





I. INTRODUCTION

In the theorylof linearkconnections [1, 2] problems connected
with existénce of (local) bases in which the connection's compo-
nents vanish at a point [2-7], along a curvé [3, 6] or in a neigh-
borhood [3, 5, 6] have been considered. But with a very rare
exceptions (see e.g. [7]) in the literature only the torsion free
case has been investigated. The aim of the presént wofk is genera-
lization of these problems and their results to the case of arbi-
trary derivations of the tensor algebra ovef a differentiable
manifold (see [2] or Sec. II), the curvature and’tdrsion of which
(as defined below in Sec. II) are not a priori restrictéd somehow.

Mathematically the main purpose of this work is necessary and
sufficient conditions to be found for the existence of local
(holonomid or anholonomic [3]) bases {(coordinates) in which the
components of some derivation (of the tensor algebra over a mani-
fold) must vanish. If such bases exist;> we investigate the
.problem when they (or part of them) are holonomic.

Physically the goal of the paper is to be shown that in gra-
vity theories, based, first’of all, on linear connections, the
equivalence principlé is identically satisfied because of their
underlying mathematical structure.

The work is organized as follows. In Sec.’ II some notations
and definitions are introduced. Sec. III deals with the above
pointed problems in a neighﬁo}hood and Sec. IV investigates ‘them
at a single point. In Sec. V the connection of the considered
mathematical problems with the equi&élence, principle is shown.

Sec. VI contains some concluding remarks.
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II. DERIVATIONS, THEIR COMPONENTS, CURVATURE AND TORSION

Let D be a derivation of the tensor algebra over a given
manifold M [1, 2]. By proposition 3.3 from ch. I from [2] tﬁere
exists unique vector field X and unique tensor field S of type
(1,1) such .that b=Lx-i-S, where Lx is the L'i'.e derivative along X [1,
2] and S is coﬁéidered as a derivation of thé tensor algebra over
M [2].

If s is a map from the set of C' vector fields into the

tensor fields of type (1,1) and S:Xr——)Sx, theh the equation
" pS=L_+S k (1)
X Tx "X :

defines a derivation of the tensor 'algebra over M for any ¢! vec-
tor field X [2]. As the map S will hereafter be assumed fixed,
such ‘a derivation will be called an S-derivation along X and will
be denoted by D,. An S-derivation is a map D such that D:X+——D,_,
where Dx is an S—derivation along X. V

Let {El, i=1,...n:=dim(M)} be a (coordinate or-not [3, 41])
local basis of vector fields in the tangent to M bundle. It is
holonomic (anholonomic) if the vectors E, ..., E commute (don’'t

commute) [3, 4]. Let T be a c' tensor field of type (p,q), p and g
i o3

being integers or zero(s), with 1local components Tji:"’: with
respect to the tensor basis associated to {E‘}. Here and <below all
latin indices, may be with some subscripts, run from 1 to n:=
=dim(M). Using the expiicit action .of L and S, on tensor fields
[2] and the usuai summation rule on repeated on different_levgls
indices, we find the components of DT to be

..lp]+ i(w )la Tlll."a-lk‘af'l.'.lp .

..Jq = X'k J'l...Jq.

11...19 ll-
(D.T) =x['r
X2y 3,
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b=1

where with X(f) we denote the action of X=XkEk on the ¢! scalar

function f, i.e. X(f)::XkEk(f), and

W)t e=(sp! -k (xhyec!, ¥ ’ s (3

in which Clkj defines the commutators of the basic vectors, i.e.
Al
[EJ.Ek]—C‘JkEl. ‘ (4)

By definition we shall call (wx)‘j components of Dx~ as they
play with respect to Dx the same role as the components of a
linear connection with respect to itself. In fact, from (2) we see

that (cf. (7) below)
_ 1 ’
DX(EJ)—(WX)_JEl.‘ : : (5)

If we make the change {Ei}_'{Ex’:=A:'E1}' where A==HA:'"==

, .
:=||A: I"' is a nondegenerate matrix function, then from (5) we

can see that (wx)‘J transform into

[ R | 1 1! 1
(wx)..j'—Ai Aj’(wx).j+Al X(AJ,), (8)
which, if we introduce the matrices Wx:=||(wx)lj|[ and W)’(:=
’
:=||(wx)f'1,||, will read
-1
W =AT" (W AHX(D)), (")

where as a first matrix index is understand the superscript and

Yk ik 1
 X(R):=X"E _(A)=[X"E_(A,)].

If V is a linear connection with local components F'Jk (see,

e.dg., [1-3]), then it is fulfilled
V. (E)=(I" x9E . ‘ (7)
x*7) .1k 1

Hence, comparing (5) and (7), we see that Dx is a covariant diffe-

rentiation aiong X iff
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Atk (8)
(wx).J'r.ka '

i tion V
for some functions Fnk. Due to (3) or (1), a linear connec

is characterized by the map S:Xp——»Sx such that

= - : (9)
sx=2x, ZX(Y?.-VX(Y) [X,Y],

where [X,Y]=L .Y is the commutator of the vector fields X and Y‘
’ X

[2].

Let D be an S-derivation and X, Y and Z be vector fields.

s D
The curvature operator R® and the torsion operator T of D are

’ (10)
p = -— -—
- R (x,Y)._DxDY DD, D, 4y

- (11)
TD(X,Y):=DXY—DYX—[X,Y].

which in a case of linear connection reduce to the corresponding
classical tensorial quantities (see [2, 3] and .below (16) and
(17)). The S-derivation D will be called flat . (=curvature free) or
torsion free if R°=0 or T°=0 respectively (cf. [2]).

If we use the representation (1) and L Y=[X,Y], we get

(RD(X,Y))Z={SxSy—Sny+Lx(SY)—Ly(Sx)}Z+Sy[x,Z]—SX[Y,Z]—SIX’Y]Z (12)

T°(X, Y)=S, Y-S X+[X, Y]. (13)

Analogously, by means of (2), we find the»local expressions:

1 1 1
(RP(X, YD) =XCW) ) -YCW ) D+ (W)Y (W) [ (W) T (W)

)! (14)

_(w '

- [x, Y1

(1°(x, Y0 =W Y- x-c! XMy - a®

s . D 1 s 14
If we introduce the matrix BD(X,¥).—n(R (X,Y)).k“, then (14)

takes the form

e g

RECHNG S

(man

D . - _ .t
R (x,Y)—X(wy)-Y(wx)+wxwy wW wlx‘vl. (14 )‘
If D is a linear connection V, then, due to (8), we have: '
(RV(x, 1)) =R x*y! a . (16)

’ 3 eIkl '
S CRIPEE L - an
where [1-6]

R' :=-E (I )+E (P! )-r" r* ™ ' ' c° (18)
R 1S B T R W k' .1 L3k aml L)1 .mk . fmoa k1 :
o g | Al T

T.k!'_ (r.kl r.!k) c.kl’ (19)

are the components of the curvature and torsion tgnsors of V.

In the next sections we shall look for special bases {El,} in
which the components w; of an S-derivation D vanish along some or
along all vector fields X. Evidently, for this purpose we shall

have to solve (6') with respect to A under certain conditions.
ITII. SPECIAL BASES FOR DERIVATIONS IN A NEIGHBORHOOD

In this section we shail solve the problems for existence,
uniqueness and holonomicity of basis or bases {El,} in which the
components of a given (S-)derivation vanish in some neighborhood U.

Proposition 1: . The following three statements are equivalent:

(a) In U the S-derivation D is a flat linear connection.

(b) D is in U curvature free, i.e. RD=0, and Dx 0.

X=0_
(c) For D in U exists basis {El,} such that w;:o for every X.
Proof: We shall proof this proposition according to the

implications (a)=(b)s(c)=(a).

If (a) is true, then (8) and (16) take place, from where,

evidently, follows (b) as the flatness of ¥V means R’jklzo in U.



Let (b) be valid. The existence of {E,,}, in which w;=0, is
equivalent to the existence of a matrix A:ﬁﬂA:,ﬂ transforming {E }

into {El,} and such that (see (6’))

0=w”(=A'1(wa+X(A)), (20)

i.e.A muét be a solution of X(A):—WXA for every vector field X. The
integrability conditions for this equation are 0=[X,Y]A=X(Y(A))-
-Y(X(A)) for all commuting vector fields X and Y, i.e. [X,Y]=0.

Using X(A)=-WXA it can easily be calculated that

. .
[X,Y]A=-(R (X,Y)+W[x'”)A. (21)

So, if (b) is valid, then, due to (1) and (3), we get W | _ =0,
therefore the integrabilify conditions for (20) are satisfied and,
consequently, the above pointed transformation exists, i.e. in
{Ex‘} we nave w;:o. Hence, from (b) follows (c).

Let (c) be fulfilled. If we arbitrary'fix some basis {El},
then the existence‘of {E,}, in which w;:o, is equivalent to the
existence of matrix A transforming {E‘} into {El,} and which, due
to (6’), is such that (20) is valid. From this equation, we get
We-(X(A)AT, de. (W)' =-[X*(E(A!,))]A!" which, due to (8),
means that the S-derivation D is a linear connection with local
components Ff]k=-(Ek(A:,))A;I. If in (14’) we substitute W=
=—(X(A))A"! and use X(A ) =-a"Y(X(A))A™!, we get R°=Rv=0, i.e. D
is a flat linear connection. So, from (c) follows (a).®

The main consequence from proposition 1 is that the question
for the existence and the properties of special bases in which the
components of an S-derivation along every vector field to be zeros
in a neighborhood is equivalent to that question for (flat) linear
connections as it is expressed by

Corollary 2: In a neighborhood there exists a basis in which

the components of an S-derivation along every vector field vanish
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iff R°=0 and b, x==0» or iff D is a flat linear connection (whose
components vanish in the same basis).

The following two propositions are almost evident (see (6’)
and (15) respectively):

Proposition 3: All local bases in which the components of a
flat S-derivation along every vector field vanish in a heighbor—
hood are obtained from one another by linear transformations with
constant coefficients.

Proposition 4: The local bases in which the COmponénts of a
flat S-derivation along every vector field vanish in a neighbor-
hood are all holonomic or all anholonomic iff the S-derivation has
zero or nonzero torsion respectively in that neighborhood.

Remark: A stronger result is that the mentioned bases are all
holonomic or anholonomic at a given point iff the torsion vanishes
or is not a zero respectively at that point. We consider only the
above statement as it is the most widely used one of that kind.

Now we shall make some conclusions concerning linear connec-
tions.

Corollary 5: In a neighborhood there exists a basis in which
the components of a linear connection vanish if and only if this
connection is flat in that neighborhood.

 Remark 1: If the connection is torsion free, this is an old
classical result that can be found, e.g., in §106 from [6], in
[3], p.142, or in [5].

Remark 2: In [7] an analogous statement is pointed out in the
U4 gravity theory, which states that the U4 connection components
can "always be transformed to zero with respect to a suitable
anholonomic system in U4"._ This statement suffers from two
defects: firstly, generally it is not valid in a neighborhood

unless the U4 connection is not flat, a condition which is not



even mentioned in'[7], and, secondly, in [7] one finds a "proof"
of the cited statement .not‘ in a  neighborhood, but at a fixed
point, which in fact is not a real proof but only a hint for it
as it is a simple counting of the number of conditions which must
be satisfied by some independent quantities.

Proof: If there is a basis {E;’} in which the components_of a

. ’
linear connection V are I' J,k,=0 , then, in accordance with (18),
,

we have R! J'k'1'=0' i.e V is flat. On the opposite, let V be
flat. Then the S-derivation D defined by DxE=Vx has components wx=
=rkx“ at every point (see (8)) and, due to (14) and (16), is also

x=o=0. Consequently, Dby

: . o_V_ : _
flat” as R =R =0 and besides Dxlx:o'vx‘
corollary 2, there exists a basis {E,,} such that w;:o for every

r
! =0.@

r
X. But w)’(:rk,xk , so that T ,=0, i.e. I , .=

In the proof of proposition 1 we constructed a bases in which
the components of a flat S-derivation vanish.by proving that the
equation X(A)+wa=0, X being arbitrary, is integrable with respect
to A, and hence w;:o for E‘,=A:,E1.~But as D is in this case a
(flat) linear connection V (see corollary 2), we have wx=Fkxk for
every X. So, A is a solution of FkA+Ek(A)=0, which doesn’t depend
on X, or (see (6’)) F;=A'1(FRA+Ek(A))=0, i.e. in {Ex’} the compo-
nents of V vanish. In.this way one can construét a basis, which
generally is anholdnomic, and in which the components of a flat
linear connection vanish.

Corollary 6: All local bases in which the components of a
flat linear connection vanish in a neighborhood are obtained from
one another by linear transformations with constant coefficients.

Proof: The result follows from (8) and proposiiion 3fl

Corollary 7: If in a neighborhood there exists a holonomic
local basis in which the components of a linear connectién vanish,

then this connection is torsion free in that neighborhood. On the

&

’, -Q\ o -Tw )u""‘ .

O

opposite, if a flat 1linear connection. is torsion free in some
neighborhood, then all bases in this neighborhood in which the
connection’s components vanish are holonomic in it.

Remark: In different modifications this result can be found,
for instance, in [2, 3, 5, 6].

Proof: This result is a consequence from (8), (17), (18) and
proposition 4.m

The question for the existence and the properties of basis
(bases) in which the components of an S-derivation Dx along a
fixed vector field X vanish in a neighborhood is not so interes-
ting as the considered .until now problem. That is why we shall
only sketch briefly the existence of such bases in the case X|x¢0
for every x from the neighborhood.

If {Ex,=A:,Ex} is the looked for basis with the needed pro-
perty, w;:o, then its existence, due to (6’), is équivalent to the
existence of A:="A:," satisfying W A+X(A)=0 for a given X. As X is
fixed, the values of A at different points are connected throﬁgh
the last equation iff these points lie on one and the same inte-—
gral curve (path) of X. So, if 7y:J———eM (J being an R interval)
is the integral curve for X passing through yeM, i.e. 7y(so)=y and

) %y being the tangent to ry vector field, for seJ

ry(S)=¥|7y(s
and a fixed SOEJ, then the equation WXA+X(A)=0 along 7 reduces to
y

(dA/ds)!T(s =—wx(7y(s))A(7y(s)). The general solution of this
y

)

equation is

A(ry(S))=Y(s,s0;—wx°7y)B(7y). (22)

in which Y=Y(s,so;Z), Z being a matrix function of s, is the,
unique solution of the initial-value problem [8]

iI!.:zy, Y

ds =7 (23)

s=s
o]

and the nondegenerate matrix B doesn't depend on s,

9



Therefore alohg the integral curves of X,bases exist in which
the components of Dx vanish. Hence this is true and at any point
at which X is defined. Due to (6’), every two such bases {El} and
{E‘,} are connected by a linear transformation the matrix A of

which is such that X(A)=0.

IV. SPECIAL BASES FOR DERIVATIONS AT A POINT

The purpose of this section is problems analogous to the ones
in the previous sectiqn to be investigated but in the case des-
cribing the behavior of derivations at a given point.

At first we shall consider S-derivations with respect to a
fixed vector field, i.e. we shall deal with a fixed derivation.

Proposition 8: At every point xoeM and for every fixed vector

field X such that X x #0 there exists a defined in a neighborhood
o

of x,  local basis {E‘,} in which the components of a given S-

derivation D, along X vanish ‘at x , i.e. w;(x0)=0 in {Ei,}. If

X =0, then such a basis exists if in some basis {Ei} we have
o .
Wx(x0)=0.
Proof: Let {x%}, «,B=1,...n be local coordinates in a neigh-
borhood of x  and El:=Bfa/axa, :=|]B‘:‘||=:|IB:"|i'1 being a nondegene-

rate matrix function. The existence of {Ei,} is equivalent to the
existence of transformation {El}———e{Ex,=A:,El} such that w;(x°)=0
which, as a consequence of (6’), is equivalent to the existence of

A:=[A], | with the property

Wx(xo)A(x0)+X(A) x0=0. (24)

If the basis {El,} exists, from (24) follows that if X - =0,
o

10
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then Wx(x0)=0. Vice versa, if X x =0 and wx(x0)=0, then (24) is
o

identically satisfied, i.e in this case any basis has the needed
property.
So, let us below suppose X % #0.
0
In this case with respect to A the equation (24) has infinite

number of solutions, a class of which can be formed by putting

3 —al gk 1 3y d Rk o_ o
AJ,(x)-aJ,kx (xo)—aj,k(wx(xo))_lBa(xo)(x x )+
fb:,as(x)(xafxg)(xs—xg). : ' (25)

where Ha;,kxk(xo)ﬂ is a nondegenerate matrix and the C' functions
bj,aB(x) and their derivatives are bounded when X —X . In fact,

from (25), we find

Al (x)=al, X“(x.), E _(A))) xo='a;'k<‘”x("o))f1 : (26)

which convert (24) into identity.m '

. Proposition 9: If for some S—derivatioh Dx along av fixed
vector field X there is a local basis in which the components of
Dx vanish at a given point, then there exist holonomic bases with
this property.

Proof: If X x =0, then according to the proof of proposition
(o]

8 any basis, if any, including the holonomic ones, has the men-
tioned property.

If X #0, then a class of holonomic bases with the needed
o

property can be found as follows. For the constructed in the proof

of proposition 8 basis {Ei,}, we get
1y _ak ) .k ym 1 . 3
Ek,(AJ,)|x0—Ak,(x0)Ek(AJ,) xo- a ., X (xo)ajlk(wx(xo)).l, 27)
Hence, if we take a*, to be of the form a*, =a ,ak, with
k m k' m x m

a ,#0 and detﬂaZH#O,m, we see that ‘the quantities (27) are

11



symmetric with redpect to k' and j’. Consequently, choosing appro-
priately B; (e.qg. B;=5;), there exist classes of local coordinates

{y'} ana {yi } in a neighborhood of x, partially fixed by the

conditions:
X
BY | =B(x), i.e. E | =-2
ax® lxo o To i klxo ayklxo
J
a k .
—_XTTIX =Aj,(xo)=aj,aix (xo), 1.e.Ek,|x ='—£%7 -
oy 0 o 3y 0
——Qili—r =E_, (AY,) |, =—a ,a ., [a*x"(x )a'(W.(x ))’ ]
- ’ r - ’ ’ .
ayk ay’ lxo k ] L k% m 0o’k x "0’
Evidently, the coordinate, and hence holonomic, basis

{a/ay”} defined by some of the coordinates {yjl}, satisfying the
above conditions.Ahas the needed property.m

Let us now turn our attention to S-derivations with respect
to arbitrary vector fields.

Proposition 10: An S-derivation D is at some xoeH a linear
connection. iff there is a local basis {El,}‘in which the compo-
nents Qf D along every vector field vanish at X,-

Remark: The S-derivation D at X, is a linear connection if

for all X and some, and hence any, basis {E‘} we have (cf. (8))

1 k
W (x)=T X"(x), (28)

where Fk are constant matrices. This means (8) to be valid at x;,
but it may not be true at XEX .

Proof: Let {x‘} be local coordinates in a neighborhood of X,
and let D be at X, a linear connection, i.e (28) to be valid for
some I' . We search for a basis {Ei,=A:,a/ax‘} in yhich w;:o, Due

to (6’) .this is equivalent to r‘kA(xo)+aA/axk|x =0. So, if we

a

define

ACy)=B-T,B(x*(y)-x"(x))+B_ () (x*(y)-x*(x 1) (x' (1) =x"(x ),  (29)

12

where B=const and Bkl and their derivatives are bounded functions

when y —x , we find

—_ X —_
A(x )=B, 8A/3x |x°_ rB. (30)

Hence r‘kA(xo)+aA/axk|x =0 for all A defined by (30), i.e. -the

o

bases {El,=A:,a/ax'} with'“A:,"=A have the needed property.
On the opposite, let in some {Ex,} be valid w;:o for every X.
’
Then, fixing a basis {E =A' E,}, from (6') we get W _(x )A(x )+
o [ x' "o o

+X(A) |, =0,» i.e. W, (x)=-X(A)|, A"'(x,), which means that (28) is
o] . . o}

satisfied for »Fk=—Ek(A)lx A'l(xo) anéd consequently p is at X, a
0

linear connection.m

Propo§ition 11: If there exist bases in which ‘the components
of an S—d;}ivation along every vector field vanish at a given
point, then they are obtained from one another by linear transfor-
mations whose coefficients are such that the action of the vectors
of these bases on them vanish at the given point.

Proof: If {Ei} and {Ei,} are such bases at the pdint X then

w;(x°)=wx(xo)=0. Therefore, from (6’),‘we get X(A)]x =0 for every
: o
X, i.e EI(A)|x°=0.l

Proposition 12: If for some S-derivation D there is a local
holonomic basis in which the components of D along everyvvectof
field vanish at arpoint x,, then the torsion of D is zero at x.
On the opposite, if D is torsion free at X, and bases with the

mentioned property exist, then all of them are holonomic at X,

Proof: If {Ei,} is a basis with the mentioned property, i.e.
w;(x0)=o for every X, then, using (15), we find TD(E!"EJl)lx =,
. . * o]
=_[E1”EJI]|X and consequently {E +} is holonomic at x, i.e.
o}
_ . _mD S N D
[E‘,’E"tl§°—0' iff 0=T"(X,Y) xo-x (x,)Y (xq)(T (El,,EJ,)‘xo)

13
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r r 4
(see proposition 10 and (28)) for every vector fields X and Y,

which is equivalent to TDIx =0. o
o
On the opposite, let Tnlx =0. We want to prove that any basis
o

{E‘,} in which w;(x0)=0 is holonomic at X, - The holonomicity at L

— - k' k . "
means 0—[E‘,.EJ,] xo—-Ak (EJ,(AXI)—E‘,(AJ,))EK, xo. But (see pro-

position 1) the existence of {E‘,} is equivalent to wx(x0)=
=Fkxk(x0) for every X. These two facts, combined with (15), show

i3
i i . . k _
that (Fk).J—(FJ)_k. Using this and ‘FkA(xo)+aA/ax Ixo—q) (see the
roof r ca s . X —_a) at k _
proof of proposition 10), we find EJ,(AII)IXO AJ,Ail(rJ)_l X

_ "
—El,(AJ,) %

and therefore [E‘,,EJ,] x =0 (see above), i.e {El,}
o o

is holonomic at x .m ‘ o
L

Now we shall apply the above-obtained results to‘the theory
of linear qonnections.

Corollary 13: For every point X, and evefy linear connection
V there exist in a neighborhood of x, local bases in which the
components of V vanish at X, -

Remark: For torsion free linear connections this result is
well known and is valid in holonomic bases (normal coordinates);
see, e.g.: [2], ch. III, §8; [4], p. 120; or [5], §&36.

Proof: From proposition 10, its proof, (28) and (8) fqllows
the existence of bases {E ,} such that 0=W7, (xo):rk,(xo)xk,(xo)

’

for every X, where l"k,(xo)=][1‘l ~(x,)] is the matrix of the

3’k
components of V in {E‘,} at X, Consequently, as X is arbitrary,

‘I

Fk,(x0)=0, i.e. 1"”],k

’ (x0)=0..
One can easily prove the following three corollaries:
Corollary 14: The bases in which the components of a linear
connection V vanish at a point X, are obtained from one another by
)

linear transformations the coefficients of which are such that the

action of the vectors of these bases on themvanishs at X,
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Corollary 15: In a neighborhood of ‘a given point x  there
exist holonomic bases in which the components of a linear connec-
tion V vanish at X, iff the torsioh of Vvvanishes at ko.

Remark: This is a classical result that can be found, for
instance, in [2], ch. III, &8 or in [4], p. 120. The same is valid
and for corollary 16 below.

Corollary 16: For a torsion free linear connection in neigh-
porhood of any point, local coordinates exist (or, equivalently,
holonomic bases) in which its components vanish at that'point.

If V is arbitrary linear connection, then, generally, its
torsion is not zero. But if we define a lineér connection sﬁ whose
components are the symmetric part of the ones of V, then °V js
torsion free. By corollary 15 for *Vv,.local holonomic. bases exist
in which its components vanish at any given point. Thus we have
proved the known result (see, e.g., [2], ch. III, §8 and P4], P-
120) that if V isn’t torsion free, then there doesn’t exist local
holonomic basis in which the components of V vanish at some point,
but there exist local holonomic bases (coordinates, called normal
[2, 4, 5]) in which the symmetric part of the components of V

vanish at that point.

V. THE EQUIVALENCE PRINCIPLE

Physically the above results are importanﬁ in connection with
the equivalence principle (see, e.g. [7, 9] and the references in
them);

Usually in a local frame (basis) the gravitational field
strength is identified with the components of some linear connec—

tion which may be with or without torsion (e.g. the Riemannian one
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;n general rélativ}ty [9] or the'one in Riemann-Cartan space-times
[7]); This linear'éonnection muét be compatible with the equi-
valence principle in a sense that there must exist "local"
inertial, called also Lorentz, frames of reference (bases). in
which the gravity fieid strength is "1ocaily" transforﬁéd to zero.
In our terminology this means the existence,of spe¢ia1 "lbéél"
basis (or bases) 1in which the connection’s componeﬁts vanish
"locally". Above we have put the words “locai" and "locally" in
inverted commas as they are not well defined here, which is usual
for the "physical" literature [9], where théy often méén *infini-
ﬁesimal surrounding of a fixed point of spaceFtime" [7). The
strict meaning of-"locélly" may be at a point, in a neighborhood,
along a path (curve) or on some other submanifold of the space-—
time. As in the present work we have used the first two of these
meanings of "locally" we‘can make the following conclusions:

(1) All gravity theoriés based on space-times endowed with a
linear connection (e.g. the general relativity [9]> and the U4
theory [7]) are comﬁatible with the equivalence principle at any
fixed space-time point, i.e. at any point there exist (local)
inertial frames, which generally are anholonomic and méy be holo-
nomic ones iff the connection is torsion free (aé is,e.g., the case
of general relativity [9]).

(2) Any gfavity theory based on spage—time endowed with a

flat linear connection is compatible with the equivalence

principle in some neighﬁorhood of any space-time point, i.e. for

every point there exist its neighbofhoods in which there exist
(local) inertial frames (basses) which are holonomié iff the con-
nection is torsion free.

{(3) In the above cases thé equivalence principle is not at

all a principle because it is identically satisfied, namely, it is
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a corollary from the underlying mathematics for the corresponding
gravity theories.

(4) The equivalence principle becomes important if one tries
to formulate gravity theories on the base of some (class of) deri-
vations. Generally, it will select those theories which are based
on linear connections, i.e.sonly those in which it is identically

valid.

VI. REMARKS AND GENERALIZATIONS

As we have seen the linear connections are remarkable among
all derivations with their property that in a number of considered
here sufficiently general cases they are the only derivations for
which special bases in which their components vanish exist.

If one tries to construct a gravity theory based, for
example, on linear connections, then he needn’t to take into
account the equivalence principle for it is identically fulfilled.

This formalism seems to be applicable also to other~fie1ds,
not only to the gravitational one, namely at least to those of
them which are: described by linear connections. This suggests. the
idea for extending the aria of validity of the equivalence prin-
ciple outside the’gravity interaction (cf. [10]).

It should be possible to generalize this formalism along
paths or on some other submanifolds of the space-time, which will

be done elsewhere.
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