S-derivation 

D there is a local holonomic (on 7(J)) basis in which the compo

nents of D along every vector field vanish on 7( J), then D is 

torsion free on 7(J). On the opposite, if Dis torsion free on 

7(J) and a continuous basis with the mentioned property along 7 

exists, then all bases with the same property are holonomic along 

7. 

Remark. In the second part of the proposition we say that the 

basis must be continuous. This is necessary as any holonomic basis 

is such. 

Proof: If {E
1
,} is a basis with the mentioned property, i.e. 

W~(7(s))=O for every X and 

TD ( El I • E J, ) I 7( s) =-[ El I • E J,] 17< s) 

SEJ, 

and 

then, using (8), we 

consequently {E
1
,} 

find 

is 

holonomic at 7(s). i.e., [E ,,E ,JI =O, iff O=T
0

(X,Y)I = 
' I J 7( s) 7( s) 

=X
11

(7(s))YJ
1
(7(s))(T0 (E

1
,,EJ,)1 7 <sl) (see proposition 1 and (12)) 

for every vector fields X and Y, which is equivalent to T
0

1 =O. 7( J) • 

D • 
On the opposite, let T 1

7
<Jl=O. We want to prove that any 

basis {E
1
,} along 7 in which W~(7(s))=O is holonomic at 7(s), seJ. 

The holonomicity at 7(s) means O=[E ,,E ,] =[-A (E ,(A,)-I 
k

1 
k 

1 J 7( s) k J I 

7 



-E1 ,(Aj,))Ek,]l 71 s\· But (see proposition 1) the existence of 

{E ,} is equivalent to W (7(s))=(1 Xk) I for every X. These two 
I X k 7( s) 

facts, combined with (8), show that (1) 1 =(1) 1
• Using this and 

k . j j . k 

(r A+aA/axk) I =O (see the proof of proposition 1), we find 
k 71s) · · 

k j I k k 
E ,(A1,)I.,., 1

=-A ,A
1
,(1) I 

1
=E

1
,(A ,)I 

I 
and therefore 

j • s j j . I 7( s j 7( s 

[E ,,E ,]I =O (see above), i.e {E ,} is holonomic on 7(J). ■ 
I j 7( s) I 

It can be proved ( see below lemma 7) that for any path 

7:J---tH every basis {E7} defined only on 7(J) can be extended to a 
I 

holonomic basis {E~} defined in a neighborhood of 7(J) and such 

that Ehl =E7 . In particular, this is true for the restriction 
I 7!Jl I 

E7,=E,, 17(J) I 
of the considered above special bases {E

1
,}. But in 

the general case, the extended holonomic bases {Eh,} will not have 
I . 

the special property that {E
1
,} has. 

III. DERIVATIONS ALONG PATHS 

Let 7:J---tH, J being an R-interval, be a C1 path and X be a 

C1 vector field defined on a neighborhood of 7(J) in such a way 

that on 7(J) it reduces to the tangent to 7 vector field 7, i.e. 

Xl
7

,s
1
=7(s), seJ. The restriction of an S-derivation Dx on 7(J) we 

shall call (S-)derivation along 7 and denote it by v7 . Of course, 

v7 generally depends on the values of X outside 7(J), but, as this 

dependence is insignificant for the following, it will not be 

written explicitly. So, if Tis a C1 t:nsor field in a neighbor

hood of 7(J), then 

(V7T)I ,=V7T:=(DT)I , XI =i(s). 
7(s) s X 7(s) '1(s) 

(16) 

It is easily seen that V'T depends only on the values of Tl 
S X 

for xe7(J), but not on the ones for XE7(J), and also that v7 is a 

8 

j 
-~ 

j 
i 
') 

i 

l 
I! ! 
i 

generalization of the usual covariant differentiation along curves 

(see [2-4] or Sect. V). 

When restricted on 7(J), the components of Dx will be called 

components of v7 . 

Proposition 4. Along any C1 path 7:J---tH there exists a basis 

{E
1
,} in which the components of a given S-derivation v7 along 7 

are zeros. 

Proof. Let {E
1

} be some fixed basis in a neighborhood of 

7(J). We have to prove the existence of transformation E
1 

---tE
1

, = 

=A:,E
1 

such that w;l
7

u
1
=0, which, by (5'), is equivalent to the 

~xistence of a matrix. function A=IIA:, II satisfying along 7 the 

equation (A-
1

(WxA+X(A))) l,<J>=O, seJ, or 

7(A) I = dA(~(s)) =-W (7(s))A(7(s)) (17) 
7( s) S X 

as XI =7(s). Along 7 the general solution of this equation with 
7(s) 

respect to A is 

A(s;7)=Y(s,s
0

;-Wxo7)B(7), (18) 

where Y is the unique solution of the initial-value problem (15), 

s
0
eJ is fixed and B(7) is a nondegenerate matrix function of 7. 

So, if we take any matrix function A with the. property 

A(7(s))=A(s;7) for some s
0 

and B (e.g. using the notation of the 

proof of proposition 1, in any coordinate neighborhood in which 7 

is without selfintersections, we can put A(~(s,~))=Y(s,s
0

;-Wxo7)x 

xB(s
0
,~

0
.~;7) for a fixed nondegenerate matrix function B), we see 

that A carries out the needed transformation. Hence, the basis 

E ,=A1 ,E is the looked for one. ■ 
I I I 

Proposition 5. The bases along 7: J ---tH in which the compo-

nents of v7 vanish are obtained from one another by linear trans

formations whose coefficients on 7(J) are constant or may depend 

only on 7. 

9 



Proo.f. If {E
1

} and {E
1
,} are such bases, then Wx(7(s))= 

=W~(7(s))=O, Xj 71 s,=-r(s) and from (5') follows -r(A) l
71

s,= 

=dA(7(s))/ds=O, i.e. A(7(s)) is a constant or depends only on the 

map 7. ■ 

From propositions 4 and 5 we infer that the requirement for 

the components of 'D7 to vanish along a path 7 determines the 

corresponding special bases with some arbitrariness only on 7(J) 

and leaves them absolutely arbitrary outside the set 7(J). For 

this reason we can talk for bases defined only on 7(J) in which 

the components of 'D7 vanish. 

· Proposition 6. Let for a C1 path 7: J -M the defined on 7(J) 

basis {E
1
,} be such that the components of some S-deri vation 'D7 

along 7 vanish. Let Ube a coordinate neighborhood such that on 

Un(7(J))¢0 the path 7 is without selfintersections. Then there is 

a neighborhood of Un(7(J)) in U in which {E
1
,} can be extended to 

a coordinate basis, i.e. in this neighborhood exist local coordi-
1' 1' 

nates {x } such that E
1

, 17 <s>=a/ax · 17 <s>· 

Remark, Said in other words, this proposition means that 

locally any spacial on 7(J) basis for 'D7 can be thought (extended) 

as a coordinate, and hence holonomic, one (see proposition 5). 

Proof. The proposition is a trivial corollary from the proof 

of proposition 4 and the following lemma. 

Lemma 7. Let the path 7: J -M be without self intersections 

and such that 7(J) is contained in some coordinate neighborhood U, 

i.e. 7(J)cU, and let {E
1
,} be defined on 7(J) continuous basis, 

i.e. E
1

, 17 <s> depends continuously on s. Then there is a neigh

borhood of 7(J) in U in which coordinates {x1
'} exists such 

that E , I =a/ax 1
' I , i.e. {E , } can be extended in it to a 

I 7( s) 7( s) I 

coordinate basis. ■ 

Proof of lemma 7. Let us take a one-to-one C1 map 71: JxV -u. 

IO 

V:=JX···xJ (n-1 times), such that 71(·,1.
0

)=7 for some fixed 1.
0
eV, 

i.e. 71(s,1.0 )=7(s), seJ (cf. the proof of proposition 1). In the 

neighborhood 71(J, V)cU we introduce coordinates {x 1 } by putting 

(x
1
(71(s,1.)), ... ,x

0
(71(s,1.)))=(s,1.), seJ, 1.EV. Let the nondegenerate 

matrix IIA
1
,(s;7)11=:IIA

11
(s;7)11- 1 defines the decomposition of {E ,} 

J J I 

over {a/ax1
}, i.e. 

EJ, 17<s>=A~, (s;7) ( a:J 17<s>). (f9) 

If we define the functions x
11 

:71(J,V) -R by 

l 
1 

1 ' 1 1 ' I' J J x (71(s,t)):=o x +J A (u;7)du+A (s;7)(x (71(s,t))-x (7(s))]+ 
- I O I J -

.s 0 

I I j J k k 
f (s,t;7)(x (71(s,t))-x (7(s))][x (71(s,t))-x (7(s))] (20) Jk - - -

in which s eJ and x EV are fixed and the functions f 1 ' 
0 0 Jk together 

with their derivatives are bounded when 1. -~, then, 

71(·,1.
0

)=7, we find 

because of 

1
1 

1 1 

ax / ax / J • 
axJ 7(s)=axJ 71(s,:t.o)=AJ,(s,7). (21) 

As deqA>(s;7)ll¢O,ro, from (21) follows that the transfor

mation {x
1

} -{x
11

} is a diffeomorphism in some' lying in U neigh

borhood of 7(J). So, in this neighborhood {x
11

} are local coordi

nates, the basic vectors of which on 7(J) are (see (21) and (19)) 

a / [ ax
1 

/ ) a / 1 a / --r = --r -- =A , ( s; 7) -- =E , . ·axJ 7(sl axJ 7(sJ axl 7(sJ J ax' 7!sJ J 17(s) 

Hence {x
11

} are the coordinates we are looking for. ■ 
Lemma 7 has also a separate meaning: according to it any 

locally continuous basis defined on 7(J) can locally be extended 

to a holonomic basis in a neighborhood of 7(J). Evidently, such an 

extension can be done and in an anholonomic way. Consequently, the 

holonomicity problem for a basis defined only on 7(J) depends 

the way this basis is extended in a neighborhood of 7(J). 

II 
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IV. DERIVATIONS ALONG FIXED VECTOR FIELD 

Results, analogous to the ones of Sect. II, are true and with 

respect to S-deri vations Dx along a fixed vector field X, i.e. 

(see Sect. I) for a fixed derivation. As this case is not very 

interesting from the view-point of its application, we shall pre

sent below without proofs only three results about it. 

Proposition 8. Along a path 7:J-M the S-derivation Dx along 

a fixed vector field Xis a linear connection, i.e. (12) is valid 

for that fixed X, iff along 7 exists basis {E
1
,} in which the 

components of Dx vanish on 7(J). 

Proposition 9. The bases along 7 in which the components of 

Dx for a fixed X vanish on 7(J) are connected by linear transfor

mations whose matrices are such that the action of X on them 

vanish on 7(J). 

In a case of Dx for a fixed X the analog of proposition 3 is, 

generally, not true. But if for Dx' ·X being fixed, is valid (16) 

on 7(J), then we can construct a class of S-derivations {'D} whose 

components for every X are given .bY (12). Evidently, for these 

derivations the proposition 3 holds, i.e. we have 

Proposition 10. If along 7 for Dx' X being fixed, is valid 

(12) and there is a local holonomic (on 7(J)) basis in which the 

components of Dx vanish on 7(J), then the above described deriva

tions 'Dare torsion free on 7(J). Vice versa, if 'Dare torsion 

free on 7(J) and there exists a continuous bases in which the 

components of Dx vanish, then between them exist holonomic ones, 

but generally not all of them are such. 

12 

V. THE CASE OF LINEAR CONNECTIONS 

Here we shall apply the results from the previous sections to 

the special case of a linear connection V. As the corresponding 

proofs are almost evident, they will be omitted. 

Corollary 11. Along every path 7:J-tM for any linear connec

tion V there exist bases in which the components of V vanish on 

7( J). These bases are connected with one another in the way 

described in proposition 2. 

Corollary 12. One, and hence any, continuous basis along a 

path 7: J -tM in which _the components of a linear connection V 

vanish on 7(J) is holonomic if and only if Vis torsion free on 
I 

7(J). 

Remark. When 7 is without selfintersections and 7(J) lies in 

only one coordinate neighborhood, then holonomic bases ( coordi

nates) in which the components of V vanish on 7(J) exist if Vis 

torsion free and vice versa, which is a well known fact; cf. [1-3, 

7]. 

Corollary 13. For a torsion free line<!,r connection V along 

any path 7: J -M without self intersections and lying in only one 

coordinate neighborhood there exist coordinates, or equivalently 

holonomic bases, in which the components of V vanish on 7(J). 

Remark. This corollary reproduces a classical theorem that 

can be found, for instance, in [3] and in [2], ch. III, §8, in the 

latter of which references to original works ar~ given. 

Corollary 14. If ~ I : =V is the associated to V covariant 
s 7 7 

derivative along the C1 path 7: J -M, then on 7(J) exist bases, . 
obtained from one another by linear transformations whose 

coefficients are constant or depend only on 7, in which the 

13 



components of ,v 
7 

self intersections 

vanish (on 

and ,(J) lies 

7( J)). If 7 is without 

in only one coordinate 

neighborhood, then in some neighborhood of ,(J) all of these bases 

could be extended in a holonomic way. These results generalize a 

series of analogous ones, which began with [4] and concern linear 

connections. 

VI. CONCLUSION 

The above investigation shows that under sufficiently general 

conditions for derivations of the tensor algebra over a differen

tiable manifold M along a path 7:J-M generally anholonomic bases 

exist in which the derivation's components vanish on 7(J). It is 

important to be noted that when the derivations are along paths, 

then the corresponding special bases always can be taken as holo

nomic (or coordinate) ones. 

A feature of the considered here case along paths is its 

independence of the derivations's curvature, which even wasn't 

introduced here. The cause for this is the one dimensionality of 

the paths as submanifolds of M. In connection with this it is 

interesting the same problems to be investigated as here but on 

arbitrary submanifolds of M, which will be done elsewhere. 

At the end we want to say a few words for the relation of the 

obtained in this paper results with the equivalence principle [4, 

5], according to which the gravitational field strength, usually 

identified with the components of some linear connection, is 

locally transformable to zero by an appropriate choice of the 

local (called inertial, normal, Riemannian or Lorentz) reference 

frame (basis or coordinates). So, from mathematical point of view, 

14 

the equivalence principle states the existence of local bases in 

which the corresponding connection's components vanish. The 

results of this investigation show the strict validity of this 

statement along any path (on any curve). Hence, we can make the 

following two conclusions: Firstly, any gravity theory based on 

space-time with a linear connection is compatible with the equiva

lence principle along every path, i.e. in it exist (local) iner

tial frames along paths; these frames are generally anholonomic, 

but under some, not very restrictive from physical point of view, 

conditions on the paths (see lemma 7) there exist such holonomic 

frames of reference. Secondly, in the gravity theories based on 

linear connections the equivalence principle mus:t not be consi

dered as a principle as it is identically fulfilled because of 

their mathematical background. 
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