





p=0( Virasoro case )
The space is simply the complex plane with the coordinate z. F = F(z) is an
analytic function. Let us consider an analytic map

2 3(z2), F(z) ~ F=F(3(2)). (1.1)
The trivial identity , | ,
— 7 e 3! —_— i .
8zF (z )82'F (1.2)

(prime will always denote the derivative with respect to z) means that the old
and new derivatives are proportional for any function #, or in other words, any
transformation (1.1) will be conformal, i.e. ‘preserving the form of the derivative’.
The group of the conformal transformations will be denoted by CON.

Passing to the infinitesimal form of the transformation (1.1), Z = z + Aw(z) (A
is a small number ), and defining its generator T(w) by

F=Q1+ATW)F, (1.3)

one easily sees that T(w) = wd,. The Lie algebra generated by T(w) is defined by
the commutators :
| [T}, T = T@¥ ~ ¥) (1.4)
and is called the conformal algebra, Con in our notation. It coincides with the whole
algebra of vector fields on the complex plane and its {(unique) central extension is
the standard Virasoro algebra denoted by Vir.
There is a simple generalization of the construction for F' being not ordinary
functions but conformal fields of a weight A. In this case, the transformation rule is

Fa(z)  Fa = (3)2Fa3) ()

and the generators have the form T(w) = wd, + Aw’. Their Lie algebra coincides
. with (1.4).

p=1( RNS-case) ‘
Now the space is a complex superplane with coordinates z and 6, 6% = 0. In fact, we
need a Grassmann algebra of more than one variable. One of them will be specified
as 0 while the rest will be referred as ‘other thetas’. A super-analytic map is

Zr+ 3z = Zo+€Z1, (1.6)
0§ = 6 +60,, =0, (1.7)

where Z; and O; are functions of z and of ‘other theta.s’~with neeged Grassmann
parity. This map transforms a function F = F(z,0) into F = F(3,0).
The fractional derivative of order 1/2, D, (D? = 8, ) can be defined as

D= 60 + aa: ’ (18)
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due to the Grassmann relations 6> = 0 = 83 , {8y,60}4+ = ’l. The super-analytic
map (1.6), (1.7) is called a superconformal transformation when the superderivative

-, -ransforms homogeneously (see e.g. [11]). This requirement, similar to (1.2), looks

like .
) DF = &DF | v (1.9)
and leads to certain 'restrictions on the parameter functions, namely,
¢ =D§,Di=D@),
or, in the component notation,
. Zl
Z

6,6, , ‘
9300 + (61)°. o (o)

(]

These transformations form a group which is called supercbnformal,‘or CON;j in
our notation. ) ' : R B
For the infinitesimal formof the mapping (1.6), (1.7),

ii = z+4 MUz,0) =z+ Awp+ Ouwy) , .
= 04 XE(50) =0+ Meo+0er) (1.11)
the conditions (1.10) read ‘ ‘ ’ , _ | e
, w=€ , w=2. - . B (1.12)
Thus, defining the generators T (wy) and G(eo) by
F=(14 MT(w)+6()) F , (113)
one can easily find that ’ V
1
‘ T (w) = wd, + -2-w'969 » G(e) = e(05 — 00,) . (1.14)
These generators close into the well-known Lie algebra
TWhT@)] = Ty -u'y),
[T@GE] = Glwe — due), (1.15)
L GO0 = 2T(0).

that we denote by CON,. . ,

As in the previous example, it is possible to introduce similar generators (1.14)
for the superconformal field F of an arbitrary weight A: F(z,0) — (DE)*F(2, )
(cf. with (1.5)). The corresponding generators o :

: 1 A N ' .
. T(w) = wB, + ‘2' '939 + -é-w' ) g(e) = 6(89 - 98,) - Af’g . (1]6)



obey the same algebra (1.15). The operator @ = (9 — 80,) which appeared in the
definition of G(¢) anticommutes with D and is called the supersymmetry generator.

Up to now, w and ¢ were respectively even and odd functions® of the variables
z and ‘other thetas’, i.e. some polynomials in ‘other thetas’ with coefficients being
analytic functions of z. Therefore the generators T and G are polynomials in ‘other
thetas’ also, with coefficients being the ‘bare’ generators T and G whose arguments
w and ¢ are ordinary functions of z independent of ‘other thetas’. Then the ex-
pressions for T and G coincide with (1.14) and they obey the algebra (1.15) with
the last commutator replaced by anticommutator. This algebra, or more precisely
superalgebra, is what is usually called the ‘superconformal algebra’. We will denote
it by Con; . Its unique central extension, the Ramond-Neveu-Schwarz algebra, is
denoted by Vir,. ‘

‘The distinction between the algebras CON, and Con, is usually ignored, being
practically trivial. As we shall see in Sect.3, this is not the case for their para-
analogues CON, and Con, since the paragrassmann algebra of ‘other thetas’ is a
much more complicated object than the Grassmann one (and, probably, not uniquely

defined, see [13]). In particular, there is no simple and general commutation rule

between the elements of the paragrassmann algebra. As a result, closing the algebra
CON, becomes a rather non-trivial problem. On the contrary, the algebra Con,
closes quite easily, (even in several non-equivalent variants, if the number p+ 1 is
rich in divisors). Each variant of closing defines an extended algebra, Viry, with a
number of central charges (from 1 to [(p + 1)/2] of them).

The simplest variant of Vir, looks as follows:

» 2
[Ln 3 Lm] = (n - m.)L..+m =+ m (Z Cj) (na - n)5n+m,0 >
i
n
( r+1

, ' 1
(p+1)Ls, — ;Cj (Z riritj + m) 8sr0 5
. +1
) = l...[g—i—],

where L, = T(z*") , G, = G(z~"+Y@*), and {.. .}, is the cyclic sum of the
(p + 1)-linear monomials:

[Ln ’ G,] - r)Gn+; , (1.17)

{Gro) (RRE] Grp}c

{Go,... ,G}e=Go-+ G+ Gy-Go---Gpy +...+G1-- G, - Go.

- Note, that a particular variant of this algebra Vir,, with totally symmetric bracket
in the third line and without central extensions, had been presented in [12] under

INote that the commutation relations between w, €, and @ are fixed by Eq. (1.9) and by the
condition 82 =0.

the name ‘fractional Virasoro algebra’. Recently, a generalization that relates the
algebras of Refs. [5] and {12], has been given in [7]. k

The rest of the paper is devoted to a generalization of the previous scheme to-
arbitrary integer p. In Sect.2, a necessary preliminary technique of the paragrass-
mann algebras is developed. It is interesting in itsell as a consistent differential
calculus on the paragrassmann algebras generalizing that of our previous work [8].
A somewhat surprising result of this analysis is that all apparently different real-
izations (‘versions’) of the paragrassmann calculus are, under certain restrictions,
equivalent. This allows us to speak of the unique paragrassmann calculus. gener-
alizing the Grassmann one for one variable § and one differentiation d;. Possible
formulations of the paragrassmann calculus for many variables are discussed in a
separate publication {13]. = : : : ~ :

In Sect.3, we recollect the definition of the fractional derivative D (DF+! = 8,) in
any version of the paragrassmann calculus. Then in the spirit of the above scheme,
we introduce paraconformal transformations to construct a paraconformal group
CON, and corresponding algebras CON,, and Con,. We show that a p-analogue
of the infinitesimal transformations (1.11) must look as

Ny I

= 64 AE(z,9 .
Y e, (1.18)
Unlike the Lie algebras (and superalgebras) having only first order generators, here
we have to retain ‘higher-order generators’ thus introducing into consideration a
p-jet structure. This suggests that the algebra CON, might be a p-filtered Lie
algebra containing the generators of p ‘generations’ {£(#)}, so that an analogue of
the formula (1.13) would look like

F=(14+ MO} 2HLOY 4. .+ X {LO)) F .

The algebra CON, contains generators of a new type (we call them 7-generators)
that do not act on z but are crucial in closing the algebra. The algebras Con, can
be closed without them.

In Sect.4, we briefly discuss the meaning of the construction in terms of algebraic
geometry. This allows us to introduce the central charges in a straightforward way
and so derive the algebras Vir,. ,

The concluding Sect.5 presents a discussion of the properties of these algebras,
possible generalizations, and unsolved problems.

Concluding this rather long introduction we would like to point out that the main
formal results of this paper were known to us for some time and have been presented
at seminars and workshops this spring. However, we refrained from publishirg them
prior to understanding their geometric meaning. We hope that we can now suggest
a reliable geometric foundation for our formal construction in terms of the versions
(‘version covariance’) and of jet-like structures.



2. Paragrassmann Algebra-Il,4,

_ In Ref. [8] we have considered paragrassmann algebras I'p41(N) with N nilpotent
variables 0, 5% =0, n = 1,..., N. Some wider algebras Il,.,(/N) generated by 0,
and additional nilpotent generators 8, have also been constructed. These additional
generators served for defining a paragrassmann differentiation and paragrassmann
calculus. The building block for this construction was the simplest algebra ,41(1).
By applying a generalized Leibniz rule for differentiations in the paragrassmann
algebra I';,1(N) we have found two distinct realizations for II,4,(1) closely related
to the g-deformed oscillators. We have mentioned in [8] that other realizations of
the H,4:(1) may be constructed. The aim of this section is to demonstrate this
" in detail. We shall also show that, under certain conditions, all these realizations
are equivalent and one may choose those which are most convenient for particular
problems. .

Intuitively, paragrassmann algebra II,,, should be understood as some good
p-generalization of the classical fermionic algebra I,

P2=0 = &, (2.1)
0+60 = 1. (2.2)

By ‘p-generalization’ we mean that (2.2) is to be replaced by
grt! = 0 = 57+ : (2.9)

(it is implied, of course, that 6 # 0 and the same for & ). So the question is,
which generalization of (2.2) might be called ‘good’. Many variants have been tried
already (see for example {6]). As a rule, they deal with certain symmetric multilinear
combinations, like 628 + 686 + 86° (for p = 2), and meet with difficulties when
commuting ¢ and 0.

To find a correct generalization recall that (2.2) allows to define the Grassmann
differential calculus. It shows how to push the differentiation operator 8 to the right
of the variable 8. On the other hand, representing d and 6 by 2 x 2 real matrices, we
can make them Hermitian conjugate and thus interpret as annihilation and creation
operators. Then (2.2) is the normal ordering rule. The second important feature
of this relation is that it preserves the Grassmann grading, —1 for @ and +1 for
6. In physics terminology this means that the normal ordering is not changing the
number of ‘particles’. '

Thus, to construct a generalization of the relation (2.2), we first define a natural
grading in the associative algebra generated by 6 and 8 satisfying (2.3)

deg (078" 070% ...08" ) = Tr; — Ts; , (2.4)

and denote by Il,;1(l) the linear shell of monomials of the degree . Then our basic
requirement is

aset L0 ={679", r—s=1} formsabasisof Mpyp(l). (2.5)

This immediately reduces the range of possible degrees to —p < ! < p and makes
all the subspaces I,,1(!) and the entire algebra ‘ '

Opyr = @ Hp41 (1) (2.6)

1=—p

finite-dimensional:
= dimn) =p+1-l| , dim(lu)=(p+1)°.
Then, by applying the assumptions (2.4) and (2.5) to 89 we find that
06 = by + b,00 + b,0°0° + ... + b OPOP, . (2.7)

where b; are complex numbers restricted by consistency of the conditions’ (2:4) é.nd
(2.7) and by further assumptions to be formulated below. With the aid of Eq. (2.7)

any element of the algebra can be expressed in terms of the basis 67d%,-i.e. in the
normal-ordered form.

A useful alternative set of parameters,. oy, , may be defined by
9% = bt 4(...)0, | O (2.8)

where dot§ denote.a polynomial in 6 and 9. This relation is a generalization of the ;
commutation relation for the standard derivative operator, 8,z* = kz* + z*9,, and
we may define the differentiation of powers of § by analogy, - :

") = ot =0, ' T (29)
to be justified later. n

- By applying Eq. (2.7) to Eq. (2.8) one may derive recurrent relations conﬁectihg :
these two sets of the parameters:. B

a; = bo ’
@ = bo+ by, ,
¥y = bo + 610'2 + bza’laz ) (210)
h
(oe)!
Uy = bi———~,
+1 ‘ ; (ak—i)!

where (a)! = a1y . These relations enable us to express o) as a function of
the numbers b;, 0 < i< k — 1. The first few expressions are

@ = bo. agep T8 1=
1 0, Og= O-I—:Tl' as—-bo‘l"_‘b—l+bzbo(]+bl),
— ht
@ = boi__—b-i-+bszbg(l+bl)+bo(b3+bzbo)(]+bl)a3,... (2.17)



'The inverse operation, deriving b; in terms of ax, is well-defined only if all o # 0.
The consistency condition mentioned above is that the parameters must be cho-
sen so as to satisfy the identity
0=a967+ .
Taking into account that the second term in Eq. (2.8) vanishes for k = p+ 1 we
have ap41 = 0, with no other restrictions on the parameters ay with k& < p. The
corresponding restriction on p+ 1 parameters b; follow from Eq. (2.10),

a,,+1(bo, ceny b,,) = bo + b;ap + bgapa,_l +...+ b,,a,oz,,..l . " gy = 0 ) (212)

where the parameters a; are expressed in terms of b;. Any admissible set {b} deter-
mines an algebra H’{,‘,;_)l with the defining relations (2.3), (2.7). To each algebra .II,{,?I
there corresponds a set {a}. A priori, there are no restrictions on {a}, but, if we
wish to treat @ as a non-degenerate derivative with respect to 6, it is reasonable to

require, in addition to (2.5), that
all ax #0. . (2.13)

So let us call a set {b} (and corresponding a.lgebrall,{,ﬁ_)l) non-degenerate, if the
condition (2.13) is fulfilled, and degenerate otherwise. As it was already mentioned,
in the non-degenerate case the numbers b; are completely determined by the numbers
o, 80 we can use the symbol {a} as well as {b}.

At first sight, the algebras corresponding to different sets {b} look very dissim-
ilar. Indeed, different sets {6} determine, in general, non-equivalent algebras Ilf,i_)l.
However, this is not true for the non-degenerate ones. In fact, all non-degenerate
algebras Hﬂl are isomorphic to the associative algebra Mat(p +1) of the complex
(p+1) x (p+ 1) matrices. - : '

This isomorphism can be manifested by constructing an explicit exact (‘fun-
damental’) representation for II,{,‘,;_}1 . With this aim we treat ¢ and @ as creation
and annihilation operators (in general, not Hermitian conjugate) and introduce the

ladder of p+ 1 states |k), £ =10,1,...,p defined by
5(0) = 0, k) ~ 6*{0) , 61K} = Bl +1) , (2.14)

where f’s are some non-zero numbers, reflecting the freedom of the basis choice.
As |p+ 1) = 0, the linear shell of the vectors |k) is finite-dimensional and in the
nondegenerate case, when all fx #0 (k=1,... , D), ita dimension is p+ 1.

Using (2.14) and (2.8) we find ~

8I8) = (e /A = 1) . (2.15)

Thus the fundamental (Fock-space) representations of the operators ¢ and 9 is
9,,,,, = (mIGIn) = ﬂ"+16m'"+1 y ¢ (2.16)
Omn = {m|0jn) = (an/ﬂn)6M.'l—1 . (2.17)

It is not hard to see that for non-zero o’s, the matrices corresponding to ™g™ (m, n=
0...p), form a complete basis of the algebra Mat(p + 1). The isomorphism is es-
tablished. )

Nothing similar occurs for degenerate algebras. To show an evidence against
using them in the paragrassmann calculus, consider an extremely degenerate algebra
with bg = by = ... = b, = 0, b, # 0, 50 that all o = 0. This algebra has nothing
to do with Mat(p+ 1), and its properties essentially depend on the value of b;. It is
abelianif b, = 1;itis a paragrassmann algebra of the type I'p41(2) if b, is a primitive
root of unity (see [8]), and so on. We hope this remark is not sounding like a death
sentence on the degenerate algebras. At least, it has to be suspended until further
investigation which will probably prove their usefulness in other contexts. However,
if we wish to have paragrassmann calculus similar to the Grassmann one, we have
to use the nondegenerate algebras.

Thus, two natural requirements (2.5) and (2.13) reduce the range of possible
generalizations of the fermionic algebra II, to the unique algebra I, that is iso-
morphic to Mat(p + 1)*. The grading (2.4) in 1,4, corresponds to ‘along-diagonal’
grading in Mat(p + 1). Different non-degenerate algebras n,‘,‘;}l are nothing more
‘than alternative ways of writing one and the same algebra II,,,. We will call them
versions having in mind that fixing the b-parameters is analogous to a gauge-fixing
(in H. Weyl's usage). '

This implies that we will mainly be interested in ‘version-covariant’ results, i.e.
independent on a version choice. Nevertheless, special versions may have certain
nice individual features making them more convenient for concrete calculations (tlius
allowing for simpler derivations of covariant results by non-covariant methods). Sev-
eral useful versions will be described below. Before turning to this task we end our
general discussion with several remarks. . v

First. The existence of the exact matrix representation (2.16), (2.17) is very
useful for deriving version-covariant identities in the algebra II,,,. For instance, it
is easy to check that ,

(0,0} = Sa) o,
{or, G(P)} = Ha,

and to find many other relations. Here we have introduced a useful notation

(2.18)

(E, ¥} =EW + UEV .. + ¥E. (2.19)

The identities (2.18) generalize those known in the parasupersymmetric quantum
mechanics [4]. ' ‘

Second. One may adjust the parameters S to get a convenient matrix represen-
tation for § and 8. As a rule, we take fx = 1. Note that for the versions with real

3H. Weyl in his famous book on quantum mechanics had foreseen relevance of these algebras to
physics problems. After detailed description of the spin algebras he discussed more genersl finite
slgebras and remarked that the finite algebras like those discussed here will possibly appear in
future physica. We think it natural to call 4y the ‘finite Weyl algebra’ or ‘para-Weyl algebra'.



parameters o, it is possible to choose fx so as to have 0F = @ . We also normalize
0 and @ so that a; = by = 1. This gives a more close correspondence with the
Grassmann relation (2.2).

Third. In a given (non-degenerate) version H}21 the components of the vector

RY) = col{#6*}i_;=i form a basis of the subspace II,41(!) that is completely equiv-
{8} J R P

alent to the original one having the components L({?} = col{0'® }i-j=1, see (2.5).
Hence, there must exist a non-degenerate matrix CE?} € Mat(r® ,C) connecting
these two bases, -
4R§‘3} =Cf)- LY, l=-p-.p- (2.20)

The elements of the C-matrix are certain functions of b; which are usually not easy
to calculate except simple versions. The original commutation relation (2.7).1s also
included in the system (2.20), for { = 0. _

Quite similarly, two L-bases (R-bases) taken in different versions {6} and {b'}
are connected by a non-degenerate matrix Mz (Nsy), e

Ly = Mo Liwy » | (2.21)
Ry = N{w}R{y} , (2.22)
where the indices (I) are suppressed. The matrices M&,} (and Nf?b,}) belong to
Mat(x®) and obey the cocyclic relations:
Mg Mypsy =1, MpyMpeyMpey =1.
By applying Eq. (2.20) we immediately get the relation
Ny = C{(,}M{W}C{_b}} . ‘ (2.23)

that permits evaluating C-matrices for complicated versions once we know them in
one version. In particular, Eq. (2.21) tells that the operator J in any version can
be represented as a linear combination of the operators a, 00, ..., 00or
of any other version. We shall see soon that this, for instance, permits to realize
g-oscillators in terms of generators § and 8 of other versions and vice versa.

Now consider some special versions related to the simplest forms of Eq. (2.7).
{(0): Primitive Version
Here by =...=b,y =0, b=-1, 80 that o; =1,
(8(0))mn. = Omn-1) 3(0)9 =1- 9}’6&)) . (224)

This realization of @ may be called ‘almost-inverse’ to 6. In the matrix represen-
tation (2.16), (2.17) with fx = 1 we have T = 8() - This version is the simplest
possible but the differential calculusis a fancy-looking thing in this disguise and it is
unsuitable for many applications. Still, it has been used in some cases. For example,

10
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the operators § and dg) for p = 2 coincide with parafermions in the formulation of
the parasupersymmetric quantum mechanics [4]. Realization of parafermions and
parabosons [6] for p > 2 within our approach is possible in other versions  discussed
in Appendix.

(1): g - Version, or Fractional Version
Here by =q#0, by=b;=...=b,=0,s0 that

o = 1+¢]+...+1;"'1 =1—_—i .

1-g¢

The condition ap41 = 0 tells that ¢*! = 1, (g # 1) while the assumption that all

a; # 0 forces ¢ = b; to be a primitive root, ie. ¢**' #1, n<p. Thus, in this

version (9 = dy), ‘
1—-¢g*

3(1)(07-.) = ("’)qgﬂ'—1 y (n)g= =g

These relations were introduced in Ref. {8] by assuming that 8 is a generalized differ-
entiation operator, i.e. satisfying a generalized Leibniz rule (a further generalization
is introduced below). The derivative 8y is naturally related to the g-oscillators
[15.16] and to quantum algebras; Eq. (2.25) is also extremely convenient for
generalizing to the Paragrassmann algebras with many 6’s and @’s (see [8], [13] and
references therein).

(2): Almost Bosonic Version
For this Version

by=1, bg=...=b,., =0, b,#0, so that ar =k

and a4 = 0 gives b, = —’:’—!l . Thus
_ __p+1
(B@)mn =1 St » Ozyf = 1+ 60(z) — p—;!— 09,y (2.26)

suggesting that this derivative is ‘almost bosonic’ as 9(2)(f") = n6*! (n<p+1).
This Version is convenient for rewriting the generators of para-extensions of the
Virasoro algebra in the most concise form in the next section.

In agreement with the general formula (2.21), derivatives from different versions
can be expressed one through the other by certain non-linear relations. For example,

Bty = S~ (0=1Y gigin
>+ ALl
G+ @

Similar formulas can be written for any couple of versions.
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Let us now discuss the interrelations between & and 3. As we have already
mentioned the notation itself hints at treating @ as a derivative with respect to ¢
(see (2.8). To be more precise, let us represent an arbitrary vector |F) = 3°F_, filk)
of the ‘Fock space’ (2.14) as a function of ¢ ’

F(6) =Y fus*.
k=0

The action of the derivative 3 on this function is defined by (2.15) (fi = 1),

1) =0, )= 1<n<p). (2.27m)
It is clear, however, that this derivative does not obey standard Leibniz rule 8(ab) =
(a)b + ad(b).
So consider the following modification of the Leibniz rule [8], [14]

A(FG) = 8(F)3(G) + g(F)3(G) . (2.28)

The associativity condition (for differentiating FGH) tells that g and § are homo-
morphisms, i.e. ‘

9(FG) = g(F)g(G) , 3(FG) = 3(F)3(G). (2.29)
The simplest natural homomorphisms compatible with the relations (2.27), (2.28),
and (2.29) are linear automorphisms of the algebra I'p41,

g(@)=19, g(6) =46, (2.30)
where v, 7 are arbitrary complex parameters and

Y- "’k. , }(2.31)

-7

O =

Now the condition (2.12) yields the equation v

,?:+l — ..rv+1
Opy1 = ——";T:y_— =0, (2.32)
and assuming nondegeneracy requirements o # 0 (k < p+1) we conclude that 4/v
must be a primitive (p+1)-root of unity. Thus we may formulate another interesting

version of the paragrassmann algebra I, .

(3): g-g - Version

As the parameters oy are glven by Eq. (2.31), we have to calculate b; by solving
Eq (210): bo=1, by=F+7v-1, ba=(y=Fr+v=-1)/(F+) ---

Here v and 7 are complex numbers constrained by the condition that ¢ = J/yis a

primitive root of unity
¥ p+l
() =
Y

12
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From Eqgs. (2.28) and -(2.30) one can derive the following operator relations for the
automorphisms g, §

-9 =g, 0—300=g. (2.33) -

For the special case ¥ = (7)™ = ¢*/? redefining 8 = a, 0 = at, allows to

recognize in (2.33) the definitions of the g-deformed oscillators in the Biedenharn-
MacFarlane form [15]). Note that the Version-(1) can be derived from the Version-(3)
by putting ¥y =¢, y=1 (or § = 1, v = g), So we may regard the Version-(3) as
a generalization of the Version-(1). Moreover, it can be shown that for p = 2 both
the Version-(0) and the Version-(2) are specializations of the Version-(3). However,
it is not true for p > 2 and, in general, the Leibniz rule (2.28) has to be further
modified. This modification is discussed in our accompanying paper [13] in which
paragrassmann calculus with many variables is also considered in some detail. Note
that a reasonably simple many-variable paragrassmann calculus with a generalized
Leibniz rule can be formulated only for Versions (1) and (3). Nevertheless, Version-
(2) is also useful in applications as will be demonstrated below.

3. Paraconformal Algebra Con,

To start realizing the program outlined in Introduction consider a para-superplane
z = (z, 0), where z € C and 0 is the generator of the paragrassmann algebra
[py1(1) = Ty, ie. 67*! = 0. Any function defined on this plane has the form

F = F(z, 0) = Fo(2) + 0Fi(2) + 0’ F3(2) + ... + 0P F,(2). (3.1)

It is useful to define an analogue of the superdenvatlve asa(p+ 1) root of the
derivative 9, [8], [9]

D= 39+p.( a,, D" =ud,. (3.2)

p)'

We denote here the f-derivative in arbitrary version by dy instead of 4 and shall
often use this notation to make some formulas more transparent. The number u
will be fixed later. k ~

The action of this operator on the function (3.1) is

DF(z, 6) = Fi(z) + 020 F5(2) +... + 0P Fp(2) + p— Fo(2) (3.3)

( )'
where F/ = 8,F. In analogy with the super-calculus (see [11}) the inverse operator
D! defined by
z t f* 2 k P
D= / dz F = i‘ﬂ/ do’ Fy() + 0Fo(2) + —Fy(z) + ... + L Fya(2)
G ag ap

may be formally interpreted as an ‘indefinite’ integral.
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Let T;4.1(1) is embedded into some infinite dimensional paragrassmann algebra
Ppt1(1 + o) with generators 6y = 8, 61,8;,... . Then a ‘definite’ integral may be

defined ¢,
Zy Zy Z3
/ dz F =/ dz F—/ dz F, (3.4)
z

naturally giving p + 1 coordinates for para-super-translation invariant functions on
the para-superplane are (cf. with [11]):

Z)
912:01—02=/ dZ,
Zz

]

(2) / dz/ dz(l)—-—— _9192+(1-£-)0§

z(D-‘)
68 = 71, = / dz / dz» . .. / dz®) =
1

o —z) - g, - L)L gz
p(ZI 32) ( p)' 2 ( 2)(Olp—1)! 1 Y2

We think that these properties of P and D! justify regarding D as a correct
generalization of the superderivative.
Now consider invertible transformations of the para-superplane

z ~ #z,0), deg(?)=0,

6 — 0(z,60), deg(f)=1. (3.5)
F = Zy(2)+0Zi(z)+ ...+ 0P Z(2), (3-6)
§ = Qo(2) +00:(2) +...+6%6,(2), (3.7)

where deg 18 a natural Z,4;-grading in I'p41(1 + 00) and Z; and O; are functions
of z with values in T'p41(1 + 00)/Ty of needed grading. Here we assume that it is
possible to move all 6’s to the left-hand sides of the para-superfields (3.6) and (3.7)
(for Version-(1) it is evident). We also require that

grtl = 0. (3.8)

The corresponding transformation for the functions (3.1) is defined as
F=F(z,0)=F(3,0) = FO(E) +0R(Z)+...+0PF(3). (3.9)
4The integral over z is to be understood as a contour integral in the complex z-plane, and it

is contour-independent as far as the contours are not crossing singularities of F;(z). Thus the
integral might be regarded as a ‘contour’ integral in a para-superplane.
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In accord with (3.3), DF is

DF = Fi(2) + §F(3) +... + ( “),ePF'(z) . (3.10).

Following the route described in Section 1, let us consider the transformations
obeying the requirement analogous to Eq. (1.9)

DF(6,3) = 9(6,2)DF(4, 2) , (3.11)
or, in the opérator form, .
D=23D. (3.12)
Acting on # we immediately get i ‘
$="DF. (3.13)

Consider main properties of these transformations. If exist, they form a group
since two subsequent transformations z — %(z) — Z(%(z)) automa.t.lca.lly yield (see
(3.12), (3.13)) the needed multiplier

= (DE)D = (DF)(DE)D = (DD . (3.14)

This group will be called ‘paraconformal’ and referred to as CON,,.

The condition (3.12) is a very sirong restriction on possible form of transforma-
tion functions (3. 5) It is not hard to see that all the restrictions can be derived by
putting F to be 6%, 7 and §%. These give

D = i, @)
D: = ? )‘(De)e"’ (3.16)
D(fz) = (Dh)z. (3.17)

Note that (3.16) allows us to interpret (3.12) as the rule for differentiation of com-
posite functions

D= (Dg)(39+p )' 8,) = (D8)dy + (D2)d, . (3.18)

(o

Summarizing the main properties of the transformations satisfying (3.12), we con-
clude that it is reasonable to regard them as the paraconformal transformations of
the para-superplane.

The main restrictions on the parameters of a paraconformal transformations are
coming from Eq. (3.16) that, taken in components, give rise to the following relations
between Z; and ©; (defined by (3.6), (3.7))

15



_ I
ho= G

- _H 1 (>-1)
0% = Cy0e:0f+ el , ef™y,
(3.19)
- B oo 1 -
o1z, = (ap)!(er le,eg+...+&-2-el{(eel)<? N, 6},
0z = G"—),eve:,e“aper-lep{ee, , 8V} +...40,-(60,).
o)

Here the notation introduced in (2.19) is used.

These relations generalize the much more simple Eq. (1.10) to any p . It is
rather hard to push forward the analysis with complicated expressions (3.19) without
having a well-established technique for handling many thetas. For this reason, we
are forced to turn to the infinitesimal language. Then, introducing a small c-number
parameter A one may rewrite the transformations (3.5 — 3.7) as

#(z,0) = z42Q(z,0)+00%, Q= iﬁ‘w.-(z) , (3.20)
0(z;0) = 0+ME(z,0)+0(\?), €= f:e‘ei(z) . (3.21)

where w; and ¢; are first coefficients in expansion of functions Z;(z) and ©;(z) in
powers of A. A priori, there is no reason to exclude the higher powers from consider-
ation. The infinitesimal transformations (3.20), (3.21) satisfying the paraconformal
conditions (3.15 ~ 3.17) define a space which we denote by CON,. This is an in-
finitesimal object corresponding to the paraconformal group CON,, and so it must
carry some algebraic structure induced by the group structure of CON, . In this
sense, we will speak of ‘the algebra CON,’ though its algebraic properties will be
discussed later. Here we briefly analyze a geometric meaning of CON,.

As it is evident from (3.21), the only component of § containing a finite part is
O; = 14 Xey(2); the rest of ©; are of the first order in A. Then (3.19) tells that
only Z, and Z, contain the ierms of the first order in A, while the other Z; with
1 < i< p— 1 must be of the order A»*'=*. This suggests that all terms up to
the order A’ must be kept in (3.20), (3.21). So, since the transformed function is
generally defined as F = (1 + (general element of the algebra))F , (cf. (1.13))
a general element of the algebra COA/, must be of the form

(general element) = A{LD} + A{ LD} 4 ... 4+ W{LP)}. (3.22)

Here we denote by {£*)} a set of the generators of the M-th generation. Eq.(3.19)
shows that M-th generation {£(*)} must contain some new generators {X(*)} that
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are not present in {£(¥~1}. This would guarantee, in particular, the appearance
of non-zero Z,4,—y. I it were possible to put all Z; (i = 1...p — 1) to zero we
would get rid of these subtleties. But as we will see below, this contradicts to the

requirement of the bilinear closure of the algebra COAN,. In fact, new generators .

naturally arise from certain bilinear brackets of the old, and this process stops only
at the p-th generation. That is an algebraic question, though.

Returning to geometry, the formula (3.22) indicates that the algebra CON, lives
not in the tangent space of the group, as it is customary for Lie algebras, but rather
in a space of p-jets. The p-jets are famous for that there must be generators of the
form (something)® (j = 1...p). This is right the case for the algebra CON,, as
we will see below. .

Now an explicit realization of the paraconformal algebra generators £(M) is in
order. We concentrate on the first generation because generators of the higher gen-
erations must be obtained through multilinear combinations of them. Substituting
(3.20) (3.21) in (3.15) — (3.17) we get the (first order smallness) infinitesimal form
of the paraconformal conditions

DIE, 6P} = (k+ D)(DEY* +{£,6%V)), k=1...p~1, (3.23)
PR = :)'((vs)eu{s,e@-l)}), (3.24)
DEz+6Q) = (’D‘:‘:)z+ﬂ . (3.25)

Eqs.(3.23 ~ 3.25) lead to certain restrictions on the functions ¢; , w;, (we as-
sume wy and ¢; to be ordinary functions, free of any paragrassmann content). The
condition (3.24) gives

w=w =, =wpy =0, (3.26)
1

o= lw{, , (3.27)

o w, = K {€0, 6%V}, (3.28)

(ap)! v
wherefrom by virtue of {¢g , 0(”)} = 0, coming from the nilpotency condition (3.8),

we have ]
I
= —— 0P . 3.29
ey @p (ap)!fo ( )

From the third relation (3.25) we find that

Py = o _gp =K 3.30
0Pw, () €, Of wp o) € , (3.30)
which, together with (3.29), gives the commutation relation, valid for any version:
Eoep + apﬁ‘"eo =0 (3.31)
17




The condition (3.23) provides the commutation rules of ¢; with 6* and 9:
8(0'{e:, 6)) = (k + 1)(sb ei* + 6'{e;, 6% D)) , k=1...p—1. (3.32)

We emphasize that, in general, these rules do not require any ¢; to be zero.
Thus the resulting infinitesimal paraconformal transformations of the first order
in A look as follows

bz = Muwo(z) — ——e0(2)67)

( )'
o wo(z)0 + 6%+ ...+ 6%,), - (3.33)

80 = Meo(2) +

5(6%) A({€o, 6%V} + fr ——— w0 4 07 {eg, 0%V} 4 PRy, 05DY )
To obtain generators of the transformations (3.33), it is convenient to define new
operators Jp and 8 acting on ¢* in the following way

Jo(6*) = k6", (3.34)
a&d(0®) = {e 6%V}, (3.35)

The first operator is a generator of the automorphism group of paragrassmann al-
gebra (see Ref.{8]). The second one is wanted to be interpreted as differentiation in
certain other version (), which is, in this sense, associated to the original version
(N). So we require, in addition to (3.35), that there must exist a set of non-zero
numbers & such that

B(0%) = a6 ' . (3.36)
This requirement is not too strong but, together with (3.35), it leads to certain non-
trivial resirictions on commutation of ¢; and §. We will not specify the associated
version in general. It is enough for us, that, as we will see soon, for the special
versions (1), and (2) the associated versions are (1),-1 and (2) itself respectively.

Now it is convenient to introduce the operator

oy,
Q=0-— 67d,
ap (o)t ’
and assume y = -—ap(ﬁ;ﬁ%, so that QP+ = 9, (Q is an analogue of the supersymmetry

generator and might be called the para-supersymmetry generaior).
By virtue of these operators we can establish the generators of the transforma-
tions (3.33) in any version (we omit zero index at wy from now)

1
T(w) = wB,‘+ p_-l-—l_wljo’

Gleo) = eo(59+(6%-!a.)=eoq, (3.37)

Hi(ej1) = 6ejnds.
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These are the generators of the first generation {€(*)}. They must generate, through
correct bilinear and multilinear brackets, the entire algebra CON, corresponding to
the group CON;,,.

Let us now describe these generators in the preferred versions.

Version-(1), .

Remember that this means 80 = 1+ ¢f8, and therefore 36* = (k),0** + g*6*a.
Then, assuming the commutation relations €;6 = r;f¢;, where r; are some numbers,
we find from (3.32) that all these factors ; must be equal to ¢ (for ¢¢ this might be
seen from (3.31) since @, = (p); = —¢”). Now recalling the definition of 9 (3.35) we
find that

B(6*) = (k)16 = ¢ * (k)6

and so & may be represented as 8 = g~'d, where g~! is an autc;morphism of the
paragrassmann algebra I’y defined by g~}(6%) = ¢g~*6* . It is easy to prove (see [8])
that

g = ¢ =089—-68 ,
gl = ¢ =09-68 .

Thus, we see that 3 is in fact a differentiation in the associated Version (l)q“‘i-
The generators G and ¥ are represented as
'

Gle) = €@+ —— (p)q_l' 0;) =eQ , (3.38)
Hi(eje1) = g UVe; 167718, . (3.39)

while T-generator has the same form as in Egs. (3.37). .

We would like to recall that the operator D (3.2) in the Version-(1), and the
para-supersymmetry generator @ (3.38) have been introduced earlier in the context
of the fractional supersymmetry [9].

Version-(2) .

The unique property of this version is that the 0-derivative actsas the standard
one except the terms proportional to 6P in the Leibniz rule and corresponding terms
in the operator formulas. This departure from the standard rules is not important
in considering infinitesimal paraconformal transformations (3.33), and this makes
Version-(2) the most convenient to express the generators.

The basic formula of the Version-(2) required in this context is

p+1

007 = 091 4+ 970 — ____gpy+1—3 , 3=1...p+1. 3.40
i+ Tr1=7) j 2 (3.40)

Applying it to the relations
{eo, 0}) = (k + 1){e0, 6%V}, k=1...p—1, (3.41)
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which are just (3.32) for ¢, one can easily get by induction that
e pF) =k e, k=1...p-1. (3.42)

On the other hand, (3.41) can be considered, by the definition of 8 (3.35 ~ 3.36), as
an equation on @& ’s

Gxt1 O(eab*) = (k+1) @r ™, k=1...p—1. (3.43)

In account of (3.42), we get @y =k forall k = 1...p since & = 1. Therefore 8 = 8
and the associated version is identical to Version-(2) itself.

Note that the above paragraph could be considered as a simplest example of a
general procedure for obtaining the associated version. Note also that the relations
(3 42) together with (e 6%) = ~p?0r~1¢, = —G'Llﬁep 1¢qdP (67) can be summarized
in a single operator formula

=ed— —P g1
3 € = €0 o ])!9 @F — - 1)|
This is an example of how the commutation relations of an algebra with many
paragrassmann variables can look in a version other than Version-(1). In fact, they
can look as monstrously as one wants.
The operator Jy, standing in the T-generator, has a very simple expression in
Version-(2): J, = 68, and so the generators (3.37) look in this version in a quite
vector-like fashion

609"‘13”

T(w) = w’gag )

1
r+1

G(eo) €a(0s + F—B,) , (3.44)
Hi(ejn) = F*ej4ads.

Usually, to derive some identities about the generators, it is better to take them in
Version-(2), in the form (3.44). Version-(1) is better adapted to the situations with
many paragrassmann variables.

Now let us turn to the algebra of the generators (3.37). The commutators w1th
T are simple as they should be due to the commutativity of w

[Tw), T(m)] = T(wn' —d'n), (3.45)

[T@), 6] = 6w~ i ), (3.46)
—_ X ! __.7__ /

[T, Q)] = o'+ —Loute). (347
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The rest of the commutators promise some subtleties. For instance, the commutator
of two G-generators gives rise to a new generator G(?)

[6(c), G(¢)] x GP(eC — Ce) + %H,_l(ec — ¢+ (e — (). (3.48)
This new generator has the form

D) = 4Q" + 36— (3.49)

( )'
and contains a term ¢67~'3, , modifying z on a quantity proportional to 6772, that
is forbidden by the condition (3.26). Note, however, that (3.26) is a condition on
the first order smallness variation, while G®) appears only i in the second order of
smallness. Similar effects occur when considering commutators of two H-generators
or of G and H, giving rise to the generators 'H(z) The latter have the form 'H(n)(gb)
¢93+1 a2 .

G and 'H( ) are nght those new generators of the second generatlon, {x@},
expected to appear in the term of order A? in (3.22). They could be obtained
straightforward by reproducing the reasoning (3.23 ~ 3.37) for % and § being taken
from (3.20), (3.21) up to the terms of the order A%..

Similar procedure can be carried out (but the calculations become more and
more complicated) for M , M =3, 4, etc. , giving rise to the generators of M-th
generation {G(M) 'H(M) } = {X¥)} . Generators (M) are right those that contain
aterm ~ GPH1-Mg, whlch gives rise to non-zero Zp4 s in (3.19). Generators 'H(M)
are proportional to 9-’ "+15M and do not affect z-coordinate. They lead to a devnatlon
of 0¥ from (6)™ on a quantity of order AM. Actually, this could be interpreted as
a shift of the version during a paraconformal transformation.

New generators stop appearing at the order AP. This fact could be explained by
two circumstances. First: the resource of possible combinations of § , & and 8,,
which are the building blocks for generators, is exhausted at the order A?. Second,
(closely related to the first): the algebra of the generators

(L0} = (LD} U{AD}U...U{XP} = {T, G, H;; 6D, HP;...; GO, HP)

closes bilinearly. So, if we denote A() the Linear shell of all the generators of M-th
generation, { L)}, then the entire a.lgebra CON, can be performed as a p-filtered
algebra ‘

CON, = Al®) = AG) 5 A1) 5 D AP 5 AW [A(M) ANy AM+EK)

Each coset AM) /A=) ig baged on the generators { XM )}

An explicit expression of the bilinear brackets [...];x is not known to us yet,
except the [...]J1, which is simply the commutator. In general, it is not clear, which
combination of the para-generators (this word apphes to G- and H-type ones, in any
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generation) should be taken, because the true bracket should be determined by the
analogue of the Hausdorff formula for the para-supergroup, and the latter has not
been obtained so far. Though taking the commutator of two G-generators seems
to be more or less consistent with the first order calculation, the commutator of,
say, G and G seems scarcely having any relation to the group CON,. We would
not like also to care about commutation properties of ¢;, especially taking into
account that for general elements of the paragrassmann algebra of many variables
the commutation formulas are not specified.

So the best thing we can do in this situation is to extract paragrassmann mu}-
tipliers out of all -8 and omit them, in analogy to what is done in the supercase,
leaving the arguments of all generators to be just ordinary functions commuting with
everything. Then we have to investigate the identities of such ‘deparagrassmannized’
(or, as we prefer to say, ‘bare’) generators, keeping in mind the hope that they will
contain some hints about the true structure of the true para-superalgebra and para-
supergroup. The complete and rigorous construction of these objects would require
a more sharpened technique of handling paragrassmann algebras of many variables
than we actually have.

So let us proceed the dealing with ‘bare’ para-generators, which will be denoted
by the same letters but in more modest print. We concentrate on G-generators, for
the reason will be clarified below. , ‘

The identities generated by G’s can be described by three following statements:

1. The cydlic bracket of any number of G-generators depends only on the
product of their arguments: -

1 .
—M-{G(e;), ey Glem)}e=GMn), n=€-... ex (3.50)
2. The similar fact takes place for G(M);

Tl{‘{G(M)("h)» ces ,G(M)(Y)K)}c = G(KM)(C) y $=m-...-nx (3.51)

G(P'“)(w) = T(w) (3,52)

These assertions can be proved straightforwardly by virtue of certain identities
in the algebra II,4+;. The third of them presents the simplest variant of the closure
of the algebra generated by T' and G by the cyclic bracket, or the cyclator, of
p+ 1 G-generators. ‘ ' '

The identities (3.50) serve the same time as the definition of the generators G(*)
which must be treated as the ‘bare’ variants of G(M). They have an elegant explicit
form 1

G(M)(’I) =n QM + M 77"7p+1-u M=1,..,p+ 1) ) (3'53)

where J; are certain generators of paragrassmann algebra automorphisms acting as
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Another consequence of (3.50 — 3.52) is existence of a set of non-equivalent
(p + 1)-lincar brackets for composite p + 1. Really, if p+ 1 = vy ... 1) for some
integer numbers v;, one can replace G®+1) i (3.52) by the v;-linear cyclator of the
generators G»**). Then, continue using (3.51), replace each of Grn) .by the
vg-linear cyclator of the generators G#+1)| and so on. As a result one yleliis a
(p + 1)-linear multi-cyclic bracket of the generators G. Tt is completely determined
by the (ordered) sequence v = {vy,...,vx) of the orders of sub-brackets { from oyter
to inner ), and may be labelled by the subscript v. The subgroup of,permutatu?ns
that leaves the bracket {...}, invariant will be denoted by H,. Its order, which
coincides with the number of monomials in the bracket, is

N, = (.. vea(m)™ )"

It is curious to note that this number is a divisor of (p+ 1)! .

Brackets corresponding to different sequences v are linearly independent. For
example, for p = 5 one can find three multi-cyclic brackets, corresponding to the
sequences (6) , (2,3) and (3,2), which we represent symbolically as {123456},
{{123}{456}} and {{12}{34}{56}} (here and below {.}= {}c) They are
evidently independent and containing 6, 18 and 24 terms respectively. One could
also introduce some not so symmetrical brackets, of type {{12}{34}{5678}} or even,
of type {12}3 4 {23}1+ {31}2, but they can be reduced to a sum of several classes
of multi-cyclic brackets. :

Thus the algebra generated by T and G can be established in general form as

[T(w), T(m)
[T(w), G(e)] -:- e, (3.54)
{Gleo), Gler), ---,Glen)ly = NT(coer---65) -

I
o
3
d\
|
€
2

i
2
3
m\
|

With introducing the component generators

L. =T(z™™*"), G, =Gz (3.55)
it can be performed as

s Lu} = (n=m)Llasm
[Ln ’ Gr] = (P: 1 - T‘)G,H_,. ) (3.56)

{Gr-. G}y = Ny,

A particular case of this algebra when v denotes the brackets with all pe'rmutations
of G ’s have been presented in the papers [7],[12]under the name ‘fractional para-

Virasoro’ algebra.
It must be noted that the generators of the algebra (3.54) possess a general
representation depending on an arbitrary ‘para-conformal weight’ A (cf. (1.16)). In
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the case of Version-(2), the generalization of the formulas (3.44) looks as

Tw) = w3,++w’(089+A),

A ,0°
e(ag+—3)———e g

G(e) (3.57)

The algebra (3.54), or (3.56), will be called below ‘the paraconformal’, or Con,,

and its central extensions will be present in the next section.

Before turning to this task we have to make some comments on the H-generators.
Really, if the algebra Con, pretends to be a bare form of CON,, it has to handle
all the generators H; and H§M) , as well as T, G and G™), The problem is in
the following. In case of G-generators, the structure of the identities (3.50 — 3.51)
and the form of G™) is practically fixed by the requirement, that the argument
of G™) must be the product of the arguments of the correspondent G ’s. In case
of H-generators, the similar requirement is almost always fulfilled automatically,

and, therefore, it is not clear, which combination should be considered as the right
definition of H™), Then, there exist p — 1 generators H ) in each of p generations
M, so the number of different identities grows up drastlca.lly as p increases. All this
makes writing correct relations with H-generators a rather subtle problem.

To illustrate the situation, consider the simplest case p = 2 with one generator
H(&). The complete paraconformal algebra Con; may be written as

[T(w), T(¢)] T(w¢' ~u'$),
[T(w), G(e)] Glwe' — %w’e) ,

[T(w), HE)] = HWE +30'€), (3.58)
{G(e), G(¢), G(’))}c = 3T(n), '
{G(é)vG(C))H(E)}c = G(‘Cf))

{G(e), H(0), H(§)}. = H(eat).

G@-generator has the usual form (3.50). H®)-generator can be defined by
G()H(E) + ¢ H(€)G(n) = HD(n¢) , (3.59)

so that

G(Q)H(7) + ¢ HN7)G(() = G(¢T) - (3-60)
Here ¢ denotes a primitive cubic root of unity, but this has no connection to the ¢-
version. Note that there are no particular reasons for defining () as above, except
the conciseness of the formulas (3.59) and (3.60).

The cyclic brackets, similar to those in (3.58), also exist for p > 2 but their
number increases with p very fast due to the growing number of H-generators. So
the problem of a correct description of the H-sector in the algebra Con, looks rather
messy. It can hardly be solved without using a Lie-type theory of para-supergroups.
For this reason we have excluded the H-generators in our treatment of the algebras
Con,. The other reason is that the H-generators are irrelevant to constructing
central extension, as will be clarified in the next section.

24

4. Central Extension of the Con, Algebra

A geometric meaning of the algebra Con, becomes practically obvious after noting
that the arguments w , € of the generators (3.57) can be considered not as ordinary
functions but as A-differentials of a suitable weight. The general rule is that gener-
ators representing the currents of the spin s (conformal dimension s) must have the
differentials of the weight A = 1— 3 as their arguments. So, for T of the dimension 2
we have w € F~! and for G of the dimension LI—% we have ¢ € FEL‘ ( F denotes
the space of the A-differentials: F* = {w(2) : w(z) — (F)w(?), when' z—z}).
The algebra of the generators is then determined by suitable differential operators
relating the differentials of different weights. For the generators T' and G we may
write symbolically :

[T(w1), T(w:)]
[T'(w), G(e)]
{G(eo), - - - G(EP)}V

where the operators [, m, n act as follows:

G(m(w, ¢€)) (4.1)
T(n(eo, . - €p))

[:FY A Foo F

(1, w) = wwp—wjw;, (42
l= da—d ’
m:FN A FRT o FmT .
(w , €) — we-—;—+—1w’e, T (4.3)
m = d2__d1
n:(.’F"F+lTx x.’F'"Flﬁ),, — F-1 (44)
(0, --- ,¢) =+ €gr...t€p . )

Here_the symbol d; means differentiating the i-th multiplier; the subscript v reminds
of the symmetry of the bracket.

Let us now turn to central extensions of Con,. Being numbers, central charges
can arise from A-differentials only as residues of some 1-forms. Thus, all we have to
do to get the central extensions is to find out differential operators acting from the
left-hand sides of (4.2) and (4.4) to the space F*/dF°. The first is the well-known
and unique (modulo total derivative) Gelfand-Fuks operator of differential order
three: ¢ =2 — &5 . The second must be of the order two and have the symmetry
group of the bra.cket H,. Thus for the simplest, cyclic braacket we can construct
(24 operators ¥

pt+l )
. +1
= E d;i diyj J=1’-~';[p_2_—] . (45)
=1
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It is not much more Jdifficult  to construct the operators ¢( ) corresponding to
the bracket {...}, with the symmetry H,. For instance, the brackct of the type
{{123}{456}} admits two operators

%1 = didy+dyds + dsdy + dyds + dyds + dods
s = didy + dady + dsdy + dids + dads + dads
+ dide + dad + dads . ’ ; (4.6)

And so on. The larger is the symmetry group of the bracket, H, , the smaller is the
number of admissible central charges E, . For the multi-cyclic brackets

Vi
E=Y[5
k
The resulting extended algebra is

[T(w), T@)] = Tlwreh — wyon) + Cleon, wa)
[T(w), G(e)] = Glwe' - +,we) (4.7)

{Gleo), ..., Glep) ) NT(eo- ... &)+ 25:1 c,ip(")(co, 1 €p)

where N, is the number of the terms in the bracket. The central charge C can be
expressed in terms of ¢; by commuting the third line of Eq. (4.7) with some 7'(n)
and then comparing both sides of the resulting identity. Let us apply this procedure
to the cyclic bracket. Writing the generators in components we get the algebra
announced in the Introduction as Vir, :

[Ln N Lm] = (n— m)Ln+m + — (Z CJ) (n - n)5n+m,0 )

n
p+1

1
{Gros..-,Gr}e = (p+ 1)Ly, — Zc, (Zr,r.+,+——_;_—l-) 8800 5

. _ . [pt+1
J —‘.l...[—2 ]

Note that the symmetry of the extension operators may be taken wider than
that of the bracket. That would be equiva.lent to constraining some of the charges
¢j. For example, there exists a unique totally symmetric operator ¥ = 3}, < %id;
that can be used with all kinds of brackets. Unfortunately, this simple extension
seems to be unsuitable for constructing a non-trivial analogue of a Verma module.

[L'l) Gr] = ( - r)Gn+r ) (48)
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5. Discussion and Conclusion

Let us summarize the results and problems beginning with the results.

1. The first one concerns the paragrassmann algebra Il,,; generated by the
nilpotent variables # and 8. We have shown that the requirements:

a) all ’s can be moved to the right of all #’s with preserving the natural grading;

b) @ can be interpreted as a non-degenerate derivative with respect to § ;

uniquely determine 11,4, as the algebra isomorphic to Mat(p+1) with the ‘a.long-
diagonal’ grading.

Different admissible forms of the commutation relations represent different ver-
sions of the same algebra, and are connected by certain non-linear transformation.

2. Transforinations of the para-superplane preserving the form of the fractional
derivative D obey the transitivity condition and form a group CON, that is called
the paraconformal group.

3. The corresponding infinitesimal object, a ‘true’ paraconforma.l a.lgebra CON, .
is related to the space of p-jets rather than to the tangent space. CON, is a p-
filtered algebra with generators in p generations. Generators of M- th generation do
not occur in the order of smallness less than M.

The gencrators of the first generation are: the usual conformal generator T with

the conformal weight 2, the paraconformal generator G with the weight %—, and

the paragrassmann generators H; , (j = 1...p — 1) with the weights Ll'i . The
generators of the M-th generation are: G(M) with the weight 1 + -ﬁ &nd 'H(M)

with the weight 2%’-:_1-1‘ The H-type generators do not affect z-coordinate of the
para-superplane (z,6) but they are required by self-consistency of the algebra.

4. Algebra COMN, can be considered as a paragrassmann shell of a ‘bare’ (‘skele-
ton’) algebra Con, also called paraconformal. Its generators T, GM), H(M) have
as their arguments ordinary functions (in fact, A-differentials). The connectlon be-
tween CON, and Con, is trivial in the supercase (p = 1) but it is not so clear for
p>1 We ha.ve systematically derived identities in the algebra Con, that must en-
code some information about the structure of the algebra CON,, but understanding
of exact relations between these two algebras is siill lacking *

5. The algebra Con, can be closed in terms of T- and G-gencrators only (unlike
CON,). There exist many multilinear identities with G-generators based on the
cyclic brackets of arbitrary order. For composite p + 1, they give rise to a set of
non-equivalent (p + 1)-linear brackets of G closing to T This, by the way, makes
evidence that the algebra Con, contains as a subalgebra Con, for each (r+1) being
a divisor of (p + 1).

6. To each of these brackets there corresponds a set of basic central extension
operators having the same symmetry as the bracket. The wider is the symmetry,

5The matter may be illustrated by the following example: two identities in the algebra
Cony , {G(e),G(()} = 2G@(e¢) end [G(),G(()] = Hp_a(e¢’' — €'C) , are the reflections of
one relation (3.48) in the algebra CON,
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the smaller is the number of extensions. Constraining the coefficients (the central
charges), one can enlarge the symmetry of the central term as compared to the
bracket.

- Here emerges a branching point for future development.

One way is to consider different brackets (and the identities of smaller order as
well) just as the identities in the same algebra Con,, and then to deal with the
unique central extension that suits all of them. This corresponds to the extension
generated by the totally symmetric operator W.

"~ The other way is to forget all preliminaries about the infinitesimal generators
and paragrassmann algebras and to consider the algebras of T' and G with different
brackets as independent infinite-dimensional algebras, each having its own central
extension. This approach might appear fruitful for simple brackets, like the cyclic
ones. A right way is probably somewhere in between and hence the problem of a
lucky choice of the symmetry brea.kmg arises.

We think that ‘the right way’ is that leads to a nontrivial Verma module In fact,
a natural program to develop the theory is to define a suitable analogue of a Verma
module over the algebra Vir, and to search for degenerate modules, Kac determinant
and rational models. Unfortunately, even first steps appear to be nontrivial. Let us
illustrate the problem by a simple example.

Consider the algebra Vir; with the third line being taken w1th a totally sym-
metric bracket:

{Gra G, Gt}.wm = 6Lr+:+t + (/'(7"2 + s? + t2)6r+:+t,0 .

Assume that the constraint F,,, = {G,,G,} of the algebra Con, is preserved.
Then for any acceptable positive £ we can write two strings

Fzs;G_J’; +2F_§G§ =6Ly+ %C’(/c'J - 1) ,

= 2 2
2Fl’b.G_l‘b. + F_%&G? =6Ly+ 50(4k - 1) .
Now defining a vacuum so that
Goom0, LomA

(we wnite X =Y for X|vac) = Y|vac) } we immediately get a contradiction,
2
FaG_yp =6A+ —C(Ic2 -1 = -1-(6A + gC(41<:2 -1)),

unless both A and C are zero. This is an evidence of a rather general phenomenon,
namely: preserving constraints while keeping to a naive definition of the vacuum is,
as a rule, inconsistent with a nontrivial central charge (and often with a nontrivial
highest weight, as in the example). To bypass this disaster one might either try to
select an appropriate set of the constraints to be preserved or to redefine the vacuum
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in a more skilful way. Our attempts in this direction have not produced anything
valuable so far. )

There might be another variant of salvation, based on extending all order con-
straints in a consistent way, but this would require introducing fractional order -
differential operators in central terms which would increase dramatically the range
of possibilities.

One might also suspect the H-generators might play arole in defining the vacuum
and the module. However, the above example gives little support to this suspicion.

Some hght on the topic might be thrown by investigating concrete physical sys-
tems possessing paraconformal symmetry. But the algebraic results of the present
paper are hinting that quantizing such systems will be rather ambiguous.

Thus, the current problems may be summarized in the following kst:

1. The main theoretical problem is to find a rigorous connection between the
three constructed paraconformal objects: CON,, CON, and Con,. This problem
requires further developing the calculus for many paragrassmann variables,

2. It is not clear how to correctly include the H-generators into the algebras
Con, and Vtrp

3. The main practical question is to find non-trivial Verma modules over Vir, .

Ending, we would like to note that paraconformal algebras are not of a pure
aesthetic interest. For example, on a Riemann surface of genus g the natural scale
of conformal dimension i is 5777y » @8 a consequence of the Gauss-Bonnet theorem, and
thus the natural fractional jenvatlve is of the same order, and the natural conformal
algebra would be Vira,_; rather than Vir, = RNS. One may also speculate that
using paraconformal algebras might drastically change the critical dimensions in the
string theory.

6. Appendix

Here we describe parafermions and parabosons [6] in the framework of our approach
to the paragrassmann algebras.

1. Parafermionic Version )

Parafermionic generators § and 8 (97! = 7+ = 0) satisfy the commutation rela-
tions [6]

[0, 616] = —o0 , [[8, 618] =p (6.1)
It is hard to extract the basis for the algebra with these genera.tors, because we can
not move all @’s to the right-hand side of any monomial . ..0'0ig%¢" . ... Thus, our
aim is to find a structure relation (2.7) which is in agreement with (6 1). To do
this, we apply the relations (6.1) to the vector |k) = (6*). Then taking into account
Eqs.(2.8) we derive the following recurrent equations

p =20 — Qn41 — Up—1- n=1..,p, - (6.2)
g = Opy1 = 0. :
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The solution is . 'k(k ' . . )
cv;,:kozl_ 2— )P, p:—sl. ) ) » (63)

Choosing the normalization condition a; = 1 we have

p=2/p, ax=k(p+1-k)/p. (6.4)

From Eqs.(2.10) one can ﬁnd tﬁe parameters b; specifying the commutation relation
for @ and 4 (2.7). For first few b; we obtain
p—2 2 4 “
bo=1,bp=——, b= —mre | by = e ———————— | ... 6.5
e 2 R e ) (65)
2. Parabosonic Version ,
This Version is specified by the commutation relations [6]

{0, 8} =00~ 60 =—pf, ({9, 0}0]=08"-80=p0. - (6.6)
Now the recurrence equations are ’

k41 = @1 —p, k=1,...,p
@y = Qpy1 = 0. (6.7)
A solution of these equatlons (for p # 0 ) exists for evenr p only. With a; =1 we
obtain v
. p = 2/p, ‘
~k/p for even &, . (6.8)
{(p+l—k)/p for odd & .

As above, b; are derived by Eq.(2. 7)

Qr =

p+2 p+1 p+1
,by=2 ,bs=4 6.9
) (6.9)

Thus, we see that parafermionic and parabosonic algebras can be defined by the
relations (2.3) and (2.7) with an appropriate choice of the parameters b;.

bo=1,b1='
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- ownwnnos A. T., Wcaes A. n..‘KyDAMKOB A 5.
‘.naparpaccnanosu pacwupenuu anrebpu. Bupacopo , _

£5-92-393

i ﬂaeTca AanbHeiwee paasnTue naparpaccnanoaa Au¢¢epenuuanbnoro ucwuc-
- :nennA. NocTpoeHb  anrebput Npeobpa3osaHuii: NapacynepniocKocTy, coxpaHsoume :
'gopMy napacynepnpov3soAHOR, W 06CymAeH UX reoMeTpU4ECKUA CMuiCh. Hosaui
YepTa.aTWX anrebp COCTOMT B TOM, YTO OHW BKMWYawT 8 cebA reHepaTopu aBTo-
" MOp$M3IMOB NaparpaccMaHoBOR anreﬁpu {HapAAy. ¢ KOHGOPMHLMU TeHepaTopaMu Tvna:
“;PamoHa - Hesé - llsapya). B kadecTBe Nepsoro wara B MCCNEACBAHWN 3TUX ‘an-
_reSp mui BBOAMM Gonee TpakTyembe MynsTunuHeiHbie anrebpw, He copepwaume re-
.HepaTopoB HoBOro Tuna. B Takux anrefpax cywecTByeT MHOMECTBO MyNbTHUNWHeH-
. HHIX TOMAECTB, OCHOBLIBAMWMXCA HA UWKNUYECKHX NOnMKoMMyTaTopax. -BcneacTeue :
3TOr0 NOABNAKTCA Pa3NMYHLIE BOIMOMHOCTHM  ANA . 3aMbiKaHKA. [TOCTPOeHH UeHTpans-
 Hbie pacumpenms 3Twx anrebp.. Vix.4ucno BapuupyeTcs’ o1 1 Ao [(p+1)/2] B
?vaaaucnmocru oT subpannoﬁ ¢opmu 3amuKaHMa.; i

T‘vPaybo'ra sunonneﬂa a'ﬂabopaTopuulTeopefhwecxoﬁ vk OUANU.

) HpenpuurVOGbcnuheHuoro nﬁcfuryr_a uepﬁux nccaejonam‘m‘.‘ ﬂ&Gha 1992

" Filippov A.T.. Isaev A.P.; Kurdikov A.B: =~ . R .- UE5-92-393
r Paragrassmann Extens1ons of the V1rasoro Algebra o e

: The paragrassmann differentia] ca]culus 1s further deveIoped A]geb-'
. ras“of the transformations: of the.para-superplane preserving:the: form of
_.the para-superderivative are constructed and:their geometric meaning is =
~discussed. A new feature of these‘algebras is that: they contain genera-.
‘tors of. the automorphisms of the haragrassmann algebra (in addjtion to
"~'Ramond "~ Neveu. = Schwarz-1ike . conformal. generators)..As a first step in
ranalyzing these‘algebras we introduce more tractable multilinear algeb- .
- ras not including-the new generators. In these algebras there exists-a
"~ set'of multilinear identities based on the cyclic po1ycommutators Diffe-
‘. rent possibilities of the closure are therefore admissible. The:central .
:]-:"extensions of ‘the algebras'are ‘given. Their number varies from 1:to
'[(p+1)/2] depending on the form of. the closure chosen._

..-‘ Dl /w,
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