


1. Introduction

Recently several papers have been published on invariant measures for dynamical sys-
tems (DS) defined by nonlinear partial differential equations [1-5]. In paper [1] that
measure is constructed for the periodic problem for the nonlinear Klein-Gordon equa-
tion and in paper [2] the similar construction is performed for a certain physical sys-
tem. Unfortunately, in paper [1] some important steps of the proof are omitted. In
the author’s paper [3] the invariant measure is constructed for a nonlinear Schrodinger
equation (NSE) under some strict assumptions on the nonlinearity. Partially these
difficulties are avoided in paper [4] where the power nonlinearities are admissible. The
next author’s paper [5] contains simpler approach to the same problem. The nonlinear
wave equation is considered. However, as it is remarked, one can easily apply this
technique for the investigation of NSE.

Invariant measures play an important role in the theory of dynamical systems. It is
well known that the whole ergodic theory is based on this concept. On the other hand,
they are necessary in various physical cosiderations. In paper [6] they are used for the
construction of the statistical mechanics corresponding to the NSE (however the proof
of the invariance is not presented). Similar considerations are made in papers [7-10]
where the Kubo-Martin-Schwinger states are constructed but without the proof of the
invariance, too. ' '

For the author, the first point which directs him to this investigation was the so--
called Fermi-Past-Ulam phenomenon consisting in the return of an arbitrary trajectory
of the DS defined by any ”soliton” equation to the initial data with time with an
arbitrary accuracy (see [11-13], for example). Using the finite invariant measure one
can apply the Poincare recurrence theorem which explains this phenomenon.

In the present paper we consider the abstract Hamiltonian system introduced in
paper [14] for the investigation of the soliton stability. In particular, a wide class of
the ”soliton” equations to be studied later for application admits this representation.

2. Notation. Basic results

Let Y C X be real Hilbert spaces with the scalar products (, )y and (, )x and the
L
norms ||g|ly = (g, g)é; and {|g]|x = (g, 9)% respectively, satisfying the condition

llsllx < € llglly

with C > 0Oindependent of g €Y. Let Y be a densesetin X. Let X; C X; C...C
X, C ... be a sequence of finite-dimensional subspaces of Y, dim X, = d, < o0,
and let {J X,, be a dense set in Y. Let H be a C! functional on Y with real values and

let J: :;( * — X be a (generally unbounded) linear operator defined on the dense set
D C X* with .
g(Jh) = —h(Jg)
for any g,h € D where g(h) is the value of g € X* of h € X. It is clear that any
g € X* belongs to Y*.
Consider the problem

W(t) = JH'(ut)), tER, (1)
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u(te) = ¢ € X. (2)
Here the dot means the derivative with respect to ¢, to € R and u(t) is the unknown
function. In addition we consider the sequence of finite-dimensional problems

W(t) = PJH'(Pw())), tER, (3)

w(to) = Fad 4

where P, is the orthogonal projector onto Xy, in X.
It is obvious that P*X* is the adjoint space for Xy, if Fy is the adjoint operator for
P, on X. We assume that J is defined on any X and

P, J=JPF; (n=1,23,..).

Remark 1
As it is well known, the norms || ||x and || ||¢ are equivalent on any X...

We denote I = [to — T, to + T] for any T' > 0,1, € R and by C([; B) the space of
continuous bounded functions from I into B with the norm ||g(t)|ic(r;s) = sup [lg(eN 5,

where B is an arbitrary Banach space with the norm || ||5. By the above assumptlons
the operator from the right-hand side of (3) is of the class C" as the map from X, into
X... Hence, for any ¢ € X there exists T > 0 such that there exists a unique solution
of the problem (3)-(4) of the class u*(t) € C(I; X,.).

Remark 2 ‘
In particular, the above solution u"(t) belongs to C(I; X).

Assumption 1
Let u™(t) be defined for all ¢t € R and for all ¢ € X.

Definition 1

Let for any ¢ € X there exist u(t) € C(I; X) such that there exists a sequence ‘

u"(t) converging to u(t) in C(I; X) for any I. Then, we call u(t) the solution of the
problem (1)-(2).

Assumption 2
Let there exist a unique solution u(t) of the problem (1)-(2) for any ¢ € X.

Assumption 3
Let for any to € R,e > 0, T > O there exist § > 0 such that

u3) - 3@llx <€ (n=1,23,..)
for any two solutions of equation (3) such that

[ (to) — w3 to)llx <6
and for any t € 1.

Clorollary 1
Foranyty € R,e > 0,T > 0 there exists § > 0 such that

o (8) = ua(t)llx <€
if
lfur(to) — ua(to)llx < &
for all ¢ € I and for any two solutions u; and u; of the problem (1)-(2).

Now we briefly remind the general construction of a Gaussian measure on a Hilbert
space (for details see [15-17]). For a Hilbert space consider X. Let {ez} be the or-
thonormal basis in X which consists of eigenvectors of some operator § = $* > 0 with
corresponding eigenvalues {Az} (F =1,2,3,...). We call aset M C X the cylindrical
set iff

M ={z € X|[(=,&; )%, (2,¢,..)x] € F}

for some Borel set F' C R™ ,’some integer m and j; is not equal to j; if 1 is not equal
to [, We define the mcasure w as follows:

m ~i ™ \jyd
w(M) = (27)"7 H /\}' e ‘)5 W dy»

i=1 P

§
where ¥ = (y1, ) Yrm) € R™ and dy is the Lebesque measure in A™. One can easily
verify that the class A of all cylindrical scts is an algebra on which the function w is
additive. The function w is called the centred Gaussian measure with the correlation
operator 57! on X. The basic result is as follows:

Statement
The measure w is o-additive on the algebra A iff S~ is a nuclear operator.

If the measure w is o-additive on A one can continue this measure to the minimal
o-algebra M containing A using standard methods. In fact, M is the Borel o-algebra
of X (see [15-17]).

Assumption 4

Let H(u) = 3(Su,u)x + g(u) where S* = 5 > 0 is the (unbounded) operator on
X mapping X,, into X, (n=1,2,3,..) and g{x) is a continuons real functional on
X. Lei §7% be a nuclear operator on X.

Definition 2

We denote by f(¢,t) the function fromn X into X mapping ¢ into u(t+t,),where u(t)
is a solution of the problem (1)-(2). By analogy, let f,.(#,t) be the function from X into
X mapping ¢ € X into u™(t +1ig),where u"{t) is a solution of the problem (3)-(4). It is
clear that f(¢) O) &, f(f(¢) 7') t) = f(qslt + T) and fn(¢: 0) F.¢, fn(fn(¢) T)yt) =
Ju(dt+ 1) forany ¢ € X, t,7 € R. So, we call J and f, the dynanical systems
{DS) on the phase spaces X and X, , respectively. We call a Borel measure u on X



the invariant measure for DS f iff u(2) = p(f(€,t)) for any Borel set @ C X andt € R.
The basic result of this paper is the following:

Theorem 1 .
Let Assumptions 1-4 be valid and let u be a Borel measure on X defined for any
Borel set  C X by the rule

u(§) = /e_”("‘) w(du) s

)

where w is the centred Gaussian measure corresponding to the correlation operator
S~1. Then, u is the invariant measure for DS f.

Remark 3 -

Since we do not claim the boundedness of the functional g, generally the measure
i 18 not finite. It is not difficult to forinulate the conditions for the finiteness of u.
For example, u is a finite measure if g 18 bounded from below in addition to the above
assumptions.

As we will see further, Assumption 3 makes the class of nonlinearities of the admis-
sible partial differential equations very narrow. So, we present one more result which
helps to prove the invariance of the measure u for a more wide class of nonlinearities.

Let Hy(u) = 3(Su,u)x + gn(u) (N =1,2,3,..). Consider the sequence of the
problems

an(t) = JHR(u(t), teR, (5)

u(te) = ¢ € X. (6)

Let for any N the Assumptions 1-4 be valid for the problemn (5)-(6). We denote solu-
tions of this problem by uy(t).

Assumption 5

Let G(u) be a real functional on X such that e~97(*} converges to G(u) for any
© € X when N tends to co. Let for any ¢ € X un(t) tends to some u(t) when
N — ooin X for any ¢ € X and t € R. Then, one can call u(t) the solution of the
problem (1)-(2). So, DS f will be defined in this case, too.

Theorem 2
Under Assumption 5 the measure ;(§2) = [ G(u)w(du} is invariant for DS f.
a

Remark 4 . )
In each situation, one should venfy that the measure ;1 is non-trivial, i.e. that u is
not equal to zero for any set. In particular, in the case of NSE that proof was made in

paper [4].

3. Proof of theorem 1

Since S maps X, into X, there exists an orthonormal basis {ex}. of its eigenvectors
with respect to the product of the space X with corresponding eigenvalues M} (k=

dn
1,2,3,...) such that ey, ..., eq, is the basis of X, for any n. Let u"(t) = "X: ax(t)es, h(a) =
=1

dn ] '
H(Y axex), where a = (ai, ..., da,) and let J, be the matrix of the operator J from
k-—

Xr i—nlto X, in the bases {e}} and {ex},where {e}} is the dual basis to {ex}. Then,

J* = —~J, and the problem (3)-(4) takes the form
a(t) = JuVah, ]
alte) = (dex)  (E=1,2,.5dn). (8)
Then, R% is the phase space for this problem. We use the following result. Consider

a dynamical system of the form ‘

z=f(2) @)
where z = z(t) € R’ with some integer r and a smooth function f = (f1 s fr). Let
for any Borel set C C R’

o0) = [ Ma)ds,
. c

where A(z) > 0 is a smooth function and dz is the Lebesque measure in Br. Then, the
measure p is invariant for the system (9) iff '

> (%(Af.-) =0

=1

for all z. (For the proof, see [18]).
Using this result one can easily verify that the Borel measure

dn dn

e 45 e AT aea(s)
p;(An) = (27(-)"%:L H ,\é / c f& o} Eah A dn
k=1 A

is the invariant measure for the problem (7)-(8). Also, we introduce the measures

dn
dn -L E Apal
wl(4) = 0% I A / e i da,
k=1 A

, dn ™ .
Let 2, C X andQ, = {u€X |u=3 aker, a € Al,where AC R%" is a Borel set.

k=1 . .
We define pta() = #,(A); by analogy, w(f2.) = w;(4). Since 44, is the invariant
measure for (7)-(8), i is invariant for the problem (3)-(4). ‘
Although w, and p, are the measures on X, we can define them on th.e Borel
o-algebra of X by the rule: wa(2) = wa(2{1X5) and u(R) = w(2N X,). Since the
set ©{) Xn is open as a set in X, for any open set  C X, it is correct.



Lemmal

The sequence {w,} weakly converges to w in X.

Proof »

Since 5! is a nuclear operator , the trace Tr S~! = Y. \;' < oo. It is clear that
%

there exists a continuous positive function p(z) defined on (0, c0) with the property
im p(z) = +oo such that }_ A;'p(A) < +oo. We define a (unbounded) operator
k

00

T = p(S) and let Q = S™IT. By the definition 0 < Tr Q@ < oo. Consider R > 0.
Let Bg = {u € X|||T%ullx < R} andlet B be the closure of By in X.It is clear that
B 15 compact for any R > 0. By the well-known inequality (see [15])

< 19

wa(X \B) = wa{u: (Ty,u)x > R?) < 2

Hence, by the Prokhorov theorem {w,} is weakly compact on X.

By the definition w,(M) — w(M) for any cylindrcal set M C X (because
w, (M) = w(M) for all sufficiently large n ). Then, by the uniqueness of the continua-
tion of a measure from an algebra to a minimal o-algebra

Lemma 1 is proved. '

Lemma 2

hm inf p,(Q) > u() for any open set @ C X such that u(Q2) < oo.

Proofis usual. Let @ C X be open. For any e > 0 there exists a function ¢(u)finite
in : 0 < ¢(u) < 1 such that :

/ $(u)e~%*) w(du) > p(2)-e
h!

Then,

lim inf (@) 2 lim inf [ $)e ) wnl) = [ S uld) 2 w@)—e
Q Q

-and due to the arbitrariness of ¢ > 0 Lemma 2 is proved.

Lemma 3 ) .

Let @ C X be open, t € R. Then p(R) = u(R2,) where Q; = f(Q,1t).

Proof

Using Assumption 2 and Corollary 1 one has that , is open, too. First, let us
assume that () < oo, u(f) < co.

Let us fix € > 0.Then, there exists compact K C £ such that u(2\ K) < ¢. Let
K, = f(K,t). Then K, C Q) is compact. Let o = min{dist(K, 8Q); dist(K,,80)}
where dist(4, B) = ’ean‘l,'eﬂ llz — yllx and 3A is the boundary of a set A C X. Oune
obviously has o > 0. B): Assumption 3 for any u € K there exists a ball B(u) with the
center in u, B(u) C Q, such that dist(fa(u,t); fu(g,t)) < & for all g € B(u) and for
all n.Let Qg = {g € (|dist(g,0Q) > f} for any § > 0 and let B(wy),..., B(w) be a

i

finite covering of K by the balls, D = |J B(u;). Since f,(ui t) — f(1,t) (n — oo) for

=1

i

any i, using Assumption 2 one gets: f,(D,t) C Qa for all sufficiently large n. Then,
by lemma 2 -

#(Q) < p(D)+e < lim inf p(D)te = Bm inf p(fa(D [} Xn,t))+e < u(@i)+e.
Due to the arbitrariness of ¢ > 0 one gets the inequality

#e) < p(Sh).
Since Q2 = f(, —t), the opposite inequality is valid ,too:

w(R) > p(S).
Thus, we proved the equality

HE) = )

for any two open sets with finite measures. If 2 has an infinite measure, we take the
sequence ¢ = Q{u € X| lg(v)] + |o(f(v,t))] < k} (k = 1,2,3,...) and let
QF = f(9F,t). One has u(F) = p(QF) < co. Taking the limit when k tends to infinity

we get the statement of the lemma.
Lemma 3 is proved.

For any Borel set 2 C X we get the equality u(f2) = u()) approximating Q2 and
) by open sets from outside and by closed sets from inside.
Thus, theorem 1 is proved.

4. Proof of theorem 2

We denote by fn(u,t) the DS defined by the problem (1)-(2) corresponding to H = Hy.
Let py be the corresponding invariant measure from Theorem 1 and let u (Q) =
J G(w)w(du) for any Borel set © C X. Since G(u) is a limit of continucus functionals,
Q

it is measurable. Then, the measure u is defined. By the classical result
Jim uy(Q) = p(Q)

for any measurable  C X.
Let us fixt € R and a measurable @ C X. Let @y = fn(Q,t), Ax= {] OQn, A=
N>k

U Ar.Itisclear that 4, CA CA;C ... CAC ...
k>1

Lemma 4

Let Q; = f(2,t) be open. Then, Q; C A.

Proof

Let u € ;. By Assumption 5 fy(u, —t) € Q for all sufficiently large numbers N.
Hence, u € Ay for sufficiently large k, and Lemma 4 is proved.

Let Q and Q, be open. Using Lemma 4 we get
un() = pn(Qn) 2 pr(Ad)

7



for N > k. Taking the limit over N -+ co we have by Lemma 4: u(2) > p(Ax),
hence

B(&) 2 p(4) = wl@h).
The opposite inequality may be proved by analogy. For an arbitrary measurable set
2 C X we get the same equality as at the end of Theorem 1. Thus, Theorem 2 is
proved,

5. Applications

As it is remarked in Section 1, the first point that leads the author to the consideration
of invariant measures is the Poincare recurrence theorem (see [18]).

Theorem (Poincare)
Let f be a DS on a phase space X with a finite invariant measure p: p(X) < co.
Then, almost all points of X Le on the trajectories stable according to Poisson.

According to theorems 1 and 2 we have constructed the invariant measure for
our DS. As we will see further, it is not difficult to formulate conditions ensuring
for the measure being finite. Unfortunately, we have to remark that Assumptions 1-
5 are rigorously proved only for concrete partial differential equations in some partial
situations. Of course, this is the problem for the theory of (nonlinear) partial differential
equations. Assumptions 1, 2, 4 seem to be sufficiently natural but Assumption 3 is
very strong (now it is proved only in some simple situations). Assumption 5 is very
natural, too. Despite the mentioned difficulties we are able to prove the invariance
of our abstract measure in several cases for the concrete nonhnear partial differential
equations.

5.1. A nonlinear Schrodinger equation

Consider the problem

Uy + Ugg +f(z:|u|2)u = 0, z €(0,4), t€ R, (10)
u(0,t) = u(A,t) = 0, (11)
u(z, ) = uo(z). (12)’

Our basic hypothesis is the following:
(f1) Let f be a smooth real function and let there exist C > 0 such that
(i)
[f(z,8) + 10+ s)a_sf(zs s)f < C
for all x,s.

We remark that Assumption (1) is more weak than in paper 3],
We rewrite the problem (10)-(12) for the functions u* = Re u and v = I'm u:

u: + u:z + f(:‘:’(“'l)z'f'(“'2)2)“2 =0,z€ (OrA): tER, (13)

8

\f Let F(z,s) = %j f(z,p) dp and
» 0

ul — ul, — f(z, () + (P! =0, (14)
u'(0,t) =u'(4,t) =0, i=12, . (15)

w(e,to) = dil2). | (16) -
We introduce the following definitions. Let X = L3(0,4) ® L3(0,4), ¥ =
HL0,A) ® H}(0,A). Let Q be the operator mapping u* € (Hj)* into u € H™?
such that u*(g) = —(u,g)z, for any g € H}(0,A) and let J = __0 Cg .Itis
clear that the operator J maps a dense set D C X* into X. Then, let A be the closure

A D
of the operator -—di:,- in L3(0, A) defined first on C°(0,A) and let § = ( 0 A)’

1) = [GEEP +@EEP) - FE e @F + (@@} d

In this notation one gets the representation of the system (13)-(16) in the form (1)-(2)-

Later, let {e,} be the orthonormal basis of eigenvectors of the operator A with
corresponding eigenvalues {\,}. We set X, = span{e,..,en} ® span{es,...,en}
and let P, be the orthogonal projector onto span{ey,...,en} in Lz(0, A). Then, the
approximate problem (3)-(4) takes the following form:

yh + ul + Pf(z, (") + ()]
W~ ult — Pf(z, (u') + ("))u"] 0,

(uin)(z’to) = Pn¢'i(z)a ¢‘1 = Re ¢) ¢2 =Im Qs, 1= 1,2.

i

0,

n

‘We can now present

Teorem 3
Let the hypothesis (f1) be valid. Then, NSE (13)-(16) satisfies Assumptions 1-4.

Hence, the Borel measure

i F(z,(u! P +(u?)?) dz
#(Q) = f e{ w(du' du®)

a
is invariant for DS defined on the phase space X by this problem. (Here w is the

centred Gaussian measure with the correlation operator S~ on X.)

Example 1 ’
The hypothesis (f1) is valid for two phymca.l nonlinearities: f (:c,s) 2 and

f(z,s) = e with @ > 0 in the second case.



Remark 5 ¢

It may be proved that any ball Br = {u € X | JJu]lx < R} is the invariant set
for our DS. So, the ball By may be taken for a new phase space. It is clear that u is
finite on any such ball for each of nonlinearities presented in Example 1.

The verification of the validity of Assumptions 1-4 is not presented. In fact, the
similar statement is proved for a nonlinear wave equation under hypotheses similar to
(1) in paper {5] (see also the following section). In our case one can prove this fact by
analogy.

Remark §

For the system (13)-(16) a result similar to theorem 2 s presented in paper [4] for
the power nonlinearity f(z,{u|>)u = Alu|Pu,where p € (0,4)if )\ < 0and p € (0,2)if
A > 0. This paper is based on paper {19] where the correctness of the Cauchy problem
for NSE with ¢ € L, is proved (in fact, this result was adapted to the system (13)-
(16)). In this paper the non-triviality and the finiteness of the constructed invariant
measure j on any ball in X are demonstrated, too.

Remark 7

The described approach is applicable also to the problem periodic with respect to
z for NSE without any essential modifications.
5.2. A nonlinear wave equation

Consider a nonlinear wave equation

Uy — Uz + f(z,u) =0, zG(O)A)» teR, (17)
u(0,t) = u(A4,t) = 0, (18)
“(%to) = qS(:B), u:(zatO) = "rb(z) (19)

Here all variables are real.
Since this problem is considered in paper {5] and since the result of the present paper
is identical to the above result, we only demonstrate the possibility of the application

" of our abstract scheme to this problem. We take

—
—

X = L2(0)A)®H—1(0: A); Y = Hé(O)A)®L2(O7A)’ (u, u.:) € X’ F(zxu') =

]f(:,s)ds, 4
o HW = [+ + Feaba I= (5 ) e

where F is the unii operator and @; maps v* = (v*,u}) € Y*into v € Z =
Ly(0, A) ® L5(0, A) such that v*(g) = (v,g)z for any ¢ € Y. In this notation one
gets the problem (17)-(19) in the form (1)-(2), again. The basic hypothesis is as follows:

(12) Let the function f be continuously differentiable and let there exist C > 0 such
that

J
[f(z,u)] + |£f(:c,u)| < €, forall g,u
-0

Finally, we take spaces X, froin section 3.1.
As in paper [5] one can verify that Assumptions 1-4 are valid. So, the measure

u(Q) = / c—°f T & w(du dv)

113

ATl 0
0o A™

where wis the centred Gaussian measure on X with the correlation operator (

is invariant.

Remark 8 ;

Unfortunately, the author does not know any results verifying Assumptions 1-4 or
5 on the space X for a wider class of nonlinearities to make possible to apply Theorems
1 and 2.

Remark 9 .

In particular, the nonlinearities f(z,u) = &"E,-u and f(z,u) = ue’"“"sat,isfy the
liypothesis (£2). Since the integral of the functional ek over the measure w is finite
for small & > 0 and , our measure 4 is finite for small g < 0 and o > o for the first

function and for all & > 0 for the second one.

5.3 A generalized Korteweg-de Vries equation

Cousider the problem

u; + (G(I)'U-)_‘p + Upzy = 0’
u(z,to) = (z), ' (21)

where a(z), ¢(z) and u(zyt) are periodic real funciions of z with a period A. We
assume that a € C*. Using the method of paper [20] one can easily prove

z,t € R, (20)

Theorem 4
For any periodic ¢ € C* there exists a unique solution of the problem u(z,t) of
the class C* defined for all «, ¢ which is periodic in z with the same period."

We take H(u) = [ 3(u2 - a(z)u?) dz, the spaces of periodic real functions from
R

A
L,(0, A) and H*(0, A) for X 'and Y, respectively, with the norms ||glix = [ ¢%(z) d=
| o

and |lglly = lg'llx + |lgllx.Finally, let J = £Q where the operator @ maps v* € Y*
into v € X such that'v*(g) = .(v,¢)x for any g € Y. Using the trivial estimate

A 4
% / (u(z,t) —v(z,t))? dz < C /(u(z,t)— v(z,t))? dz,

11



where C = const > 0 and u and v are arbitrary solutions of the problem (20)-(21),
one proves the existence and uniqueness of a solut?on in thfa space C(I; )‘( ). Let S =
A + E,where A is taken from section 3.1Land E is the unit operator. 'Ilfn, lweL tak;
eQn-—l(z) = (-})ksm(%), eZn(z) = (%)wos(%‘—’) (" = 1:2)3)"")’ €0 = (',‘{)’ al}:

let X, = span{es,e1, ..., €20} In addition to the above inequality one can prove the

following: a

A
2 u-wre <o [@-wre
dt J

0

where u™ is the approximaie solution introduced in Section 2. It is easy t.o Yerify that.
Assumptions 1-4 follow from these two inequalities and the inequality gimilar to the
first one written for . Then, the Borel measure

4
| Hud @) ra(a)i(2)) do
uQ) = /eo ! w(du)
0

is invariant for our equation. ' o
For the usual (generalized) Korteweg-de Vries equation

u; + f(u)u,, + Uzzz = =0

{we consider the periodic problem, again) any results on DS defined by this equation
on the suitable phase space are unknown. In the unngorous way, one can take the

measure of the type

i Flu(z))+ 56 (2)] do
wQ) = / eof[ ! w(du)

Q

where F(u) = f j' f(p) dp ds and w is the above Gaussian measure. However, one

must be careful (i):cause the choice of the correlation operator depends on X. This
operator may be nuclear with respect to one space X but may be found to be non-
nuclear for another. So, it is very important to take a suitable phase space.

5.4. Conclusion

Formally, a wide class of ”soliton” equations may be represented in t?\e form (1)—(31)
So, there is 4 possibility to write formulae for measures of the type p which are proba: ayl
invariant. Unfortunately, there is a principal difficulty of the rigorous mathematzlc

treatment since the corresponding initial-boundary value problems for these equations

are not sufficiently investigated.
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06 MHBapMaHTHbIX Mepax J.lﬂﬂ HeKOToprX
r-{_6ecr<0HeuHomepr|x J.lMHaMMHeCKMX CMCTeM -

. E592395

Paccmarpuaaercﬂ a6chaKTHaﬂ 6ecr<0HeuHomepHan raMMﬂbTOHOBa cuc-v‘

".;-Tema HEJ.laBHO npeunomeHHaﬂ MrpunnaKMcom )KanTa " BCTpaycom.i i

MHorMe HenMHeMHble 3BomouMOHHb|e ypaBHeHMﬂ MaTemamueCKou (buauxwl

:'-MoryT 6b|Tb npe.uCTaBneHbl B 3TOM tbopme U,enb CTaTbM cocwwr B noctpo-t

ﬁiieHuu MHBapMaHTHOM Mepb! ANA 3TOM. CMCTeMbI B qacmocm nonyqubl ye- -
o noavm Kouequcru nOCTpOEHHOM Mepbl 1O nOSBOﬂHeT anMeHMTb Teope-
*'My o BOSBpaLueHMM I'IyaHKape KOTOpaﬂ OGLRCHRET neneHMe ¢epMM Mac-. ..

1A Ynama cocmﬂmee 8 BOSBpaLueHMM moﬁoro peLueHMﬂ K ceoeu Hawanb-’,

fHou TOHKe c moﬁou TOHHOCTbl'O cnycTA - uoc1'aro~4Hoe BpeMﬂ Pe3yanaT Mc-f.i S

ﬂOﬂbSOBaH unﬂ Mccne.u.oeauuﬂ KOHKDETHbIX ¢m3uqecr<ux 3a.uaw.

- Zhidkov P.E. ? ‘
: 'On Invanant Measures for Some T

'E5.92:395 -

hWe consrder an abstract |nfrmte d|mens:onal Hamlltoman system re-
4fj,\cent|y mtroduced by M GrlIIakls JShatah and WAStrauss A lot of nono

: ‘:,f'hnear evqutlon equatlons of the mathematlcal physrcs may be- represented
in’ that form,. The aim .of the paper is the constructlon of an invariant mea-

sure for thlS system “This® measure has® many appllcatlons in. the’ theory of
‘f.‘dynamlcal systems In partucular the condltlons for the flnlteness of: the:
constructed measure .are’ presented It makes pos5|ble to* apply the Po:nca-'
re recurrence theorem which explalns the well- known Fermi-Past- Ulam' phe-, -
Lnomenon of the return of any solutron to its-initial data Wlth tlme withan
',f‘farbltrary accuracy The result |s used to rnvestlgate concrete phySIcal pro-;"ﬁ'»

:_:The mvestlgatlon has been performed at the Laboratory of Theoretr-',’

5 cal Physlcs .g,l : :
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