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1, Introduction 

Recently several papers have been published on invariant measures for dynamical sys­
tems (DS) defined by nonlinear partial differential equations [1-5]. In paper [1] that 
measure is constructed for the periodic problem for the nonlinear Klein-Gordon equa­
tion and in paper [2] the similar construction is performed for a certain physical sys­
tem. Unfortunately, in paper [1] some important steps of the proof are omitted. In 
the author's paper [3] the invariant measure is constructed for a nonlinear Schrodinger 
equation (NSE) under some strict assumptions on the nonlinearity. Partially these 
difficulties are avoided in paper (4] where the power nonlinearities are admissible. The 
next author's paper (5] contains simpler approach to the same problem. The nonlinear 
wave equation is considered. However, as it is remarked, one can easily apply this 
technique for the investigation of NSE. 

Invariant measures play an important role in the theory of dynamical systems. It is 
well known that the whole ergodic theory is based on this concept. On the other hand, 
they arc necessary in various physical cosidcrations. In paper [6] they are used for the 
construction of the statistical mechanics corresponding to the NSE (however the proof 
of the invariance is not presented). Similar considerations are made in papers [7-10] 
where the Kubo-Martin-Schwinger states are constructed but without the proof of the 
invariance, too. · 

For the author, the first point which directs him to this investigation was the so­
called Fermi-Past-Ulam phenomenon consisting in the return of an arbitrary trajectory 
of the DS defined by any "soliton" equation to the initial data with time with an 
arbitrary accuracy (see [11-13], for example). Using the finite invariant measure one 
can apply the Poincare recurrence theorem which explains this phenomenon. 

In the present paper we consider the abstract Hamiltonian system introduced in 
paper [14] for the investigation of the soliton stability. In particular, a wide class of 
the "soliton" equations to be studied later for application admits this representation. 

2. Notation. Basic results 

Let Y C X be real Hilbert spaces with the scalar products ( , )y and ( , )x and the 

norms ll9IIY = (g,g)? and ll9llx = (g,g)} respectively, satisfying the condition 

ll9llx ~ C ll9IIY 
with C > 0 independent of g E Y. Let Y be a dense set in X. Let X1 C X2 C ... C 
X,. C ... be a sequence of finite-dimensional subspaces of Y, dim X,. = d,. < oo , 
and let LJ X,. be a dense set in Y. Let H be a 0 1 functional on Y with real values and 

let J : X* --+ X be a (generally unbounded) linear operator defined on the dense set 
D C X* with 

g(Jh) =. -h(Jg) 

for any g, h e D where g(h) is the value of g e X* of h e X. It is clear that any 
g e X* belongs to Y*. 

Consider the problem 

u(t) = JH'(u(t)), t ER, (1) 
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u(to) = if, EX. (2) 

Here the dot means the derivative with respect to t, to E R and u(t) is the unknown 
function. In addition we consider the sequence of finite-dimensional problems 

u"(t) = P .. [J H'(P .. u"(t))], 

u"(to) = P,.if, 1 

where Pn is the orthogonal projector onto X,. in X. 

t ER, (3) 

(4) 

It is obvious that P,:X* is the adjoint space for Xn if P,: is the adjoint operator for 
P,. on X. We assume that J is defined on any x: and 

P,.J = JP,. (n=l,2,3, ... ). 

Remark l 
As it is well known, the norms II llx and II IIY are equivalent on any X,.. 

We denote I = [to - T, t0 + TJ for any T > 0, to E R and by C(/; B) the space of 
continuous bounded functions from I into B with the norm llg(t)llc(J;B) = sup llg(t)lln, 

IEJ 

where B is an arbitrary Banach space with the norm II lln• By the above assumptions 
the operator from the right-hand side of (3) is of the class C1 as the map from X,. into 
X,.. Hence, for any if, EX there exists T > 0 such that there exists a unique solution 
of the problem (3)-(4) of the class u"(t) E C(J; X,.). 

Remark 2 
In particular, the above solution u"(t) belongs to C(I; X). 

Assumption 1 
Let u"(t) be defined for all t E Rand for all if, EX. 

Definition l 
Let for any if, E X there exist u(t) E C(/; X) such that there exists a sequence 

u"(t) converging to u(t) in C(J; X) for any /. Then, we call u(t) the solution of the 
problem (1)-(2). 

Assumption 2 
Let there exist a m1ique solution u(t) of the problem (l)-(2) for any if, EX. 

Assumption 3 
Let for any t0 E R, E > 0, T > 0 there exist 6 > 0 such that 

llu;(t) - ti;(t)llx < E (n=l,2,3, ... ) 

for any two solutions of equation (3) such tl1at 

!lu;(to) - ti;(to)llx < 6 

and for any t E J. 
·,, 
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Corollary l 
For any t0 E R, E > 0, T > 0 there exists 6 > 0 such t~at 

llu1 (t) - u2(t)llx < £ 

if 
llu1(to) - t12(to)llx < 6 

for all t E J and for any two solutions u1 and t.12 of the problem (1)-(2). · 

Now we briefly remind the genera.I construction of a Gaussian measure on a Hilbert 
space (for details see [15-17]). For a Hilbert space consider X. Let {e1,} be the or­
thonormal basis in X which consists of eigenvectors of some operator S = S* > 0 with 
corresponding eigenvalues {,\1,} (k = 1, 2, 3, ... ). We call a set MC X the cylindrical 
set iff 

M = {x E Xl[(x,e;,)x, ... ,(x,e;m)x] E F} 

for some Borel set F C Rm , ·some integer m and ji is not equal to j, if i is not equal 
t.o l. We define the measure w M follows:" 

m 

m m ½ / -D: ,\;,,r 
w(M) = (2·nr 2 II\, e ,_, dy • 

1=1 F 

i 
where y = (Yi, ... , Ym) E JlJ,, and dy is the Lebesquc measure in Rm. One can easily 
verify that the class A of all cylindrical .sctR is an algebra on which the function w is 
addit,ive. Tbe function w is called the centred Gaussian measure with the correlation 
operator s-1 on X. The basic result is as follows: 

Statement 
The measure w is a-additive on the algebra A iff s-1 is a nuclear operator. 

Jf the measure w is a-additive on A one can rnntinue this measure to the minimal 
a-algebra M containing A using 11tandarcl methods. In fact, M is the Borel a-algebra 
of X (Ree [15--17]). 

Afisumption 1 

Let Jl(u) = ½(Su, u)x + g(u) wh<'r<' .'i* == S > 0 iR the (unbounded) operator on 
X mapping Xn into X,. (n = I, 2, :i, ... ) and g(1i) iR a continuous real functional on 
X. Let s-1 he a nuclear operaf.or on X. 

J.)efi nitiou 2 
W<' denote by /(if,, t) the function from X into X mapping if, into u(t+t0 )1where u(t) 

is a solution of the problem (1)-(2). Hy analogy, let fn(<P, t) be the function from X into 
.X., mapping if, EX into un(t +t0),whcre un(t) is a Rolution of the problem (3)-(4). It is 
dear that/(¢,, 0) = ¢,, /(/(if,, r), t) = /(¢,, t + r) and fn(if>, 0) = P,.if,, /.,(/.,(¢,, r), t) = 
f.,(,fi, l + r) for any ,$ E X, t, T E /l. So, we call f and f,. the dynamical systemH 
(DS) on the phase spaces X and X,. , reRpectivdy. We call a Borel measureµ on X 
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the invariant measure for DS / ifI µ(U) = p(/(n, t)) for any Borel set n C X and t E R. 

The basic result of this paper is the following: 

Theorem 1 
Let Assumptions 1-4 be valid and let µ be a Borel measure on X defined for any 

Borel set n C X by the rule 

µ(n) = / e-g(u) w(du), 

n 

where w is the centred Gaussian measure corresponding to the correlation operator 
S.,;1 . Then, µ is the invariant measure for DS /. 

Remark 3 
Since we do not claim the boundedness of the functional g, generally the measure 

µ is not finite. It is not difficult to formulate the conditions for the finiteness of µ. 
For example, µ is a finite measure if g is bounded from below in addition' to the above 
assumptions. 

As we will see further, Assumption 3 makes the class of nonlinearities of the admis­
sible partial differential equations very narrow. So, we present one more result which 
helps to prove the invariance of the measure µ for a more wide class of nonlinearities. 

Let JlN(u) = ½(Su,u)x + gN(u) (N = 1,2,3, ... ). Consider the sequence of the 
problems 

uN(t) = J H~( u(t)), t E R, 

u(to) = rp E X. 

(5) 

(6) 

Let for any N the Assumptions 1-4 be valid for the problem (5)-(6). We denote solu­
tions of this problem by UN(t). 

Assumption 5 
Let G(u) be a real functional on X such that e-gN(u) converges to G(u) for any 

u E X when N tends to oo. Let for any rp E X uN(t) tends to some u(t) when 
N -+ oo in X for any </J E X and t E R. Then, one can call u(t) the solution of the 
problem (1)-(2). So, DS f will be defined in this case, too. 

Theorem 2 
Under Assumption 5 the measure JL(H) = f G(u)w(du) is invariant for DS /. 

n 

Remark 4 
In each situation, one should verify that the measure JL is non-trivial, i.e. that µ is 

not equal to zero for any set. In pa.rticula.r, in the caae of NSE tha.t proof was made in 
paper (4]. 

4 
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3. Proof of theorem 1 

Since S maps X,. into X,. there exists an orthonormal basis { e1c}- of its eigenvectors 
with respect to the product of the space X with corresponding eigenvalues {.\r,} (k = 

dB , 

1,2,3, ... )suchthate1,, .. ,e4
0

isthebasisofX,.foranyn. Letu"(t) = E a1c(t)e1c, h(a)= 
/,=l 

d. 
H( E ake1c), where a = (ai, ... , ad.) and let J,. be the matrix of the operator J from 

h=l x: into X,. in the bases {eZ} and {e1c},where {eZ} is the dual basis to {e1c}. Then, 
J! = -J,. and the problem (3)-(4) takes the form 

a(t) = J,. "v .. h, 

a1,(to) = (rp, e1,) (k = 1, 2, ... , d,.). 

(7) 

(8) 

Then, Rd• is the phase space for this problem. We use the following result. Consider 
a dynamical system of the form · 

z = f(z) (9) 

where z = z(t) E R' with some integer r and a smooth function / = (/1, ... , /,). Let 
for any Borel set C C R' 

p(G) = f A(z) dz, 
C 

where A(z) > 0 is a smooth function and dz is the Lebesque measure in R'. Then, the 
measure pis invariant for the system (9) if£ 

, 8 L -(A/;)= 0 
i=l OZ; 

for all z. (For the proof, see [18]). 
Using this result one can easily verify that the Borel measure 

d dn. dn 

,!a. n l / -t L A•a.l -g(E a•~•(:,;)) 
µ~(A,.) = (211')- 2 II A: e •-1 , lal da 

Tc=l A 

is the invariant measure for the problem (7)-(8). Also, we introduce the meaaures 

.... 
4,,. dn l / -l L A1al 

w~(A) = (211'r 2 II A: e 
2 

1-1 da. 
Tc=l A 

d,. 
Let n,. C x,. and n,. = {u EX lu = E a1ce1c, a E A}.where AC R;.n is a Borel set. 

h=l 
We define µ,.(U,.) = µ~(A); by analogy, w(O,.) = w~(A). Since µ~ is the invariant 
meaaure for (7)-(8), µ,. is invariant for the problem (3)-(4). 

Although w,. and µ,. are the measures on X,. we can define them on the Borel 
o--algebra of X by the rule: w,.(n) = w,.(n n X,.) and µ(U) = µ(On X,.). Since the 
set {l n x,. is open 118 a set in x,. for any open set fl C X I it is correct. 

5 



Lemmal 
The sequence { wn} weakly converges to w in X. 
Proof 
Since s-1 is a nuclear operator , the trace Tr s-1 = E A;;1 < oo. It is clear that 

k 
there exists a continuous positive function p(x) defined on (0,oo) with the property 
lim p(x) = +oo such that E Ai:1p(A1,) < +oo. We define a (unbounded) operator 

a:-+oo /c 

T = p(S) and let Q = s-1T. By the definition 0 < Tr Q < oo. Consider R > o. 
Let BR = {u E XI IIT½ullx :5 R} and let B be the closure of BR in X.It is clear that 
Bis compact for any R > 0. By the well-known inequality (see [15]) 

TrQ 
Wn(X \ B) = Wn(u: (Tu, u}x > R2

) :5 R2 • 

Hence, by the Prokhorov theorem { Wn} is weakly compact on X. 
By the definition wn(M) -+ w(M) for any cylindrical set M C X (because 

w,.(M) = w(M) for all sufficiently large n ). Then, by the uniqueness of the continua­
tion of a measure from an algebra to a minimal a-algebra 

Lemma 1 is proved. 

Lemma 2 
lim inf µn(n) ? µ(n) for any open set n C X such that µ(n) < oo. 

n-+oo 

Proof is usual. Let n C X be open. For any£> 0 there exists a function ,p(u)finite 
in n: 0 :5 ,p( u) :5 1 such that 

J ,p(u)e-g(u) w(du) ? µ(n) - E. 

n 

Then, 

lim inf µ,.(n) ? lim · inf J ,p(u)e-g(u) w,.(du) = f ,p(u)e-9(u)w(du) ? µ(n)-l 
n-+ro n-+oo 

n n 

· and due to the arbitrariness of e > 0 Lemma 2 is proved. 

Lemma 3 

Let n C X be open, t ER. Then µ(n) = µ(n1) where n 1 = f(n, t). 
Proof 
Using Assumption 2 and Corollary 1 one has that n 1 is open, too. First, let us 

assume that µ(n) < oo, µ(n1) < oo. 
Let us fix€ > 0.Then, there exists compact K C n such that µ(n \ K) < €. Let 

K1 = f(K,t). Then K1 C n 1 is compact. Let et= min{dist(K,80); dist(Ki,8n1 )} 

where dist(A, B) = inf llx - Yllx and 8A is the boundary of a set ACX. One 
:DEA,veB 

obviously has Cl'> 0. By Assumption 3 for any u EK there exists a ball B(u) with the 
center in u, B(u) C n, such that dist(Jn(u,t);fn(g,t)) < f for all g E B(u) and for 
all n.Let Op = {g E f2 1 ldist(g, 801 ) ? ,8} for any ,8 > 0 and let B(u1), ... , B(u1) be a 

I 
fiuite covering of K by the balls, D = LJ B(u;). Since fn(u,, t)-+ f(u;, t) (n--> oo) for 

i=l 

6 

) 

I I 

•• 

any i, using Assumption 2 one gets: fn(D, t) C nt for all sufficiently large n. Then, 
by lemma 2 

µ(n) :5 µ(D)+E '.5 .. ~ inf µn(D)+E = .. ~1!!. inf µ,.(J.,(Dnx .. ,t))+E :5 µ(n1)+€.· 

Due to the arbitrariness of E > 0 one gets the inequality 

µ(n) :s; µ(n1)-

Since n = f(ni, -t), the opposite inequality is valid ,too: 

µ(n) ? µ(n1)-

Thus, we proved the equality 
µ(n) = ,,(n1) 

for any two open sets with finite meMures. If n has an infinite measure, we take the 
sequence n" = nn{u E XI lg(u)I + lg(f(u,t))I < k} (k = 1,.2,3, ... ) and let 
n~ = /(n", t). One has µ(n~) = µ(n~) < oo. Taking the limit when k tends to infinity 
we get the statement of the lemma. 

Lemma 3 is proved. 

For any Borel set n C X we get the equality µ(n) = µ(n1) approximating n and 
n 1 by open sets from outside and by closed sets from inside. 

Thus, theorem 1 is proved. 

4, Proof of theorem 2 

We denote by f N(u, t) the DS defined by the problem {1)-(2) corresponding to H = HN, 
Let µN be the corresponding invariant measure from Theorem 1 and let µ (n) = 
J G(u)w(du) for any Borel set n C X. Since G(u) is a limit of continuous functionals, 
n 
it is meMurable. Then, the measure µ is defined. By the classical result 

lim /.LN(n) = µ(fl) 
N-+oo 

for any measurable n C X. 
Let us fix t ER and a measurable n C X. Let nN = !N(n,t), A,.= n nN, A= 

LJ A,.. It is clear that A1 C A2 C A3 C ... C A1, C 
/,~1 

Lemma4 
Let n1 = J(n, t) be open. Then, n 1 c A. 
Proof 

N~k 

Let u E f21, By Assumption 5 f N(u, -t) E f2 for all sufficiently large numbers N. 
Hence, u E A1, for sufficiently large k, and Lemma 4 is proved. 

Let n and n1 be open. Using Lemma 4 we get 

µN(n) = µN(nN) ? µN(A,.) 

7 



for N ~ k. Taking the limit over N --+ oo we have by Lemma 4: µ(n) ~ µ(A1c), 
hence 

µ(n) ~ µ(A) ~ µ(n1)-

The opposite inequality may be proved by analogy. For an arbitrary measurable set 
n C X we get the same equality as at the end of Theorem 1. Thus, Theorem 2 is 
proved. 

5. Applications 

As it is remarked in Section 1, the first point that leads the author to the consideration 
of invariant measures is the Poincare recurrence theorem (sec [18]). 

Theorem (Poincare) 
Let/ be a DS on a phase space X with a finite invariant measureµ: µ(X) < oo. 

Then, almOBt all points of X lie on the trajectories stable according to Poisson. 

According to theorems 1 and 2 we have constructed the invariant measure for 
our DS. As we will see further, it is not difficult to formulate conditions ensuring 
for the measure being finite. Unfortunately, we have to remark that Assumptions 1-

5 are rigorously proved only for concrete partial differential equations in some partial 
situations. Of course, this is the problem for the theory of (nonlinear) partial differential 
equations. Assumptions 1, 2, 4 seem to be sufficiently natural but Assumption 3 is 
very strong (now it is proved only in some simple sit~ations). Assumption 5 is very 
natural, too. Despite the mentioned difficulties we are able to prove the invariance 
of our abstract measure in several cases for the concrete nonlinear partial differential 
equations. 

5.1. A nonlinear Schrodinger equation 

Consider the problem 

iu1 + u.,,., + f(x, iul2)u = o, X E (o, A), t E R, 

u(0, t) = u(A, t) = 0, 

u(x, to) = ua(x). 

Our basic hypothesis is the following: 

(fl) Let f be a smooth real function and let there exist C > 0 such that 

a 
lf(x,s) + l(l+s)a/(x,s)i < C 

for all x,s. 

We remark that ABBumption (fl) is more weak than in paper [3]. 
We rewrite the problem (10)-(12) for the functions u1 = Re u and u2 = Im u: 

(10) 

(11) 

(12) 

u! + u;., + /(x,(u1
)

2 +(u2}2)u2 = 0, xE(0,A), tER, (13) 

8 

1,,1· Ii 
/ i 

i
' 

, -'l 
' 
I 

u; - u;., - /(x,(u1}2+(u2
)
2 )u1 = 0, 

ui(o, t) = u'(A, t) = 0, i = 1, 2, 

u'(x, t0 ) = cp,(x). 

(14) 

(15) 

(16) 

We introduce the following definitions. Let X = L2(0, A) ® L2(0, A), Y = 
IJJ(0, A) ® HJ(o, A). Let Q be the operator mapping u* E (HJ)* into u E n-1 

such that u*(g) = -(u,g)L, for any g E HJ(o,A) and let J = ( _oQ ~). It is 

clear that the operator J maps a dense set D C X* into X. Then, let /),. be the closure 

of the operator-£., in L2(0,A) defined first on Ct(0,A) and let S = ( ~ 1). 
• 

Let F(x,s) = ½J f(x,p) dp and 
0 

A 

IJ(u1,u2
) = f {~((u;(x))2 +(u;(x))2) - F(x,(u1 (x))2 +(u2 (x))2)} dx. 

2 . 

In this notation one gets the representation ofthe system (13)-(16) in the form (1)-(2). 
Later, let {en} be the orthonormal basis of eigenvectors of the operator /),. with 

corresponding eigenvalues {,\n}- We set Xn = span{e1, ... , en} ® span{e1, ... , e,.} 
and let P.,, be the orthogonal projector onto span{ e1 , •.. , en} in £2(0, A). Then, the 
approximate problem {3)-(4) takes the following form: 

u:n + u;~ + Pn[f(x, (u1n)2 + (ti2")2)u2
"] = O, 

u;" - u;~ - P,.[f(x, (u1n)2 + (u2n)2)u1
"] = 0, 

{ui"')(x,t0 ) = P.,,cp'(x), cp1 = Re cp, cp2 = Im cp, i = 1,2. 

We can now pn•.sent 

Teorem 3 
Let the hypothesis (fl) be valid. Then, NSE (13)-(16) satisfies Assumptions 1-4. 

Hence, the Borel measure 

A 

f 
J F(:,:,(u1 )2+(u')2 ) <£:,: 

µ(Q) = e0 w(du1 du2
) 

n 

is invariant for DS defined on the phase space X by this problem. (Here w is the 
centred Gaussian measure with the correlation operator s-1 on X.) 

Example I 
The hypothesis (fl) is valid for two physical nonlinearities: f(x, s) = 

f(x, s) = e-a, with Cl/> 0 in the second case. 

9 
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Remark 5 
It may be proved that any ball BR = {u E X I llullx $ R} is the invariant set 

for our DS. So, the ball BR may be ta.ken for a new phase space. It is clear th~t µ is 
finite on any such ball for ea.ch of nonlinearities presented in Example 1. 

The verification of the validity of Assumptions 1-4 is not presented. In fa.ct, the 
similar statement is proved for a nonlinear wave equation under hypotheses similar to 
(fl) in pa.per [5] (see also the following section). In our case one can prove this fa.ct by 
analogy. 

Remark 6 

For the system (13)-(16) a result similar to theorem 2 is presented in pa.per [4] for 
the power nonlinearity J(:i:, lul2)u = Ajui"u,where p E (0, 4) if A < 0 and p E (0, 2) if 
A > 0. This paper is based on paper [19] where the correctness of the Cauchy problem 
for NSE with <p E L2 is proved (in fa.ct, this result was adapted to the system (13)­
(16)). In this pa.per the non-triviality and the finiteness of the constructed invariant 
measureµ on a.riy ball in X are demonstrated, too. 

Remark 7 
The described approach is applicable also to the problem periodic with respect to 

:i: for NSE without any essential modifications. 

6.2. A nonlinear wave equation 

Consider a. nonlinear wave equation 

Utt - u,,,, + f(:i:,u) = 0, :i: E (0,A), t ER, 

u(0, t) = u(A, t) = 0, 

u(:i:, to) = <p(:i:), t¼(:i:, to) = ip(:i:). 

Here all variables are real. 

(17) 

(18) 

(19) 

Since this problem is considered in pa.per [5] and since the result of the present pa.per 
is identical to the a.hove result, we only demonstrate the possibility of the application 

· of our abstract scheme to this problem. We take 

X = L2(0,A)®H-1(0,A), Y = Ht(o,A)®L2(0,A), (u,u;) EX, F(:i:,u) = 
u :: J J(x, s) ds, 

o H(u) 

A 

= j { ~(u; + u;) + F(:i:, u)} d:i:, J = ( _oE !) Q1 , 

0 

where E is the unit opera.tor and Q1 maps v* = ( u*, ut) E Y* into v E Z = 
L2(0,A) 0 L2(0,A) such that v*(g) = (v,g)z for any g E Y. In this notation one 
gets the problem (17)-(19) in the form (1)-(2), a.gain. The basic hypothesis is -as follows: 

(£2) Let the function f be continuously differentiable and let there exist G > 0 such 
that 

8 
lf(:i:, u)I + I aJ(:i:, u)I < G) for all x, u. 

10 
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Finally, we take spaces X,. from section 3.1. 
AR in pa.per (5] one can verify that Assumptions 1-4 are valid. So, the measure 

A 

I 
-f F(s,u) d,e 

µ(f2) = e • w(du dv) 

n 

where w is the centred Gaussian measure on X with the correlation operator ( .ei. ;l ti. ~1) 
is invariant. 

Remark 8 
Uufortunately, the author does uot know any results verifying Assumptions 1-4 or 

5 011 the space X for a wider class of nonlinearities to make possible to apply Theorem'! 
I ancl 2. 

Remark 9 
In particular, the nonlinea.rities J(x, u) = ~u and /(:i:, u) = u~-au• satisfy the 

hypothesis (£2). Since the integral of the functional e"'llull~ over the measure w is finite 
for small ,~ > 0 and , our measure µ is finite for small ao < 0 and a > a0 for the first 
fuuct.io11 and for all a > 0 for the second one. · 

5.3 A generalized Korteweg-de Vries equation 

•Consider the problem 

Ut + (a(z)u),, + u.,,,,., = O, 

u(x,to) = ,p(x), 

x, t ER, (20) 

(21) 

where a(x), ,p(:i:) and u(:i: 1 t) a.re periodic real fuuctiol!B of :i: with a period A. We 
assume that a E C 00

• Using the method of paper (20] one can easily prove 

Theorem 4 
For any periodic ,p E C 00 there exists a unique solution of the problem u(:i:, t) of 

the class C 00 defined for all x, l which is periodic in :i: with the same period. 

We take Jl(u) = J ½(u; - a(:i:)u2
) dx, the spaces of periodic real functions from 

R 
A 

L.(o, A) and H 1 (0, A) for X 'and Y, rC'.spectively, with the norms ll9llx = J g1 (x) dx 
0 

and llgl!i, = ll9'1lx + IIYllx,Finally, let J = /;Q where the operator Q maps v* E Y* 
into. v EX such that·v*(g) = .(11, y)x for any g E Y . . Using the triyial estimate 

A 

~ J (u(x, t) - v(x, t))l dx at 
0 

A 

$ CJ (u(x,t)- 11(:i:,t))2 d:i: 1 

() 
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where C = const > 0 and u and v are arbitrary solutions of the problem (20)-(21), 
on1.; proves the existence and uniqueness of a solution in the space 0(1; X). Let S = 
!::,. + E,where !::,. is taken from section 3.1 and Eis the unit operator. Then, we take 
e

2
,._

1
(x) = (¼)½sin( .. ~"), e2,.(x) = (¼)icos( .. ~") (11 = 1,2,3, ... ), e0 = (¼)! and 

let X,. = span{ ea, ei, ... , e2,.}- In addition to the above inequality one can prove the 

following: 
A A !/ (u-u")2dx ~Cf (u-u")2dx. 

0 0 

where u" is the approximate solution introduced in Section 2. It is easy to verify that 
Assumptions 1-4 follow from these two inequalities and the inequality similar to the 
first one written for u". Then, the Borel measure 

.. 
I 

J t{u•(.,)+a(,:)u'("')} 4,; 

µ(U) = eo w(du) 

a 

is invariant for our equation. 
For the usual (generalized) Korteweg-de Vries equation 

Ut + /(u)u,. + u,,.,., = =;= 0 

(we consider the periodic problem, again) any results on DS defined by this equation 
on the suitable phase space are unknown. In the unrigorous way, one can take the 

measure of the type 
.. 

I 
J [F(u(,:)J+tu•(.,)] 4,; 

µ(Q) = eo w(du), 

a 

" . where F(u) = J J /(p) dp ds and w is the above Gaussian measure. However, one 
0 0 

must be careful because the choice of the correlation operator depends on X. This 
operator may be nuclear with respect to one space X but may be found to be non­
nuclear for another. So, it is very important to take a suitable phase space. 

5.4. Conclusion 
Formally, a wide class of "soliton" equations may be represented in the form (1)-(2). 
So, there is a: possibility to write formulae for measures of the type µ which are probably 
invariant. Unfortunately, there is a principal difficulty of the rigorous mathematical 
treatment since the corresponding initial-boundary value problems for these equations 

are not sufficiently investigated. 
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0611HBa·p~aHTHbl~ Mepax AnA HeKOTOpblX 

_6ec~oHe4HOMepHblX A11Ha~l14ecKl1X Cl1CTeM 

E5-92-395. ·. 

PaccMarp11saercA a6crpaKTHaA 6ecKoffo4HOMepHaA raM11nbTOHOBa c11c­
reMa, HeAaBHO. npeAnO>KeHHaA M.rp11nnaK11coM, }l{.Wara 11 B.CrpaycoM. 
MHorne H.en11HeliiHb1e :mont0u110HHb1e ypasHeHl1A MaTeMaTvi4ecKolii cj:i11J11K11 
Moryr _6b1Tb npeACTas.neHbl B 3TOH cj:iopMe. Ll,enb CTaTb11. COCTOl1T B nOCTPO· 

· eHl1H. l1HBap11aHTHOlii Mepb; AnA 3TOH, ri11creMbl. 8 'l'aCTHOCTl1, ~ony'leHbl ye­
' 11os11A • 1<0He4Hocrn nocrpo,eHHOlii Mepb1, ·yro noJBOnAer np~MeHl1Tb reope­

MY O 803BpaU,\eHl111 nyaHKap·e; KOTOpaA 06bACHA.eT ABneHHe ¢lepMl1-nac-
Ta•YnaMai COCTOAU,\ee. B 803BpaU,\eHl111 J1t06oro peWeH_l1A K. CBOelii Ha'lanb• 
HOH :rri'lKe c. nt0601ii TO'lHOCTbKJ cnyCTA AOCTafO'lHOe speMA. PeJynbTaT 11C~· 

.·~ .. . , .... 

· nonbJOBaH AnA 11ccneAOBaHl1A KOHKpeTHbiX cj:il1311'leCKl1X 38Aa'l, .>: 

Pa6ora BblrlOnHeHa B ·na6oparop1111·: reopern'lecKolii.: cj:il1311Kl1_ 

' ' IlpenpHIIT O&be11m1euu6~0 HHCTUTyTa i!;iepllb!X HCCJlC;lOBauuiL ny6ua I_ 992,. 

Zhidkov P.E. 'E5-92~395 
On. Invariant Measures for Some · 

· · lnflnite:oimen~ional Dynamical· Systems 

. We· consider an abstract infinite-dimensional Hamiltonian system re- '-­
. cently introduced·· by M.Grillakis,-J.Shatah and W.A.Strauss. A lc:it of non-

. linear evolution equations of the mathem~tica·I physics may be represented 
in that form. The aim .of the paper is the construction of an invariant mea­
sure for this system. · This ·measure has many applications in. the· theory ·of 

. · dynamical systems. In particular, the conditions·fo( the finiteness· of the 
. ~onstru~ted mei'asure are presented: It makes possible to apply the _Poinca-
re· _recurrence theorem which explains the well-known Fermi:Past-Ulam phe­
nomenon of the return of any solution .to its initial data with time .with an 

accuracy: The result is used to investigate concrete physical pro: 

.The · investigation ' has been performed at .the Laboratory of .Theoreti• 
. . .. . . ' ·,. '\ . . . ' 

.. · cal Physics,JINR. · . · ··· ' . · . 
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