


I, INTRODUCTION

Let be defined a general linear transport (I-transport)

on the differentiable manifold M , i.e., to any curve Y:T->M,
j is a nondegenerate ]R-interval, there corresponds a map
Ix_,‘y . 7’1. (M —%T 71}{M)} where ,yé)/[]—)
and 7lx (M} is the set of tensors of the type (;) at Xx
on M having the properties described in [5]. Let also M be
endowed with a metricy l.e., a nondegenerate, symmetric bilinear
mapping g, ¢ T (M) X TI?( (M) —}T?OIX{M),where xéM, T(M-=
:='T'tolx ) and X i1s a Cartesian product sign so thé.t the

scalar product of AX,B € PxlM) 15 Ay Bx = xMx;Bx)-

Definition 1.1, The I-transport and the metric will be
called consistent (resp. along the curve )’: J-—)M) if the
I-transport preserves the scalar products of the vectors along
any curve (resp. along ) ), i.e., if the scalar product of
Ay, B €T, (M) , XE€ y(T) 1is equal to the scalar product of the
vectors obtained from them by means of an I-transport along

Y :JT—M to any point Y ey(7)
1) G (A, B = x_,,Ax, B) x,9e¥17].

Important examples of transports along ourves conslstent
with some metrio areé the parallel and Fermi-Walker transports
which are consistent with the Riemannian metric (defining them).
This result has been proved, e.gs, in [2,7] (see also below
Sec.3).
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It can be shown that in physics the concept for consistency

of I-~transports with metrics naturally appears when investigating
the relative energy of two point particles (ef.[7]).

The aim of this paper, which is an extended version with
proofs of ]:63 s 1s to consider some necessary and/or sufficient
conditions for consistency of I-transports and metrics. The re-
sults and thelr proofs are constructive, so they may find
practical usage when working on that problem. Moreover, impor—

tant results concerning the general structure of I—éand S~-trans

ports of vectors are obtained.

In Sec.2 the general case of I-transports is investigated.
Necessary and sufficient conditions for their consistency with
metrics are proved. All metrics (resp. I-transport) consistent
with a given I-transport (resp. metric) are obtained. Sec.3 is
devoted to a speclal case of S—ti-ansports. Here, the same prob-
lems as 1n Sec.2 are considered bl;t %Or‘ the case of S-transports
with specific and effective methods. Sec.4 contains some conclu-—
ding remarks concerning one possible generalization of the

problems studied in the present article.
2, GENERAL CASE

Let us fix some basils fE lx)] in M} Because of
(see [5]) Ix—»}E (x) E‘T’g{”) X, € 9’[7} there exist
uniquely defined functions H -4 (2, ;J/)
ponents of a two-point tensor from T’ !l] {M/® Tfo l:c [M)
su‘ch‘that: -

which are com-—

(2.1) Ix_ﬁ (x)= /7”4 (5,%55)E,14)

’ ‘where henceforth in our text all latin indices run from 1 to

7N 5= dim M  ana summation from 1 to 1. over the 1ndlces repeated

-
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Hig,x;r):=

»-”H( w}l J’)" . From the baslc properties of the I-trans—

on different levels is understood. Let

port (see [5_]) it 1s not difficult to derive the equalities

(2.2) H(x;x;'(f)’-'—'f, XGIIT/)

2.3 Hiz,2;0) =HEZ,50H3.%7), x,4,2e)(T).
The components of the metric jbl in {Et-{x)} are

(J2)7j = J (Est7), E;ix)). bet Gtx)i= (3, )]l

Proposition 2.1. The metric and the I-transport are

-

consistent 1if and only if
o) 60)=H"(9,x57) 6UIHEGx;E), 2,917,

where the .,uperscript T means transposition of the matrices

Couge (M) =0 1)) (6Tl)ij = (6al)j; (0 )i = Un)is )

Proof. Let 141,3167-';((1‘7) so that A 22‘/; E,*(’z}v and
By=85% E;x)

port there follow

(2.5) I A, Bx) = 14( Bj JlE:02), E 11)) f}x ex Uelis
_,;4 = (H! (5, ,(r//i’)f () -

. From the 1linearity of the metric and the I-trans-

(2.6) Ix

¢ o
Taking into account the arbltrariness of Ax and B,‘- and
using (2:5) and (2.6) we see that (1.1) 1s equivalent to

' k i ¢ ]
(2'4’.) {jx H )rj(jd)kg H.J'li;l;o")
which is simply the matrix egq .(2.4) but written in a component

form.



Due to the depetndence on two points X and ¥ eq. (2.4)
seems to be complicated but by means of the following lemma it can
be put into an equivalent form depending only on one point.

o g e e

and (2.3) 1ff there exists a nondegenerate matrix function
Flx;7)such that

Gy Hig,xsr) = F ) Fesr), sgert7),

where F‘J{%‘J’} means the inverse matrix of FI(Z;f). i
Remark. It can be proved that the functions H{J (ﬁ,“')’fj
define by (2.6) an I-transport of the vectors iff the natrix
H [4,x;7) can be put in the form (2.7) in which F(X;7] satis-
fies the condition F(X;7 ')Ay IF(xy), where xep(7)=y(7’),
! is the restriction of on any subinterval J'ic: J-

and ONrY)  is independent of x nondegenerate matrix (see (2,9))
This condition for F will be assumed below.

Proof. If (2.7) is true, then evidently (2.2) ana (2.3)
are satisfied. On the opposite, let €2.2) and (2.3) be valid.

Hence, for Z=x there follows

(2.8) Hd(?(,j,’)')ﬁH(g,%;’ﬂ,

so (2.3) is equivalent to

Hiz x50 )= HH9250) Hig,x;0).
Let X, be some fixed point from y(J) and F(Z;f)-’:/'/(xa,x;r/,
then for Y:3X%, we get (2.7) from the last equation.

Remark. As consequence of the proof of lemma 2.1 (see also
(2.3)) we see that the appearing in (2.7) function F is defined
within a2 constant nondegenerate( left multiplier, leesy 1if for
we have H(y,l‘;]'):l-;“(y;d’)ﬁ,(x;f) » then any other
function F  for which (2.7) holds is obtained by the formula

some" Fo

(2.9) Foor)=DF,(x;7] , xe¥iT), p=01r/,

where D:p{f/: is some constant (along ) ) nonaegenerate matrix.
(Here and below by 4 constant matrix we understa;nd"an indepen-
aent of X € Y(J) watrix which may depend on )y , but the argument
Y, will not ve written explicitly.)

Proposition 2.2. The metric and the I transport are .-

consistent iff
oo (Frnl) 6 Fn)=C, xext7), (T=¢ arl),

where C 1s a constant, nondegencrate and symmetric ( CT=C )
matrix and F defines the_ given. I-transpert by means of (2.7).
Proof. Substituting (2.7) into (2.4) and nultiplying the
so~obtained equality by ( F ¥(x , y) )T from the left and by
Fleesr)

from the right, we see that by proposition 21

- the metric and the I-transport are consistent iff

) - (FreGriTesF o= (F 50" el) Figr)

for every X,f€ Y(7) . 1f the metric and the I-transport are
consistent, then putting here ¥=J, for some fixed J» 6)’(.7} _
and C=C(r/'=(F-f'7air})T6(y¢.) F_‘l{y,;)’) we obtain (2.10). -The
symmetry of C 1s a corollary from its definiticn. Op the
opposite,. 1if (2.10) holds, then (2.11) is o'bviousl'y valid. but.

it is equivalent to (2.4). In this way we see that eqs.(2.4) and
(2.11) are equlvalent, &.e..propos‘itions 2,1 and 2,2 are equl-:
valez;t, the former beling already proved. ‘

As a direct consequenoe of proposition 2.2 we derive

Proposition 2.3. Let some I-transport be fixed on M~ and

F defines it by . (2.7): Then, all consistent with it metrics
along ¥ :T—>M are obtained by the equality



(212)  GUK)=FTy)CFlxy) , xexl3), CT=Cl=Clt)), |
where C=C(f}1s nondegenerate, symmetrlc and 1ndépendent of X
matrix. That is,a -given metric 1s conslstent with the fixed
I-transport iff there exlsts a constant symmetric matrix C
for which (2.12) holds.

Evidently, the transformation.fr>[F of F (see (2.9))
implies the cha.nge C"‘"DTCD of the matrix C appearing in
(2.10):

Ga3)  Fr—DF = ¢c—07ch.

Let on M be given a metric and a.' consistent with it
I-transport described in {£;{d} by the matrices (-(X) and
Fo (x;r) (see (2.1),(2.7),(2.9)), respectiveiy. Dye to (2.10)
we have (F}lliifl)ré(x)F,llif} Co
, matrix C,':Co(]):grl)ue to the symmetry of (, there exists an
orthogonal matrix [), such that [ ¢ D,
matrix 1] "J.'hen, (see (2.9) ana (2.13)) the matrix Flx;[):
= Do Fo (2 5¢)
last equation it satisfies (2.10) for C=Dc C.D.
can choose F 1n (2.10) in such a way that (¢ 1s a diagonal

-for some constant
is a constant diagonal

describes the same I—transport and due to the

sy 1l.e.y, oOne

which means that G(x} can be transformed to one and the some

independent of X diagonal: form by transformation of the type

DTx) 6 (x) Dix)
T

because of G (X)=((x) there exlsts an orthogonal matrix [),(X)

' "’ ;. s
such that Dy (6)60x) D (x) =diag(g,1x)y. - ) Jnt¥), Jyoxj#0 being
the eigenvalues of G(x] [ 1. Here of and from the inertia law of

for some nondegenerate matrix D(I) . But

Jacobi~Sylvester [1] it follows that the number p of positive
and the number ¢ (= 'n-p} of negative eigenvalues of G(x)

6

g -

(1.e., of the metric) are equal to the numbers of positive and
negative, respectively, diagonal elements of Dr(x}G-IXID x) =
=const, and consequently, they do not depend on xé M
On the opposite, let on M be defined a metric for which
the numbers p and ‘]l: —p) are independent of the points of
M . Fronm 6- {x]=6(x) the ex1stence of an orthogonal matrix
D,(z) follows such that [y Tix) 6. (%) 0; x] = céuy(y,/x;),. ;,,,x;; Jx0
being the eigenvalues of Glx)fl] Let D, (x]):= oby {//;/_7;77)
5 1101 ) "and Dix):= 0 x)D, (x) .
.Lhen, D Ix/G(X)D(x/-‘(“y (ff;—", én) , where P - of the
nunbers §,,-..,&5 are equal to +1 and the others gzn-p
are equal to ~l. 56 from proposi‘.:ién 2.2 for C-;&'? (&50-2,En)
we infer that the defined by (2.7) for Flx;y) =D, 2er(7)
I-tra.nsport 1s consistent with the given metric. Thus, we have
proved the following important result.

Pmnosition 3, 4. I nccessary and sufficlent condition for

the eriotence of an I—transport congistent with a given metric
is the independmce of the number of positive (or negative:

ramk G-1x)=n ) eilgenvalues of the metric' (j.e. of -the matrix
‘6-{1)) of the point of the manifold at which they are evalua-
ted (1.e. of XM ).

Proposition 2.5. Let on M be fixed a metric for which the

numbers P ~and 7:71-,:5 of its positive and negative, respecti-
vely, elgenvalues do not depend on the point of M at which they
are evaluated and the basis {Et- (7()} be chosen in such a way
that the first p elgenvalues of the matrix G(x) defining the
metric in 1t (see (2.5)) be positive (sece beiow (2.16)). Then

a given I-transport is consistent with this metric if and only



[}
1f 1t is defined by (2.7) in which the matriz F (X ;Y] has the

form

(2.14) F(X;J')= YZ(x}ﬂDq{x} ,

where Y=¥J)is a constant nondegenerate matrix, Z(xr)
pseudo-orthogonal matrix of the tyre (p, 7} 7(2(){,’]}@0[&7});

l.e.

(2.15) 2 ("/f)Gf?Z/If) G -vaty{i ody=1,.. 1))

p-témes  g-fimes

and | Dix)

(2.16) D) GD(x) = Gp g -

is any fixed matrix such that

In other words, all I-transports consistef;t with. the given metric
are defined by (2.7):in which the matrix F{x;r) nas the form
(2.14).

Remark, The case, when in some basis not all the first
elgenvalues of G(z) are positive, 1s obtained from tha above
case by transformation (renumbering) of the basis fE [xl}

Proof. To prove the necessity we have in fact to solve eq.
(2.10) with respect to F(X;)y] . From the cholce of {£&; x)f s

GTix) = 6 (x)
there follows the existence of [){X] satisfying (2.16) (e.g.,
one can put [P(x)=p,(x)D,(x) where D; and 0, are defined
in the proof of proposition 2.4). Let F(Z,’)’)ZZF,(X,',HD-’[z)
and X, be a fixed point from §(7) . Then, from (2.10) and

and the independence of F and 2 of x

from the constantcy of (", we get

(F,"lbc,'f))v7 Gf’,? F;j{?(;‘)’) =C= (F,'ilxa;r)) TGr,y /:;1(10,'[).

R

P

N

i e

Putting here F, (x;r)=: YZ{X)’J’) ) where y=y()’)==F{1,;[’),
we see that?Z{x,’d’} obeys €2.15), 1.e. FIX;¥) has the form
(2.14) .

The sufficlency 1s evident: 1£_ (2.14) is valid, then (2.10)
1s satistied tor C =(Y~4)7G, ¥ ™!

the I-transport and the metric are conslstent.

and by proposition 2,2

At the end of this section we shall investigate the problem
when for a given I-transport there are metriocs globally
consistent with it (cf. proposition 2.3).

If a given I-transport is conslstent ﬁith a globally defi-
ned metric (i.e. if (1.1) holds for any X,y and ) ), then
due to proposition 2.5 the function F defining 1tb by (2.7) has
the form (2.14). So (2.14) is a necessary condition for the
existence of a globally defined metrics consistent with the
I_transport. But this conditlon 1s not sufficient in a sense that
not all metrics defined by I;tra.nsports for which (2. 14) holds
(for Z satisfying (2.15) for some p and ¢ , ptg=m
and arbitrary nondegenerate matrix D(xl) are globally défined,
1.e., there are F of the type (2,14) such that G0x¢) (see
(2.12)) depends on '} . In fact, let (2.14) hold for arbitrary

Y and D(x) (1.e., det Y.-det P(x)#0 ) and Z satisfy
(2.15) for some p and ¢ . Substituting (2.14) into (2.12), we
get o o ’ »

(2.17) Glx;f}=(9‘1{xJ)TZT(x;rjy PC YZ o)), ¢=C=Ctr), y=Yir).

Evidently, a necessary and sufficient conﬂition for the
independence of G(X;f) of )y  1s the existence of a synmetric
nondegenerate matrix Q(X) dependling only on zeM such

that



(2.18) Z%x;]}}’?(_}’Z(x;)’}: @(X/,»Q'?}?flréllx/ )

.
Y'°C )’ = Gl’,‘/ then due to (2.15) we have
e If (2.18) is valid, then

For example, if

0[1} =6 (X
(2190 Gix;¢)= G‘(ﬁ: (07x))7 Qx) p‘i{x}

does not depend on ) S
Bquality (2.18) means that <,

(Z6500)" Q&) Z 7 57)= YT y

is a soiution of

(2.181)

Thus by the proof of pro;position 2.5 it follows

(2. 20) z(x n=y, Z,(x37) /)“frx},

where ya is a oonstant nondegenerate maaim, ) Do(x) is any
fixed matrix such "hat DT’(I) @(I)Da l7C) Gr s .
gers T,$ >0', ris=n Cr
eigenvalues of Y Cy ) and Z (7( ]’) io a pseudoorthogonal

for some 1nte—

13 the number of positive A

matrix of the type (rys) (i.e., it satisi’ies (2. 15) for p r
and 9= . 7

From the above results we derive )
 Proposition 2.6. Let for some I-transport (2. 14) hold for
Y anda D(x)

a pseudo—orthogonal matrix of type (P, 9) , Pt7=m . Then,

being nondegenerate matrices and (X }'} being

the metric (2.12) does not depend-on Y if Z(t;)) has the
and 00(2:)
belng ‘a pseudoorthogonal matrix of type (ry s),

form (2.20) for some nondegenerate matrices )’0

and  Z, (5]

T_‘*g,:‘h , where 7 and ¢ are the numbers of positive and

10

i g

e ‘ﬂ AR

'be a C"-cﬁrve, 7”1 (M)

« In this case
the metric in. {E'(?[)} is given by (2.19) for Q[X) =
=(D; 1[1))76-,,5001(1)and has' r (s) positive (negative) eigenvalues.

negative, respectively, eigenvaltes of )/V'Cy

3. THE CASE OF S—~TRANSPORTS .

As the S—transports £4] are a "speclal case of the general
I-transport £5] all the precedihg results for them are valid. The'
aim of this seotion is to consider with adequate methods some
specific for the S~transports conditions for their consiste*xcy
vith metrics.

Let (for the corresponding definitions see C4) Y« T—"M
be the set of tensor flelds of the
type (;) on M, V vea C!vector field defined in some
neighbourhoocd of d’lfj VY(;}:: .[‘) se 7 . be the
tangent to ) vector ); at Yis) ()’f(S) -dr’(s)/ds ); o
ST, (M) —Ti M), S:V—sy » Dy -

(bv- S.V.)x yxey(T) LV. be the I.ie derivative

along V to be the S—differentiation along )’ with respect

to V and SI—-)’ T’qu (M)"—'* I 7‘;(”) 1%76 )’(7'}

e the S-transport along Y ( from X to b ) defined by Ds
By definition 1.1 the C! metric ge T° (M)

and  the
S-transport S'r are consistent along iff '
i x>

G0 e Be) =gy ( Syt ,.,,B ) ;e)’lT}, A By € T (M),

Introducing' the contraction operator CP over the p-~th
q P

superscript and g~ th subscript, we see that

G-2) 9(4,8)=(C{) A®IOB, 4,8, M),

11
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where @ is the tensor product gign. Taking into account

that Sx)f_a; #{X)E ,l’{x} for any,f M—}-[R and the commutativi-
ty of ‘S");"’J and C; (see [4], propositions 3.6 and 3.3) from '
(3.1) and (3.2) we derive

Proposition 3.1. The C1 metric ; and the S-transport

'8
Sx—ey

s
(3.3) jy=~,¢—>yfo¢ , %,9€e¥(7T).

Due to the definition of an S-transport [4] this results is

are consistent along Y : J—>M 1ff

equlivalent to 7
Proposition 3.2. The S—transport defined by means of an

S-~derivative DS’I’( along [J- :T-—I*M is consistent- with the C'l
metric j 1ff )

=D, / 5o =0, myerer)-

Remark l This staoement a.lso follows airectly from the

G I

definition of an S—tra.nsport and eq. (3.2)3 1i‘ & and .B undergo ,
S-transport along J’, l.e. if DS A-[ -DVB‘Z =0, xé)’(T/,
then due to the commutativity of - DV' C7 (see also
[4]) the scalar product g4, B/ undergoes an S—transport along
a’ (i.e. D g(ﬂ 3), =0, X&f(j) ) 1ff . 4) is true,

Rematk 2. Eq. (3.4) is useful and effective for practical
checking the consistency between ,S-;tvra.nsport"s and mevtrics,\ ‘Ce e
for the Riemannian parallel transport (3.4) is identically sa-
Viij =0, where V.X{} is the
covariant derivative defined by the Cristoffel symbols along.
)Ce'né (M)in the Riemannian space.

Let us write (3.4) in terms of local components in some

(Local along ):oord"mate basis, E: (ﬁ) in T.'X}(M)

tisfied [2,7] ¢ in this case

12
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We have ' (x=)(s), s€ 7, 9 = 9/91"==E-lx))
(ij,x)ij 9’( (j'x){j V I +07¢ (k / gx)k/DtV/

=d Uy@/),‘jﬁs 4 (Jx )tk J' Ix 1 (9, )k/ leklx ,

(51 =5y ek (S5

hereof we get
(3.5) (D‘;“jlx )ﬁ-\l if(;) :(LVJ/I#SV{I)I‘/”L:’)'(;)' i&((;}/s}){i/(;
3)’1s))tk (D V m;-SV If!fl) )+(;)’(S/)kd ( 9 V Im/ ( fylnsl) J

Introducing the matrices C Glxl=|| (;x}{-/ Il = 1 7’(2:/

ana Wed=l| Wit =1V [ = (Syledij | v see

that in {E (x)} eq. (- 4) 1s equivalent to

(3.6) alGlf/‘)’+ Glre)- W(ns))+14f lris)- G(ﬂ”) =0

Proposition 3.3. Let 0 —LIV'f S‘V be an S—differen—

tiation which defines the S-transport : Sx_’j along the

C?—curve ' J-—'>M ~+ Then, all metriocs consistent with this

S-transport have along ' the form -

Gy Gae)=Ys,s5;-W' )C v’ (s s,,,-W )
$,5%€67 , C =C/

where C is a constant nondegenerate symmé.tric matrix,

13



y15';o; Z) sy Z 1s a nondegenerate matrix function on J ,
is the fundamental solutilon £1,27 of the linear matrixz differen~
tial equation

CRV dY/ds =Z 1))

satisfying the initial condition

(3.8p) }/(fo,so;Z):ﬂ“’aa) (£ “"11)7 .

il.e., )’= "yf/ /’ | is the matrixant of the equation 41/0/5 =

= Z6)x, 2=(x"(s),--,x™(s)] , and in (3.7) we have written W

instead of W’ » 1.e. we have put erls)) = W.[") seT .
Remark, Equelity (3. 7) is simply the e,:plicit form of eq.

(3.3) for X=zY(S) and Y=rts) (note that ‘

(3.9) CG(resel)= C), |

from which.there follows [4] eq. (3.3) i’a: évery x,9ellT).
Proof (first v‘ersion). This pi'opositioﬁ is in f‘act av spe—

clal case of proposition 2.3 (compare (2.12) and (3.7)) Indeed,

by considering 'Sflhl—)fli)ﬁ ﬂGTnsc) (M} as a solution of

D BIT(SI =0 » Byisa =# (g.ee [41)one finds (see [2] and
the notation of Sec.z)

(3.10) ”H ilris:),r(si) )'I )/(&,S,, W-) 51:’167
£rom whici; because of Y(-‘;)’zj]df) YIa, $s W.): )’(S;,s, )W}

and Y(S,,S“'hr) =}’"('s4,s,,W) (see Sec.2 and [2] ) there follows

(.11) F(YIS)')’)ZD Y(‘o»‘iw) seJ,

where S, 1s any fixed point from J ana D= DO’/"F{J’(‘J,J’J
is a constant nondegenerate matrix (cf. (2.9)).

14

From  YisusaiW)= Y s,55W), 4y He=-y ms}yf-
(see 17 , ch.IO ,52 ) and (3 8) we derive that

(3.12)  ¥(s,se; -}1/' / y (50)5, W) o S€T.

Substituting (3.11) into (2,12), taking into account the
m
last equality and denoting D'CD simply by C, we derive (3.7).

Proof (second version). One can easily check that- (.7

is the general solution of eq.(3.6) with respect to G. satis—
fying the initial condition (;(r(s,,))_ C (efs [2] ‘and [,
ch. I0, § 16, exercise 2). So the metric j satisfies eq. (3;4‘)
177 an {F;(x)} 1t has the form (3.7). ' | .

Now we want to solve just the opposite problem of the one
stated in proposition 3.3, l.e., we are going to find all S—trans—
ports along a given smooth curve which are consistent with a
gilven metric. . ’

It is not difficult to see that the matrix W{I} appearing
in (3.6) defines in {E (z)} the action of the S—diffelentiation
DS along {: J—>M on any C‘I tensor field ’776 77,’ (M)
and so the S—transport along )’ . In fact, if 77" 'f’(x)
are the local components of T at xe )’(,7'/ s then folldoiwing the
derivation of (3.5) (see also[4]), we find the local components

of D ‘77 at x =z y(s)se]:

(.13 - (D;'.T‘r[,)) ) = 0(77;:;:()/(5)}/0(5' -

15



? =
A2 W T

b=1 k=

- (¥is)
T LON

-

From where (seé also (3.8) and E4] ), we get the following expli-

cit expression for the components of S)f’;e)—"llﬂ T'()’(s',)
(cfe (3.10) ana (3.7)f

¢

- lp
( Yise )—9)’1’) Tl(ﬂ ')))J . '11

(3.14)

k*k,
¢, ~ty

,-.,k,---lz |
X f()’(&)) s,,5€ 7,

From the above we infer that the problem of f£inding all
S.transports consistent along some ourve J’ with a given metric
is equivalent to the solution of eq. (3.6) along J with
respect to W .

Proposition 3.,4. Let [ ° T—=M tvea ¢! curve, g ve
a C't metric (which may be defined only on  J(J) ) represen-
ted in {E“(Z)} by G(x) whose number of positive (or negati-

_ve) elgenvalues does not depend on X , D(x) be any fixed
orthogonal matrix such that [1]

1) DTlx) 62 Dx) = Gi):=liag(8,0y - -y 3te)) | D=0 ():

where j{ (x} #0 are the elgenvalues of G-(-’Cj and
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Gae Klrs)==D Tots) S50 o =K Tres), se 7.
Then, all S—transports consistent with the metric g

are defined 1n {E7(x)} by the matrix W), X€X(T)  (see

(3.14)) which 1s obtained by the equality ’

o W=D (Plx)+ QEIER R =~
= D) PE)+ R ) D7) + Dix) Qi) i) G 1)

where P is syinmetri.o, G.) and R are bskewsymmetric matrices
(PT P @ --Q RT‘ "R) whose components are! 1f the values
of ¢ and J#’t are such that 07{ (x).g.g/lx/ 0 - , then
Q(, (x):=0 ana Rgjix)i= =K¢j (x}/2j¢ x) for a.ny pa.:.r {
and J for which J, lll-!-jj (x)] #0 we have P{/ (x}“ T

;:_Kd[x]/[;t(z)-tj/ (x)] and RU [x):= =0y ; ‘the other" components of

(x} and Q (x} can be chosen arbltrarily only if the condi-
ttons PT=P , @™=-Q ana R Pe-R are fulfilled. '
Remark.' It is easy to see that 1if Jixl+ g (x) # 0

for every ( and j (of such a type are all Euclidean metrics),

then (3.17) can be put in the form

Gae) W =Y, (x)+ W, 6(x), xert7),

7
where M(X}:z‘m (JC/ 1s an arbltrary skewsymmetric matrix and
W,(JC)': W;W[x} 1s any fixed symmetric solution of (3.6) with
respect to W, e.g., one can take (see [1] , ch. 12, §13 )

(3.192) M(x/=ﬂ%p(élxlf/} if[x/(%f(é{x}ﬁ}dzc)x:}’[s},56.7.
0 |
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Evidently, a necessary and sufficient condition for the
exlstence of the representation (3.18) is the“ eﬁstén;:e of a
symmetric solution M=MT of eq. (3.6) with respect to M.
Using the method, applied below inl the prbof of hr;ﬁosition 3.4,
one can prove that such a solution exists iff for any palr ¢

and j for which yf-lz}};;u}:D simuitaneously 1s satisfied
and the equality K ;(x)=0 . If this is the case and such ¢

and J exist, then the integral in the right-hand side of (3.16)
dees not exist[1] and 'M(z} may be taken, e.g., as

Gagn) W) =Dle) W) D) | x el (7),

_where the coml;onénts of M(Z) h/; (l) are! (kf (Z)),j =

i= K (x)/{j{u/*j,(x}] 12 ¢ and 4 are such that y,(z/f
-fjj(z,#Oa.nd {V[z})—- are a.rbitra.ry for any '¢ and / for
vhich g lz)+;’(x)-l(”(x) =0. , 7 '
Proof. In faot, we have to prove that (3.17) 1s the general
solutlion of eq. G. 6) with respect to W along Y .
Multiplying (3.6) by )’ Tlr(s)) £rom the 1left ana by D(ﬂ’)}
from the right, ve get

~ ’\'71
(3.20) @W“’W

-~ N
Y -nT SR o
where M/'_-,:D WD and here, as well as below, we omit the
common argument . J(5) of all quantitiles. ’
Due to (3. 15) eq. (3.20) in component form reads

(3.20") {‘j i‘;‘/ .W;( = k{j

(do not sum over { and /7 ).
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Let us :[‘.n'st conslder a11 pa.irs f and j for which 7 tj =0.
For them (3.20%) reduces to J{ (W(, M{) Kf/ s 50 by

using the identity W, 27 (M/ 3 M{) ‘(M! M() we see

that for these pairs eq. (3 20') defines only the skewsymmetric

part of ir B l.esy w- P“ +RU t QU‘Z// /J --kll/zi-'
= 'R_” ) s the quantities f{j :_EI»(- being

arbltrary and U % 'Q” =V. ) ]
Let Qs now consider all palrs ¢ . and 4 for which j{% #0.
In this case, we define the quantities P,‘, :-ij’ (1.e., the -
ot s p=p7? P..19.P-. =k -
remaining components of P=P ) by j( FIJ +jj Bf{ = K(J .
i.e., as o symmetric in ¢ and J solution of (3.20), so
Lard
g ::K;j/(j,%jj):f'j{— . Then, putting ia (3.201) W,‘_,‘ =
f C+ Q jj s We obtain that the only restriction for Q”
is to be skewsymmetric, i.e., @;J :-ng « Thus, we der;l.ve_
Ay
r‘j --Ef.l + R(, + @,,yj wnere by definition R j{--—o,
From the above we derive W P+R+ QC to be the
general solution of (3.20) with respect toW . But then
W‘ D*P/'iwp-l DWD' 1s the same W as it 1is given by
(3.7) and consequently it is the gemeral solution of (3. 6) with

respect to W

4. CONCLUSION

In the present paper we have investigated from a general
viewpolint some important problems concerning the task formulated
in Sec.l for consistency of metrics and I-transports (and S-
transports as their special case). In our opinion, all this is
essential in connection with the existing and possible applica-
tions of the theory of linear transports of tensors along

curves.
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.

From the standpo;lnt of the theoretical developments of the
considergd in this work ideas we want to pay attention to the
following problem who‘se evident ﬁpecial case we have studied in
the present worke. 7

Let

, . : |
(4.1) @y * Tf'z,lx(M}®“"@T ) 7m{" M) —[R, zell

be a multilinear (m—linear} mapping of m tensor arguments. We
shall say that @ 1s consistent with the I-transport Ix——)g
along )’ JT—M, X, € y(J/) 1if for any tenmsors

QT 677 I,,_ {H}a- ,.., m is satisfied by the equality (cf. (1.1))

(4.2? wx (iTx;"‘ﬁ 771)=

= AJ(I{ 77 ‘f__,""ﬂ)’_x,;er(j),

Here; for 1nstance, one can state the following problems- ,
to be found neccessary and/or sufficient condltion for conaistency
of I-transpoiris and maps W ; to be found all naps & (resp.
I-transports) which are conslistent with a given I—transport“ o
(resp. a map & ) and so on. It 1is nof diffiéult to see that
all such problems dan be investigated and solved by an evideﬁt
generalization of the developed in the present work methods, but
this 1s an 1tem of another article.

At the enﬁ we want to mention that in some cases . the

following definition may turn out to :be useful (cf.Definition

1.1):
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Definition 4.1. The I-transport Ir and the metric j
will be called scalar consistent (resp. along /1.7-—7M ) if

for any curve ) (resp. only for ¢ ) we have
(4.3) x__)ﬁ (j:((#x; 1/} j; z—ay”"' Ix.—)yg )
for every #Ax,Bx éWx [M/; X, 7€ f{f/-

Let us compare definitions 1.1 and 4.1.
It £,:¥(T7)—>B  then aue to the linearity of ‘an
s - )« .
1 __}y(ﬂ(x//~;{;(x} Tesylt), 2562070,

I-transport [ 5] we have
i. Cey

r ' ,
(4.4) Ixay )f,(x/ = 4(7;1:3’//.:&/ ’
where the two-point soalar function ‘(j, x;f/-:l‘i’__;; (1)
uniquely defines the I-transport of scalars. from the basic

properties of the I-transport [5] one can easily derive that
(ef. (2.2) ana €2.3))

(4.5) {,(x,x;)’j:_{ , xell7),
(4.6) h(z,%57)=h=z,95040,%;Y), x,52¢r(T)
from whéi‘e there follows (see Lemma 2.1 and its proof ., where one
has to write h for {{ ana / for F )
, Lemma 4.1, The function /v(j,xj}‘/ defines an I-transport

of the scalars along )}/ 1ff there exist -/'),. )’{]‘}-—QR\ {0]
which may depend on )’ , such that

WD i, x5r) =Ly , Plast):=f ) , x5 7).

This result along with (4.4) shows that (4.3) is equivalent

(4.8)  Lles)g, (42,82)=F(354)3, (I’{-v A, 10 >y bx)
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and hence we derive the searching connectlon between the defini-
tions 1.1 and 4.1 in the form of
Proposition 4.1. If the metric g and the I-transport 'Ia,

are scalar consistent (may be along )/ ), then the metric
5'::f,j and the I-transport Ir are consistent (resp.
along Y ) and on the opposite, if the metric g and the I-

transport Ir are consistent (resp. along ¢ ), then the metric

i‘zé"j and the I-transport Ir are scalar consistent
(resp., along b ).

This propositlon shows that any result concerning the
conslstency between me‘trics and I-transports may be put into -
an equlvalent form concerning the scaldr consistency between
others but eqﬁivalent to the initlal metrics and the same

I-transports and vice versa.

Evidently, the concepts of consistency and scalar consistency

between metrics and I-transports coincide if and only if
h(y,%;7)={ or equivalently iff £y = oonst eR\fof (1.e.,
,,[}(r()’)} :C(H where C'()’IGR\{D} may depend only on ) ). It is
important to note that due to proposition 3.6 from [4] this
condition is satisfied far any S-—transport, but the opposite

statement is not true (see, e.g., Proposition 3.2 from [5]).
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