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Dedication 

This paper is in memory of Mikhail Konstantinovich Polivanov. One of the authors· 
(A.T.F.) had a privilege to be a friend of him for many and many years. He was 
not only a distinguished scientist but a true Russian intellectual having deep roots 
in Russian culture. It is a great sorrow that we can no more have a taik with him 
on science, poetry, religion ... 

1. Introduction 

Paragrassmann algebras (PGA) are interesting for several reasons. First, they are 
relevant to conformal field theories [2]. Second, studies of anyons and of topological 
field theories show the necessity of unusual statistics. These include not only the 
well-known parastatistics but fractional statistics as well [3]. There were also known 
some hints that PGA have a connection to quantum groups [4] and this co·nnection 
has been demonstrated in detail in Ref. [l]. Finally, it looks aesthetically appealing." 
to find a generalization of the Grassmann analysis [5] that proved to be so successful 
in describing supersymmetry. 

Recently, some applications of PGA have been discussed in literature. In Ref. [6] 
that inspired many other investigations, a parasupersymmetric generalization of 
quantum mechanics had been proposed. Ref. [7] has attempted at a more system­
atic consideration of the algebraic aspects of PGA based on the Green ansatz [8] 
and introduced, in that frame, a sort of paragrassmann generalization of the confor­
mal algebra. Applications to the relativistic theory of the first-quantized spinning 
particles have been discussed in [9]. Further references can be found in Refs. [l], '· 
[to]. . 

The aim of this paper is to construct a consistent generalization of the Grassmann 
algebra (GA) to a paragrassmann one preserving, as much as possible, those features 
of GA that were useful in physics applications. A crucial point of our approach is 
defining generalized derivatives in the paragrassmann variables satisfying natural 
restriction allowing to construct a differential calculus. As in the previous paper 
(l], here we mainly concentrate on the algebraic aspects leaving the applications to 
future publications. 

Section 2 treats algebras generated by one paragrassmann variable 0, 91>+1 = 0 
and a differentiation operator 8. This generalized differentiation coincides with 
the Grassmann one for p = 1 and with the standard differentiation when p -
oo. We construct a most general realization of these algebras and identify a set of 
nondegenera.te ones which proved to be equivalent. The different (but equivalent) 
realizations are presented in Section 3. 

In Section 4 the simplest PGA generated by many variables 0; and corresponding 
differentiations 8; are defined. They obey the nilpotency condition 01>+1 = 0 (IJP+l = 
O}, where 0 (8) is any linear combination of 0; (8;), and appear to be naturally 
related to the non-commutative spaces satisfying the commutation relations 0,0i = 



q;;0;0, , i < j {and similar relations .for 8;8;), where l;/1 = 1. These relations 
once more demonstrate a deep connection between PGA and quantum groups with 
deformation parameters q being roots of unity. 

Section 5 summarizes the results and presents one more relation of our algebras 
to quantum groups. 

2. Differential Calculus with One Variable 

In Ref. [l] we have considered paragrassmann algebras fp+1(N) with N nilpotent 
variables 0,., 0{+1 = 0, n = l, ... , N. Some wider algebras Ilp+i(N) generated by 0,. 
a.nd additional nilpotent generators 8,. have also been constructed. These additional 
genera.tors served for defining a paragrassmann differentiation and paragrassmann 
calculus. The building block for this construction was the simplest algebra IIp+l (1 ). 
By applying a generalized Leibniz rule for differentiations in the paragrassrnann 
algebra rp+i(N) we have found two distinct realizations for IIp+1(l) closely related 
to the q-deformed oscillators. We have mentioned in [t] that other realizations of 
the Ilp+1(l) may be constructed. The aim of this section is to demonstrate this 
in detail. We shall also show that, under certain conditions, all these realizations 
are equivalent and one may choose those which are most convenient for particular 
problems. 

Intuitively, paragrassmann algebra Ilp+i should be. understood as some good 
p-generalization of the classical fermionic algebra Il1 

02 = 0 = 
80+08 = 

82 

l . 
I 

By 'p-generalization' we mean that (1) is to be replaced by 

0p+1 = o = w+1 , 

(1) 

(2) 

(3) 

(it is implied, of course, that 0P I O and the same for 8 ). So the question is, 
which generalization of (2) might be called 'good'. Many variants have been tried 
already (see for example [8]). As a rule, they deal with certain symmetric multilinear 
combinations, like 028 + 080 + 802 (for p = 2), and meet with difficulties when 
commuting 0 and IJ. 

To find a correct generalization recall that (2) allows to define the Grassmann 
differential calculus. It shows how to push the differentiation operator{) to the.right 
of the variable 0. On the other hand, representing 8 and 0 by 2 x 2 real matrices, we 
can make them Hermitian conjugate and thus interpret as annihilation and creation 
operators. Then Eq. (2) is the normal-ordering rule. The second important feature 
of this relation is that it preserves the Grassmann grading, -1 for 8 and + l for 
0. In physics terminology this means that the normal-ordering is not changing the 
number of 'particles'. 
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Thus, to construct a generalization of the relation (2), we first define a natural 
grading in the associative algebra generated by 0 and lJ obeying Eq. (3) 

deg (0'' 8 11 0'28'2 
••• 0'•{)'• ) = Er, - Es; , (4) 

and denote by IIp+l ( l) the linear shell of monomials of the degree l. Then our basic 
requirement is 

a set L<1> = {0'{)', r - s = l} forms a basis of IIp+l(l). (5) 

This immediately reduces the range of possible degrees to -p 5 l 5 p and makes 
all the subspaces Ilp+1(l) and the entire algebra 

Ilp+l = ali=-pIIP+l (l) 

finite-dimensional: 

1r
1 = dim(Ilp+1(l)) = p+ 1- Ill , dim(Ilp+i) = (p+ 1)2 • 

Then, by applying the assumptions (4) and (5) to 80 we find that 

80 = bo + b108 + b202a2 + ... + bp0P{)P, 

(6) 

(7) 

where b; are complex numbers restricted by certain consistency conditions to be for­
mulated below. With the aid of Eq. (7}° any element of the algebra can be expressed 
in terms of the basis 0' 8', i.e. in the normal-ordered form. 

A useful alternative set of parameters, a,., may be defined by 

80" = a,.01c-i +( ... )a' (8) 

where dots denote a polynomial in 0 and 8. This relation is a generalization of the 
commutation relation for the standard derivative operator, a.z" = kz,. + z"o., and 
we may define the differentiation of powers of 0 by analogy, 

8(0") = a,.0"-1, <l'o = 0, (9) 

to be justified later. 
By applying Eq. (7) to Eq. (8) one may derive recurrent relations connecting 

these two sets of the parameters: 

<l'1 = bo , 

<l'2 = bo + b1a1, 

<l'3 = bo + b1<l'2 + b2a1<l'2 , (10) 
, 

a1c+1 = tb· (a,.)! . ( )' , . <l'T,-i. •=O ....... , 
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where (o-1c)! = o-1o-2 · · · o-1c. These relations enable us to express 011< as a function of 
the numbers b, , 0 $ i $ k ..:. 1 . The first few expressions are 

1 - 62 · 1- 63 

0-1 = bo, 0-2 = 60--
6
-1 , 0-3 = 60--

6
-1 + 626~(1 + 61) , 

l-1 l-1 

1 - bf 2( ) )( ) 0-4 = bo--
6
- + 626160 I+ 61 + 60(63 + 6260 I+ 61 0-3 , 

l - l 

(11) 

The inverse operation, deriving 6, in terms of o-1c, is well-defined only if all o-1c f=. 0. 
The con~istency condition mentioned above is that the parameters must be cho­

sen so as to satisfy the identity 
0:: {)0P+l. 

Taking into account that the second term in Eq. (8) vanishes for k = p + 1 we 
have O'p-tl = O, with no other restrictions on the parameters a,. with k ~ p. The 
corresponding restriction on p + 1 parameters b, follows from Eq. (10), 

O'p+1(60, ... , bp) = bo + 610-p + 620-pO'p-1 + ... + 6pO!p01p-1 · · · 0120!1 = 0, (12) 

where the parameters a, are expressed in terms of 6,. Any admissible set { 6} de­

termines an algebra.II!~1 with the defining relations (3), (7). To each algebra n!~1 
there corresponds a set {a}. A priori, there are no restrictions on {DI} but, if we 
wish to treat {) as a non-degenerate derivative with re.spect to 0, it is reasonable to 
require, in addition to (5), that · 

all 011c f=. 0 . (13) 

So let us call a set {6} (and corresponding algebrall;~1 ) non-degenerate, if the 
condition (13) is fulfilled, and degenerate otherwise. As it was already mentioned, 
in the non-degenerate case the numbers b; are completely determined by the numbers 
a1c, so we can use the symbol {or} as well as {b}. 

At first sight, the algebras corresponding to different sets { b} look very dissimilar. 
In general, different sets {b} determine non-equivalent algebras Il;~1 . However, this 

is not true for the non-degenerate ones. In fact, all non-degenerate algebras n;~1 
are isomorphic to the associative algebra M at(p + 1) of the complex (p + I) X (p + 1) 
matrices. 

This isomorphism can be manifested by constructing an explicit exact ('funda-

mental') representation for n;~1 • With this aim, we treat 0 and 8 as creation 
and annihilation operators (in general, not Hermitian conjugate) and introduce the 
ladder of p + 1 states lk), k = 0, 1, ... , p defined by 

a10} = o, lk} ~ 0"10} , Olk) = P1<+1lk + 1) , (14) 

where {J's are some non-zero numbers, reflecting the freedom of the basis choice. 
As IP+ 1) = 0, the linear shell of the vectors lk} is finite-dimensional and in the 
nondegenerate case, when all fJ1c -:p 0 (k = 1, ... ,p), its dimension is p + 1. 
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Using (14) and (8) we find 

alk} = (a1c/P1c)lk - 1} (15) 

Thus the fundamental (Fack-space) ·representations of the operators 0 and {J are 

0mn. = (ml0jn) = Pn+1Dm,n.+1 , 

am,. = {mlajn} = (o-,,,/,B,,,)5m,n.-l 

(16) 
(17) 

It is not hard to see that, for non-zero a's, the matrices corresponding to 0man. ( m, n = 
0 ... p) form a complete basis of the algebra M at(p + 1 ). The isomorphism is esta~ 
lished. 

Nothing similar occurs for degenerate algebras. To show an evidence against 
using them in the paragrassmann calculus, consider an extremely degenerate algebra 
with 60 = 62 = ... = bp = 0 , 61 =J O, so that all a,. = 0. This algebra has nothing 
to do with Mat(p+ 1), and its properties essentially depend on the value of 61. It is 
abelian if 61 = 1; it is a paragrassmann algebra of the type fp+1(2) if 61 is a primitive 
root of unity (see [11), and so o~. We hope this remark is not sounding like a death' 
sentence on the degenerate algebras. At least, it has to be suspended until further 
investigation which will probably prove their usefulness in other contexts. However, 
if we wish to have paragrassmann calculus similar to the Grassmann one, we have 
to use the nondegenerate algebras. 

Thus, two natural requirements (5) and (13) reduce the range of possible gener­
alizations of the fermionic algebra 111 to the unique algebra Ilp+l that is isomorphic 
to Mat(p + 1) 1. The grading (4) in Ilp+l corresponds to 'along-diagonal' grad­

ing in Mat(p + 1). Different non-degenerate algebras n!21 are nothing more than 
alternative ways of writing one and the same algebra IIp+l. We will call them ver­
sions having in mind that fixing the 6-parameters is analogous to a gauge-fixing (in 
H. Weyl's usage). 

This implies that we will mainly be interested in 'version-covariant' results, i.e. 
independent on a version choice. Nevertheless, special versions may have certain 
nice individual features making them more convenient for concrete calculations (thus 
allowing for simpler derivations of covariant results by non-covariant methods). Sev­
eral useful versions will be described below. Before turning to this task we end our 
general discussion with several remarks. 

First. The existence of the exact matrix representation (16), (17) is very useful 
for deriving version-covariant identities in the algebra Ilp+l• For instance, it is easy 
to check that 

{a, 0(p)} = (Ea,.) 0P-1 , 

{ {J1' ' e(P)} = Ilo-1c , 

(18) 
(19) 

1 H. Weyl in his famous book on qull.Iltum meclui.nics had foreseen relevance of these algebras to 
physics problems. After detailed description of the spin algebras he discussed more general finite 
algebras a.nd remarked tha.t the finite algebras like those disc11Bsed here will possibly a.ppea.r in 
future physics. We think it natural to call Ilp+l the 'finite Wey! algebra.' or 'para.-Weyl algebra.'. 
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and to find many other relations. Here we have introduced a. useful notation 

{E , q,<1>} = Ew' + \JIE\Jl1
-

1 + ... + \Jl1E . (20) 

The identities {18) generalize those known in the pa.rasupersymmetric quantum 

mechanics [6]. 
Second. One ma.y adjust the para.meters flr. to get a convenient matrix represen-

tation for 0 and 8. As a rule, we take fJ1c = 1. Note that for the versions with real 
parameters ar., it is possible to choose fJ1c so as to have ot = a . We also normalize 
0 and 8 so that a 1 = bo = 1. This gives a more close correspondence with the 
Grassmann relation (2). 

Third. In a given {non-degenerate) version n!~1 the components of the vector 

Rf.fl} = col{ fJ.i0•h-j=l form a. basis of the subspace Ilp+1(l) that is completely equiv­

alent to the original one (5) having the components L~'l} = col{0'W}.-i=l• Hence, 

there must exist a non-degenerate matrix C~~} E Mat( 1r<1>, C) connecting these two 

bases, 
..JI) _ (I) (I) _ ( ) 
.U{b} - C{b} • L{b} , l - -p, ... ,P. 21 

The elements of the C-ma.trix a.re certain functions of b; which are usually not easy 
to calculate except simple versions. The original commutation relation (7) is also 
included in the system (21), for l = 0 . 

Quite similarly, two L-bases (R-bases) ta.ken in different versions {b} a.nd {b'} 
are connected by a. non-degenerate matrix M{bb'} (N{bb'}), i.e. 

L{b} = M{w}L{b'} , (22) 

R{b} = N{bb'}R{b'} , (23) 

where the indices {l) a.re suppressed. The matrices M~~'} (and N~2,,}) belong to 

Mat(1r<1>) and obey cocycle relations: 

M{bb'}M{b'b} = 1 , M{w}M{b'b"}M{b"b} = 1 • 

By applying Eq. (21) we immediately get the relation 

N{w} = c{b}M{bb'}c{J} I 
{24) 

that permits evaluating C-matrices for complicated versions once we know them in 
one version. In particular, Eq. (22) tells that the operator {J in any version can 
be represented as a linear combination of the operators {) , 082 

, · ••• , 0P-
1

{)P 

of any other version. We shall see soon that this, for instance, permits to realize 
q-oscillators in terms of genera.tors 0 and 8 of other versions and vice versa. 
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3. Versions of the Paragrassmann Calculus 

Now consider some special versions related to the simplest forms of Eq. (7). 
(0): Primitive Version 

Here b1 = ... = bp-1 = O , bp = -1 , so that a,; = 1 , 

(8co))mn = Om,n-1 , O(o)0 = 1 - 0Pofo) . (25) 

This realization of 8 may be called 'almost-inverse' to 0. In the matrix representation 
(16), (17) with {Jr.= 1 we have or= {)(o)• This version is the simplest possible but 
the differential calculus is a fancy-looking thing in this disguise and it is unsuitable 
for many applications. Still, it has been used in some applications. For example, 
the opera.tors 0 and O(o) for p = 2 coincide with parafermions in the formulation of 
the parasupersymmetric quantum mechanics [6]. 

(1): q-Version or Fractional Version 
Here b1 = q i O , b2 = b3 = . : . = bp = 0 , so that 

. i-1 1 - q• a, = 1 + q + ... + q = -- . 
1-q ' 

The condition Cl'p+1 = 0 tells that qP+l = 1 , (qi 1) while the assumption that all 
a; i O forces q = b1 to be a primitive root, i.e. q"+l i 1 , n < p . Thus, in this 
version (8 = 8c1i), 

oc1>0 = 1 + q08c1> , (26) 

8c1i(0") = (n)g0"-1 , (n)q = 1 
- q" . 

1-q 
These relations were introduced in Ref. [1] by assuming that a is a generalized differ­
entiation operator, i.e. satisfying a generalized Leibniz rule (a further generalization 
is introduced below). The derivative O(l) is naturally related to the q-oscillators (q­
derivative) and to quantum algebras (see (I] and reference.a therein). Eq. (26) is also 
extremely convenient for generalizing to tl1e Paragrassmann algebras with many 0's 
a.nd {J's. 

(2): Almost Bosonic Version 
For this Version 

b1 = 1 , b2 = ... = bp-1 = 0 , bp i O , so that a,. = k 

and Cl'p+1 = 0 gives bp = -~ . Thus p. 

(8(2))mn = n Om,n-1 1 0(2)0 = 1 + 08(2) - p; l 0Pq'2) , (27) 

suggesting that this derivative is 'almost bosonic' as oc2)(0") = n0"-1 (nip+ 1). 
Let us now discuss the interrelations between 0 and 8. As we have already 

mentioned, the notation itself hints at treating 8 as a derivative with respect to 0 
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(see (8)). To be more precise, let us represent vectors of the 'Fock space' (14) as 
polynomials in 0 

p p 

IF)= EI1clk) ¢> F(O) = EJ,.o". 
lc=O lc=O 

The action of the derivative 8 on this function is defined by (14) and (15) (f31c = 1 ), 

8(1) = 0, 8(0") = cx,.0"-1 (l ~ n ~ p) . (28) 

It is however clear that this derivative does not obey the standard Leibniz rule 
8(ab) = 8(a)b + a8(b). 

So consider the following modification of the Leibniz rule [l], [11] 

8(FG) = 8(F)g(G) + g(F)8(G). (29) 

The associativity condition (for differentiating FGH) tells that g and g are homo­
morphisms, i.e. 

g(FG) = g(F)g(G), g(FG) = g(F)g(G). (30) 

The simplest natural homomorphisms compatible with the relations (28), (29), and 
(30) are linear automorphisms of the algebra. fp+i, 

g(0) = -yO , g(0) = tO, (31) 

where 'Y , 'Y are arbitrary complex para.meters and 

t" - 'Y" 
cx1c= -_--

'Y - 'Y 
{32) 

Now the condition (12) yields the equation 

. ?'+1 _ -yP+l 
CXp+l = _ = 01 -y- 'Y 

(33) 

and assuming nondegeneracy requirements ex,. =f: 0 (n < p+ 1) we conclude that t/'Y 
must be a primitive (p+ 1 )-root of unity. Thus we may formulate another interesting 
version of the paragra.ssma.nn algebra IIp+l 

(3):g - g-Version 
As the para.meters cx1c a.re given by Eq. (32), we have to calculate b; by solving 
Eqs.(10): 

bo = 1, b1 = t+-y-1, b2 = (t-t-y+-y-1)/(t+-y), ... 

Here 'Y and ta.re complex numbers constrained by the condition that q = 1/'Y is a 
primitive root of unity 

(
!)p+l -
'Y - 1. 
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From Eqs. (29) and (31) one can derive the following operator relations for the 
automorphisms g, g 

80 - -y08 = g , 80 - "'(08 = g. {34) 

For the special case 'Y = (t)-1 = q1l2 redefining 8 = a, 0 = at allows to 
recognize in (34) the definitions of the q-def~rmed oscillators in the Biedenharn­
MacFarla.ne form [12]. Note that Version-(!) can be derived from Version-(3) by 
putting t = q, 'Y = 1 (or t = 1, 'Y = q). So we may regard Version~(3) a.a a. 
generalization of the Version-(1). Moreover, it can be shown that for p = 2 both the 
Version-(0) and the Version-(2) a.re specializations of the Version-(3). However, it is 
not true for p > 2 and, in genera.I, the Leibniz rule (29) ha.a to be further modified. 
To find a most genera.I deformed Leibniz rule we slightly change the definition of the 
(g - g)~ Version. 

(4): Generalized Version 
Namely, leaving untouched the equations (28) and (32) assume that 'Y and t a.re 
arbitrary parameters not const~ained by Eq. (33), i.e. 

_ _ ?'+1 - -yP+l =f: o but CXp+i = 0. 
CXp+i = >y- 'Y (35) 

Then the conditions (12), (28), and (32) a.re only fulfilled if the equations (34) a.re 
modified a.a follows 

80- 708 = g- - ci,tt 0P8P. 
(019)! I 

(36) 
80 - 708 = g - frti~OPBP . 

0<9. 

Note that Version-(0) may be derived from this version by substituting g(B") = 
81c,o , g = 1 that means 'Y = O, t = 1 (or, equivalently, g = 1, g(O") = 81c,oi 'Y = 
1, t = 0). Versions-(1) and-(3) a.re reproduced if we put &p+l = 0, while Version-(2) 
may be obtained in the limit 'Y = t - 1. Thus, Version-(4) generalizes all previous 
Versions. 

The relations (36) dictate a more general modification of the Leibniz rule 

8(FG) = 8(F)g(G) + g(F)8(G) + Lz(F, G). (37) 

As follows from Eqs. (36), the additional term Lz(F, G) belongs to the one dimen­
sional space {IP)} and we suggest to call this term the 'Leibnizean'. Note that the 
associativity condition for the rule (37) requires Eqs. (30) and the additional relation 

Lz(FG, H) + Lz(F, G)g(H) = Lz(F, GH) + g(F)Lz(G, H) . 

Versions (1) and (2) evidently reproduce the Gra.ssmann calculus for p = 1 while 
the limit p - oo gives g = g = 1 and Lz = 0, thus reproducing the standard ca.lculus 
in dimension one. Other possible versions obeying the conditions limp-oo(Lz) = 0 
and lim,,-oo(g, g) = 1 are much more complicated (e:g. b1 = 1, b2 = ... = bp-Tc = 
0 , bp-lc+l =f: 0 , ... , bp =f: 0 , for some fixed k 2:: 2). 

.9 



Summarizing this discussion we note that in constructing a paragrassmann cal­
culus for many variables we wish to have a generalized Leibniz rule. A most natural 
generalization must look like 

o;(FG) = f};(F)gf(G) + g{(F)o;(G), (38) 

where g and g are some automorphisms and the summation over j is understood. 
Only Versions -(1) and -(3) are suitable in this context. 

4. Paragrassmann Algebras with Many Variables 

Here we present explicit realization of some paragrassmann algebras Tip+l ( N) gener­
ated by N coordinates 0; ( i = 1, ... , N) : 0f+l = 0 and N corresponding derivatives 
8; , or+1 = 0. The simplest (bilinear) algebras can be constructed in Version-(1). J 
Thus consider the algebra IIp+1(l) defined by · 

{)0 - q0o = } , fF+l = 0P+l = 0 , (39) 

where q is any primitive _(p + 1)-root of unity, The algebra {39) was the starting 
point for considering the fractional para-supersymmetry (13]. Our motivation for 
using this version is its extreme simplicity. Furthermore, it gives bilinear commuta,­
tion relations for generators of Ilp+l ( N) that are closely related to the definitions of 
the quantum hyper-plane (14], covariant q-deformed oscillators (15] and differential 
calculus on the quantum hyperplane (16]. The other versions (7) can be consid­
ered similarly but they yield non-bilinear multi-paragrassmann algebras (a generic 
example will be given below). 

The generator of automorphisms in the Leibniz rule can be expressed as 

g = {)0 - 08. 

It is easy to check that 

08 = (g - 1)/(q - 1), 80 = (qg - 1)/(q - l), 

and 
g0 = q0g, go= q-1ag. 

Using this operator we define N paragrassmann variables 

0; = gP~ ® gP~-1 ® ... ® gP41 ® 0gPi ® gPL1 ® ... ® gPi 

with the obvious commutation relations 

0,0; = qP•i0;0;, i < j . 
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(41) 

{42) 

{43) 

We wish to restrict N(N-1)/2 numbers p,; = p~-p{ so as any linear combination 

of 0; is nilpotent, 
p 

(L c;0i}P+l = 0 , {44) 

i=O 

and hence 0; generate a paragrassmann algebra fp+i(N). One simple choice is 

p;; = a; ( i < j) , (45) 

where all qa.• are primitive roots of unity. With this choice, all 0; for i < j acquire the 
same multiplier qa.; in commuting through 0;. So, if Eq. (44) is valid for the linear 
combinations of the first (j - 1) theta's, we may apply Eqs. (35), (36) of Ref. [1] 
and thus prove it to be valid for any number of theta's (provided that all q"• are 

primitive root11 of unity). -
The ansatz (42) generalizes the expressions for many theta's obtained in [l] by 

certain recurrent procedure. It is natural to define the derivatives 8; by 

!l cri ui ui 17 i !l ,,i ui 
Vi= g N (9 g N-1 (9.,. (9 g i+I (9 g •v (9 g i-1 (9,, • g I. 

Then the commutation relations for 8, are (i < j) 

!l. "1' - q"•i 8 ·o· a·· - a{ - a~ v,v - , • ' ., - • , 

0 " _,,;_ia 0 
iVj = q • ; j i, 

0;8; = q-oj-Pia.0; . 

(46) 

(47) 

(48) 

(49) 

Here the parameters a1 arc to be chosen so that any linear combinations of o's is 

also nilpotent 
p 

<L c;a.t+l = o. (50) 

i=O 

Now, to obtain a closed algebra with quadratic commutation relations we have 

to solve the following problem ( * ): 
to express 8;0; as a linear combination of 1 and 0;8;, i,j = 1, ... , N . 

It is more convenient to deal with the expressions 

!l 0 ,-•+10 !l ,., .,.. .,.. ['r'] Vi i - q i .Vi = g N (9 • • • (9 g i (9 • • • (9 g. t :::: g (51) 

where rj = p} + 1 , or, as well, with 

" 0 .,.•o a .,.. .,.•+1 .,.. c.,.•1+ Vi i - q i i ; = g N (9 ... (9 g i (9 . • . (9 g I :::: g , (52) 

The terms 0/Ji are better represented by 

E ( ) 
.,.!o a .,.i .,.i ( ) .,.; c ... •1 c.,.•1 

j= q-] g1 j ;=gN(9•••(9g1 g-] ®•"®gl =g +-g , (53) 
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It is not hard to realize that the problem ( *) is solvable if and only if for any i there 
exist a sequence ofoperators (53), producing (51) (or (52) as well) from 1 =·g[0I. To· 
formalize this idea more rigorously, consider in an N-dimensional space 2N points 
{ [r'], [r'J+ , i = 1 ... N} and N oriented segments [r']--+ [r'l+• This set of data 
composes an oriented graph G, which obviously does not contain cycles since all the 
segments are mutually orthogonal. After these preliminaries, we can formulate the 
following 

C r i t e r i o n : The problem (*) is solvable if and only if the correspondent 
graph (i is connected (and therefore an oriented tree) and contains the point [OJ. 

In other words, this means that one can define an equivalence relation ~ on the 
set T ={[OJ, [r'] , [r'J+, i = 1 ... N} so that 

a). [r'] ~ [r']+ , i = 1 ... N , 
b ). u = v =:> u ~ v , Vu, v E T . (54) 

Then the criterion tells that the ·entire T must be a single equivalency class. 
This criterion gives a simple procedure for getting the commutation relations of 

8, andfii: 
1. Draw an oriented tree with a root [OJ and N edges; 
2. Label the edges by the numbers from 1 to N; 
3. Find a path from [O] to the beginning of the i-th edge; 
4. Moving along this path, write 

g[r'J - 1 ± E· ± E· - JI J2 • • • I 

taking'+', if the move agrees with the orientation of the edge ia. and '-'otherwise; 
5. Use the expressions (51) and (53). 
This algorithm exhausts all admissible possibilities. In particular, it proves that 

all the numbers rj c~ be only O or ± 1. Thus, it brings some restrictions on the. 
exponentials Pj and aj·, though not too strong. In fact, the most hard thing can 
happen is the requirement that both P,; and p;; + 1 should be prime, which leads 
p to be even number and restricts a choice of p,; in a rather soft manner. There 
are no direct restrictions on the values of p,; or relations between them, coming 
from the criterion. So the la.st string of the algebra, the commutation relations of 
a, and 0;, is almost independent of the first four ones, (43), (47 - 49). Note that 
algebras corresponding to the different graphs arc non-equivalent, at least at the 
level of linear combinations. 

Let us present now two simplest examples of the paragrassmann algebras Ilp+i(N). 

1 ). rj = p} + ~ = 0 ( i j j) , 
Tl= 0 I -1 I 

(55) 
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or shortly: [r'] = [OJ or [r'J+ = [OJ. With this choice the algebra has the form (i < j) 

0,0; = qP•i0;0,' 
a.a; = qP•i8/), 1 

0,8; = q-P.;{);0;, (56) 
0;8, = qP•i8,0; > 

8,0, - q2rf+I0,8; = 1. 

This algebra has been described in [1], [17]. The correspondent graph (J is a bunch 
of N segments coming from ( or to) zero point. 

rl-I J·<;. 
J - ' ", 
i O . >. T;= 1 J_l, 

2). 

or shortly, [r1] = [O], [r•+l] = [r']+- Here we obtain (i < j) 

0,0j = qP•i0;0; , 
0,8j = qP,;+l{)j{), > 

0,0j = q-l-Pii{);0; , 
0;8, = qP•i{),0j , 

a,e, - qe,a, = 1 + (q - 1) E}:i 0;8; 

(57) 

(58) 

This algebra resembles the differential calculus on the quantum hyperplane (16] (see 
also [18] ). The correspondent graph is a chain of N arrows. Algebras of this kind 
can exist only for even p, as it was mentioned. 

Concluding this discussion, we would like to formulate some problems related to 
complete classifying. paragrassmann algebras. 
· 1. It is clear that algebrasfp+i(N) with different sets {a.} (see (45)) are not 

equivalent (unless the two sets arc proportional). The question is how fully the 
ansatz (45) exhausts all admissible matrices Pii in (43)? {We suspect that for N 
large enough it is exhaustive while for smaller Nit is not.) 

2. An algebra IIp+l ( N) can be determined by an oriented tree (J together with 
a suitable set {a,} ( or, more generally, {p,;} ). Different trees and sets define 
non-equivalent algebras that cannot he related by any linear transformation of 0's 
and B's. The question is: can they be related by a non-linear transformation like 
that connecting the versions of the algebra Ilp+i(l)? In other words, can different 
II!~:}(N) be considered as versions of the unique algebra Ilp+1 (N) or they are 
distinct as enveloping algebras? 

The final remark concerns possible non-bilinear algebras. Our approach can be 
generalized to "arbitrary version, with commutation relations (7). With this aim, 
we first introduce the linear automorphism operator g in the algebra (7) with the 
commutation relations (41) but considering q as an arbitrary parameter. Then, 
for the multi-paragrassmann generators defined as in {42), (46) one can derive the 
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following algebra ( i < j) 

lJ;B; = bo + b1B;lJ; + b2Bllff + ... + bpBf of, 
BiB; = q°'•B;B; , 
8;lJ; = q°''8;lJ; , 
lJ;B; = q-°'•B;lJ; , 
lJ;B; = q-°'•0;8; . 

(59) 

To satisfy the equations (44), (50) we have chosen the parameters u;; = p;; = a; 
for i < j and u;; = p;; = a; for i > j. The integer numbers a; are restricted by 
the condition that all q°'1 are primitive (p + 1)-roots of unity. The most important 
feature of this construction is its independence of the version ('version covariance'). 
This property is of utmost importance in some applications, e.g. in constructing 
para-Virasoro algebras to be treated in our next paper. Note, however, that the 
generalized Leibniz rule (38) is only satisfied if the b-parameters correspond to the 
g- g-Version. The algebra (59) may be further generalized but we will not present 
these generalizations here. Non-bilinear algebras deserve a separate thorough inves­
tigation. 

5. Conclusion 

In this paper we have given a general construction of the paragrassmann calculus 
with one variable and have shown that all nondegenerate algebras·II;~1 are equiv­
alent. Still, different versions may be useful in different applications. As bas been 
shown in the last section, constructing algebras with many variables requires simplest 
versions. There is another reason for a separate consideration of different equivalent 
versions. Our approach to constructing paragrassmann calculus with many variables 
was to preserve the nil potency property for linear combinations of B; ( and of lJ;). 
Then the commutation relations between different elements are just calculation tools 
not having any fundamental meaning. However, we may choose a different view­
point considering the algebra of commutation relations as a prime object. Then it 
would be natural to look for transformations preserving the commutation relations. 

Let us discuss this viewpoint. It is clear that transformations 

lJ; -+ a: = t,jOj I 0; -+ 0: = t;;0; , (60) 

do not preserve the commutation relations (43) and(47). To preserve these commu­
tation relations ( quantum hyperplane relations) we have to consider t;; as generators 
of the multiparametric quantum group GLq,Pw In particular, we have to require 

t;1ctij = qP•it;;t;Tc , 

01ct;; = t;;01c . 
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The ma.in paragrassmann identity now looks as 

N 

co:t+I = <I:t;;0;t+I = o 
.j=l 

It is clear that 
(t;1c01c)(t;;O;) = q2P~(t;;0;)(t,1c01c) 

(61) 

and eq. (61) is fulfilled only if q2P•i are primitive roots of unity. As an example 
we present the following paragrassmann quantum plane (O,)P+l = 0 where 0, = 
g 1l 2 @ .•• @ g 1l 2 @ 0 © 1 © • • • @ 1 The commutation relations have the form .....____,__... 

i 

0·0· - 1120 0· (' ') ,,-q ; .. i<J. (62) 

and these relations are not c_hauged under the transformations (60) with t,; E 
GJ,q, 1,(N). Then it is clear that 

(t;,,0,.)(t;,0,) = q(t,;Oi)(t;1c01c) 

and, if q is primitive root of unity, we obtain that (O;)P+1 = 0. Thus, the paragrass­
rnann quantum plane (62) may be regarded as a linear space under rotations of the 
quantum group GLq•t•• 
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<1>111n~nnos A .T. , ltlcaes A. n. , · Kypt1,111KOB· A. 6. 
0 naparpaccMaHOBOM AlllcjxjJepeH4i1anbHOM 
I/ICYI/ICfleHl/1111 . 

ES-92-392 

3Ta pa6oTa pacw111psieT 111 06061J.jaeT Hawy npetJ.blAYIJ.lYIO 
pa6oTy [ 1] .. 31J,eCb Mbl 06cy>1<1J,aeM 061J.j111e Sl f:!Hble K_OHCTpyK-
4111111 IJ.flSl naparpaccMaHosa 111cY111cneH111si·o1J,Ho~ 111 MHor111x ne­
peMeHHblX. llnsi OAHO~ nepeMeHHO~ noKa3aHo; YTO HeBblpO>K­
tJ,eHHble AlllcjxjJepeH4111aflbHble anre6pbl cosnatJ,alOT Ill 3KBI/IBafleHT­
H~ anre6pe KOMnneKCH~X (p+l)x(p+l) - MaTp1114. llnsi MHO~ 

. rnx nepeMeHHblX tJ,aHa 061J.jaSl KOHCTPYK4111~ 1J,lllcjxjJepeH4111anbHblX i 

anre6p~ HeCKOflbKO YaCTH~X np111Mepos CBSl3aH~ C MHorona­
paMeTpl/lYeCKI/IMl/1 KBaHTOB~Ml/1 1J,e~hpMa4111siMI/I" rapMOHIIIYeCKOro . .-

o c 4111nm rn pa. 

Pa6oTa_s~nonHeH~-~ na66paTop111111 TeopeT111YecKo~ ~111-
JIIIKIII Oltl~l-1. 

IlpenpHHT O61.ertHHCHHOfO HHCTllryra 11.:1ep11b1X HCC.1C.:l0B3HHtt • .[ly6Ha 1992. 

Filippov A.T.,Isaev A.P~,K~rdikov A.B. 
On Paragrassmann Differential 
Calculus· 

ES-92-392 

Thi paper significantly eitends and generalizes 
our previous paper [1]. Here we discuss explicit ge­
neral .constructions for par~grassma~n calculus with one 
· and many variables.· For one variabl~ nondegenerate dif­
ferentiation algebras are identified and shown to be·eq7 
uivalent to the algebra of (p+l)x(p,·1) c6mplex m~tri­
ces'. For many var'iables we give a general constr·uction 
of the differ~ntiation algebras. Some particular ex~m­
ples ·are related to the multi parametric quantum defor­
mations.of the harmonic oscillators. 
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