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1 Introduction 

In this paper we analyse the computational expences for solving the 
two- and three-dimensional magnetostatics problems in the incomplete
nonlinear formulation [19]. We outline the computational strategy which 
leads to the almost optimal numerical algorithms which are also highly 
parallelizable. The rigorous justifications of the computing characteris
tics for the proposed solvers can be found in [16, 17, 18]. The recent 
developments in the numerical investigation of the coupled elliptic prob
lems have been done in [7, 11, 14, 16, 17, 23, 28]. Some aspects of the 
approximation and iterative solution of the nonlinear boundary value 
problems (BVP) have been considered in [7, 17, 24]. 

Here we consider the algorithms based on the natural boundary reduction 
of the original nonlinear BVP in the combined formulation to the non
linear interface problem defined on the interface boundaries (skeleton). 
This skeleton defines the multidomain decomposition of the unbounded 
domain. The basic tool of the iterative substructuring algorithms have 
been developed in [4, 5, 8, 13, 16, 22] (see also references the~ein). 

Let n = U~1 n; E Rd, d = 2, 3 be a Lipschitz domain with the boundary 
r 0 , which is partitioned into M 2: 1 subdomains n; with Lipschitz bound
aries f; = an;. The exterior domain we denote by n0 = Rd\(!. When 
using two scalar potentials for solving the stationary Maxwell equation 
[17] the following quasi-linear elliptic BVPs arise: 

Problem D. Given '11; E H-1!2 (r;), find u; E C 2 (n;), such that the 
equations 

A;u; : = div (J-t;(x, j'vu;I) ·'vu;)= 0 on n; 
[u]r; = 0, [8,,u]r; = W; on f; 

lu(x)I = O(lxl-") as !xi-+ oo, v 2'. 1 

hold Jori E 10 = {i: i = 0,1,···,M} □ 

(1) 

Here 8,, is the operator of conormal derivative, [·]r; is the jump of the 
corresponding function accross the boundary f; and µ;(x, t) for i E Io 
are the given material functions with properties : µo = l and for i E 11 = 
{ i : i = 1, ... , M} the following inequalities · 

µ;(x,t) • t - µ;(x,r) · r 2: m;(t-r), t 2: r, m; > 0 (2) 



lµ;(x, t) · t - µ;(x, r) · rl :::; Mdt - rl (3) 

hold for almost all x E f2; and for all t, r E [O, oo) with some given con
stants M;, m; > 0. 
Note that some specific choice of the function µ(x, lv'ul) and modifica
tion of jump conditions lead to the potential equations for subsonic flow 
with weak shocks [3] or to a shape design problems [21]. 

We further restrict ourselves by the case µ;(x, lv'ul) = µ;(lv'ul) and 
define one global function µ(x, lv'ul) by the equation 

µ(x, lv'ul) = µ;(lv'ul) for x En;, i E Io (4) 

Besides we consider the typical data for magnetostatics with 11\ = 0 for 
i E 11. 
The remainder of the paper is organized as follows: In Section 2 we de
fine the weak formulation for the full nonlinear BVP (1) and describe 
the corresponding weak incomplete-nonlinear formulation [19]. Then we 
introduce the natural boundary reduction for the above formulation as
sociated with trace space on the skeleton r = U{',;1 f; equipped with the 
energy norm. In Section 3 we briefly discuss the mapping properties 
of the nonlinear interface operator and derive the appropriate Galerkin 
equations for the interface problem. In Section 4 we formulate the itera
tive schemes for solving this Galerkin equation and give the asymptotic 
estimates for computational work and memory needs, underlining the 
parallel structure of algorithms. We present some graphics illustrating 
the typical behavior of the magnitostatic scalar potential when moving 
off the border of nonlinear medium and in Section 5 we draw some con
cluding remarks. 

Acknowledgements. The second author expresses his sincere gratitude 
to Prof. Dr. W. L. Wendland and Dr. G. Schmidt for helpful discussions 
of the problems closely related with treatment of the Poincare-Steklov 
operators. The authors appreciate to Dr. G. Mazurkevich who kindly 
put at their disposal the results of 3-D magnetic field computations. 

2 Nonlinear interface problem 

Let us define W(n) = H1(f2) for d = 3 and W(n) = {u E H1(f2) 
(u,g0 ) = O} ford= 2, where g0 is the Robin potential on r0 = an [26]. If 
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we introduce the Poincare-Steklov operator S01 
: H 1l2(f 0 ) --t H-1l2(r 0 ) 

associated with the Laplacian in the exterior domain f20 [1], then the 
weak coupled ·formulation of the Problem D reads as follows: 
Problem C Find u E W(f2) such that 

M J d au av 
L Lµ(x, lv'ul)-a. -a dx + (s;;-1u,v) = 
·-1 k-1 Xk Xk ro •- n, -

(5) 

= (w,v)ro' Vv E W(f2). 

Note that the equation (5) is uniquely solvable in W(f2) for any W E 
Y*(f o) [17], where 

{ 
H-1l 2(r o) 

Y*(f o) = u E H-1/2(ro) : (u, 1) = 0 
for d = 3, 
ford= 2. 

Let us consider the problem (5) in the incomplete-nonlinear formulation 
which have been proposed and investigated in [19]. The idea is some 
averaging procedure in any subdomain f2;, i E 11 for the approximation 
of nonlinearity in (5). The corresponding weak formulation reads as 
follows: 
Problem IN Given '11 E Y*(f 0), find ii E W(f2), such that 

M 

rµ;(ii) J v'ii-v'vdx + (Sa1u,v)ro = ('11,v)ro VvEW(n) (6) 
•=1 n, 

where the unknown constants ji;( u) depending on the desired solution ii 
are defined by 

[ 
1 J ] 1/2 µ;(ii)= µ;(r;(u)), r;(u) = g; IVuldx (7) 

n, 

with g; = mesf2; for i E 11. 
Note that one can assume /1;( t) = /Li = const > 0 for some indices i 
with corresponding simplifications. 

The argument r;(u) in (7) is the average value of the gradient !Viii in 
f2;, i E 11 , where ii E H 1 (f2;) is the harmonic extension (in a weak sense) 
of u; = u1i'i into f2;. So one can easily obtain the boundary reduction of 
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(6), (7). In fact, if we introduce the "interior" Poincare-Steklov operators 
s;1 : H 112(f ;) --t H-112(f ;) associated with the Laplacian inn; for i E 11 

and define the trace space Yr:= {u = u1r : ii E W(n)} on r equipped 
with the norm 

llullYr = _inf llullw(n), 
u1r=u 

(8) 

then the desired nonlinear interface problem reads as follows: 
Problem INI. Given WE Y*(f0 ), find u E Yr, such that 

M 

(Amu, v) := L µ;(u)(S; 1u;, v;) + (So1 u, v)ro = (9) 
i=l 

= (w, v)ro 

where µ;(u) = µ;(r;(u)) with · 

Vv E Yr, 

[ 
l ] 1/2 

r;(u) = g; (S;1u;, u;) , i E 11. D (10) 

Let µ; > 0 be some given positive constants for i E Io and µo = l. For 
the efficient treatment of the problem (9), (10) we introduce following 
[14, 16, 19], the auxiliary linear interface operator Ar : Yr --t Yr defined 
by the associated bilinear form 

M 

(Aru, v) = L µ;(S; 1 u;, v;) Vu,v E Yr (11) 
i=O 

This operator is continuous, symmetric, positive definite and defines the 
equivalent "energy" norm in Yr (16] 

llullA = ( (Aru, u) )11
2 Vu E Yr. 

3 The approximate interface problem 

The mapping properties of the nonlinear operator Am : Yr --t Yr 
defined by (9) have been developed in [19] and further in [14]. In what 
follows we shall use only the following statement. 

Lemma 1 {19} Under the conditions {2}, {3} the operator Am: Yr --t 

Yr is Lipschitz continuous with the constant 3Mo and strongly monotone 
with the constant mo, where 

M0 = rpaxM;, m0 = rpinm; > 0 D 
•Eli 1El1 

. 4 
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Remark 1 Under some additional assumption about the solution smooth
ness for the Problem C the fallowing estimate 

llu6.11Yr ~ c(u) · rpax(diam n;) 
iEli 

holds {19}, where U6. is the difference between the solutions of the equa-
tions {9} and (5). □ 

We now consider the boundary element Galerkin method for the approx
imation of (9), (10). 

Remark 2 We further restrict ourselves for brievity only by the two'
dimensional case. Our construction can be easily extended on the case 
d = 3 which will be considered separately {see also Chapter 5). □ 

Let W h C W(n) be some regular finite element space on n of piece-wise 
linear ( or bilinear) elements associated with corresponding triangulation 
(or qtiadrangulation) of the domain n. We assume this triangulation 
being correlated with the decomposition of O = Uf',;1 O; such that Y h = 
Whir C Yr is the desired Galerkin subspace of Yr- The subspace Y h 

generates the corresponding Galerkin scheme for (9), (10) 

uh E Yh: (Amuh,v) = (llt,v) Vv E Yh (12) 

BEM-Galerkin approximation of the operator (11) can be constructed 
by the similar way. We refer to the corresponding finite-dimensional op
erators as A~ and AjN. Both Galerkin schemes are uniquely solvable 
and admit the standard error analysis (14, 16, 19]. On this way the Lax
Milgram theorem and Lemma 1 can.be applied. 

Of course, above mentioned naive Galerkin schemes have well known 
practical rectrictions, but they conserve the properties which are crutial 
for the analysis of the cost-effectiveness for further developed iterative 
methods. In fact, it can be shown that the h-harmonic extensions (as
sociated with W h) of the elements from Y h into the interiorities of the 
n;, i E 10 lead to the boundary operator spectrally equivalent to A~ on 
Y h (i.e., by using the Schur complements in sub domains) and so to the 
same convergence properties of the iterative schemes. 

As a result, our further conclusions can be easily extended on the case of 
direct approximations of the Poincare-Steklov operators [25]. But here 
we omit some purely technical details . 
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Fast iterative ·solver for (12) and its ef-
ficient implementation . 

For fast solving of the equation {12) one can use some iterative methods 
with preconditioned operator A1N· The linear operator A~ is a good 
candidate for such preconditioning, as well as any spectrally equivalent 
to A~ operator B. Let us formulate the convergence result for the first 
Richardson method [6, 19]. 

Theorem 1 Let under the conditions {2}, (3) the constants MN, mN > 
0 are defined from the iequalities 

(A1Nu - A1Nv, u - v);?: mN(A~{u - v), u - v), {13) 

IIA1Nu - A1Nvll},: :S Mi,(A~(u - v),u - v) 

which hold for all u, v E Y h, with some given constants µ; > 0, i E / 0 • 

Then the iterations 

(Ah Un+l - Un ) _ 
r ,v -

T 

= -(A1Nuh,v) + ('11,v)r0 , Vv E Yh 

(14) 

converge for all T E (0, 2Mi/) to the u~ique solution uh of {12} with the 
rate 

h rqn h II llun - u llvh :S 1 ..:_ q IIAINuo v,: (15) 

for any uo E Yh, where q = max(l - rmN, 1 - rMN). □ 

Clearly the constants mN and MN can be chosen as independent upon 
the mesh size h and one can substitute in (14) instead of A~ any easily 
invertible operator B, spectrally equivalent to A~. Such operators have 
been constructed in [16]. In this way for the reduction of the residual in 
{12) by the factor c: > 0 

QR = log c-1 
• 0( Q(B-1

) + Q(A1N)) . {16) 

arithmetic operations are required with storage needs of the order 0( dim Y h)• 
Here Q(·) denotes the expence of matrix time vector multiplication for 
the corresponding finite dimensional operator. 
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When using the Newton's type methods for solving the equation {12) 
(this method have been analysed for this formulation in [19]) the corre
sponding computational expences QN can be presented in the form 

QN = iog(logc:-1
) • o( Q([A~1',J-1

) + Q(A1N)) (17) 

where A~N is the Frechet derivative of the operator AIN. In both cases· 
one can put c: = 0(h-"), u > 0 and so the dependence of QN from 
c: > 0 can. be neglected. The same holds for QR if the process {14) is 
implemented on a sequence of grids with u :S 3/2. Besides, the first 
term in the right hand side of {16) can be really neglected in cqmpare 
with the second one (see the details in [16]) for special constructions of 
the preconditioner B. Both terms in (17) are compatible in the order 
of magnitude. Finally it turns out that the computational expence for 
solving of the equation (12) in framework of above mentioned iterative 
schemes is really proportional to the magnitude Q(A1N) when omitting 
the double logarithmic factor log log h-1

• 

For fast computations of the residual in (12) let us consider the special 
algorithms for rapid computations with Poincare-Steklov operators on 
the triangular domains which have been recently proposed in [18] .. To 
that end we restrict ourselves by the regular partitioning of fi = u[',;1 fi;, 
where !l;, i E 11 are either rectangles or rectangular triangles and the 
artificial boundary r O is also rectangular boundary. We further assu.me 
for clarity that N = ( dim Y htr ) for any i E 11 and the spaces Y hir. are 
generated by the uniform meshs mi any f;, i E 11• Let M = MR +'Mr, 
where ·MR and Mr are the numbers of rectangular and triangular sub
domains, respectively, with the corresponding splitting 11 = IR U fr. 

Now we are in a position to apply special algorithms for fast treatment of 
Poincare-Steklov operators Si1 in subdomains to construct some asymp
totically almost optimal procedure for computating the residualin (12). 
In rectangular sub domains we· can utilize the method for partial solution 
of the discrete Laplace equation on the rectangular domain [2] with a. 
cost estimate of the order 0(N log2 N) for any i E IR. For the triangular 
subdomains D;, i E Ir one can us~ the special algorithm proposed in 
[18] with expence of the order 0(N log3 N). So the matrix~vector mul
tiplication for the ·total operator A1N with above proposed approach for 
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tr~atment of the cor~esponding subproblems can be done by 

Q(AjN) = N · log2 N · O(MR +Mr· logN) (18) 

arithmetic operations. Due to above arguments the same estimate holds 
for the magnitude Q((AjN)-1 ). · 

Note that computations of the residual in (12) as well as inverting of the 
preconditioner Bin (14) can be done in parallel with the number of par
allel tasks equal to M. The only exclusion is the transfer of information 
between substructures on the stage of solving the coarse mesh problem 
when performing the action B-1 . 

Remark 3 The treatment of the operator S01 can be performed with 
asymptotic expences of the order 0( N log3 N • (log log N)d) for d = 2, 3 
by using some special decomposition of the unbounded domain n0 = Rd\n 
{20} with M 00 = o[(loglogN)d] subdomains. □ 

Note that though the number M00 slowly grows with respect to N (see 
above Remark), in practice it is "almost uniformly bounded" due to real 
behavior of the magnetostatic scalar potentials as lxl -+ oo. We mean. 
the fast damping of the field components when moving off the border of 
the magnet. ' 
There is another opportunity for enlargement of the coarse mesh which 
defines the basic decomposition of the domain under consideration. Let 
the nonlinear magnet medium be space extensive along z-axis (for in
stance). Then the most meaningfull analysis of the field components 
has to be done in the vicinity of the magnet border. So the field un
der computation becomes "almost two-dimensional" when moving off 
magnet border. Here we present in Figures 1-3 the graphs of the three 

components of vector B. being the induction of the magnet field for di pol 
superconductor magnet which have been numerically investigated in [29]. 
In this way B (x) = -v'u(x)+ Bo, x E n0 • The detailed description 
of the magnet design and the corresponding calculations can be found in 
[29]. Here we demostrate only that the field is almost two-dimensional in 
the neighbourhood of the point z = 0 (the center of the magnet) being 
really three-dimensional in the vicinity of the magnet border (z = l8h). 
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5 Concluding remarks 

The above proposed computing strategy for calculations with iterative 
substracturing methods in quasi-linear elliptic problems of magnetostat
ics leads to the asymptotically near optimal algorithms with respect to 
the operation· count and memory needs. These algorithms are highly 
parallelizable. 
The cost estimate (18) can be extended on the three-dimentional case-if 
we set in (18) MR as a number of parallelepipeds and MT as a number 
of rectangular prisms (with the rectangular triangle in the base cutting) 
which define the decomposition of 110 having also the parallelepiped type 
boundary. Omitting the thorough justifications, we orily note that for 
such kinds of subdomains the three-dimensional counterparts of the fast 
algorithms for the treatment of the Poincare-Steklov operators can be 
applied [18]. The alternative approach for the fast matrix multiplication 
in BEM by panel clustering have been developed in [9]. 

The crutial point for our approach is the well developed efficient precon
ditioning techniques for linear elliptic operators with piece-wise constant 
coefficients for d = 2, 3, including the case with degenerated substruc
tures [10]. This ·allows to extend our approach on the class of nonquasi
uniform decompositions. Some additional flexibility can be achieved by 
incorporating the nonconfo~mal substructuring techniques. Note that up 
to day app~oaches for the construction of the wide range programming 
systems for the elliptic problems have been considered in [15]. 

To complete this item we note .that some numerical results for the case 
d = 3, M = 150, MT = 0 and finite-difference approximations of the 
Poincare-Steklov operators have been performed in [20] .. These results 
confirm theoretical conclusions about the asymptotically quadratic grows 
( only!) of the computing times while twice decreasing of the average mesh 
size h for the three-dimensional problems. 
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