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This paper is in memory of Mikhail Konstantmov:ch Pohvanov One of the authorst ol

(A.T.F.) had a privilege to be a friend of him for many and many years. He was
not only a distinguished scientist but a true Russian intellectual having deep roots
in Russian culture. 1t is a great sorrow that we can no more have a talk with him
on science, poetry, religion...

1. Imtroduction

*  Paragrassmann algebras (PGA) are interesting for several reasons. First, they are
relevant to conformal field theories [2]. Second, studies of anyons and of topological
field theories show the necessity of unusual statistics. These include not only the
well-known parastatistics but fractional statistics as well (3]. There were also known

some hints that PGA have a connection to quantum groups [4] and this connechoni P

has been demonstrated in detail in Ref. [1]. Finally, it looks aesthetically appealing

to find a generalization of the Grassmann analysis [5] that proved to be so successful

in descnbmg supersymmetry.

Recently, some applications of PGA have been discussed in literature. In Ref. [6]
that inspired many other investigations, a parasupersymmetric generalization. of
quantum mechanics had been proposed. Ref. [7] has attempted at a more system-

atic consideration of the algebraic aspects of PGA based on the Green ansatz [81
and introduced, in that frame, a sort of paragrassmann generalization of the confor-
mal algebra. Applications to the relativistic theory of the first-quantized spinning
particles have been discussed in [9]. Further references can be found in Refs. [1], S
[10]. |

The aim of this paper is to construct a consistent generalization of the Gra.ssma.nn
algebra (GA) to a paragrassmann one preserving, as much as possible, those features
of GA that were useful in physics applications. A crucial point of our approach is
defining generalized derivatives in the paragrassmann variables satisfying natural
restriction allowing to construct a differential calculus. As in the previous paper
[1], here we mainly concentrate on the algebraic aspects leaving the applications to
future publications.

Section 2 treats algebras generated by one paragrassmann variable ¢, 7% = 0
and a differentiation operator 9. This gencralized differentiation coincides with
the Grassmann one for p = 1 and with the standard differentiation when p —
oo. We construct a most general realization of these algebras and identify a set of
nondegenerate ones which proved to be equivalent. The different (but equivalent) -
realizations are presented in Section 3.

In Section 4 the simplest PGA generated by many variables §; and corresponding
differentiations &; are defined. They obey the nilpotency condition 7+! = 0 (°+! =
0),where ¢ (@) is any linear combination of 6; (8;), and appear to be naturally
related to the non-commutative spaces satisfying the commutation relations 6;0; =
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2j9;60; , 1 < j (and similar relations for 8;8;), where UH = 1. These relations
once more demonstrate a deep connection between PGA and quantum groups with
deformation parameters ¢ being roots of unity.:

Section 5 summarizes the results and presents one more relation of our algebras

to quantum groups.

2. Differential Calculus with One Variable

In Ref. [1] we have considered paragrassmann algebras T'py1(V) with- NV nilpotent
variables 6,,, 0£*! = 0,n=1,..., N. Some wider algebras II,,,(/V) generated by 0,
and additional nilpotent generators 3, have also been constructed. These additional
generators served for defining a paragrassmann differentiation and paragrassmann
calculus. The building block for this construction was the simplest algebra ,.,(1).
By applying a generalized Leibniz rule for differentiations in the paragrassmann
algebra I'p41(N) we have found two distinct realizations for IT,4+1(1) closely related
to the g-deformed oscillators. 'We have mentioned in {1} that other realizations of
the 'II,41(1) may be constructed. The aim of this section is to demonstrate this
in detail. We shall also show that, under certain conditions, all these realizations
are equivalent and one may choose those which are most convenient for partlcular
problems. : :

Intuitively, paragrassmann algebra I, should be understood as some good
p-generalization of the classical fermionic algebra II,

=0 = &, . (1)
+00 = 1. ' . (2)

By ‘p-generalization’ we mean that (1) is to be replaced by
gr¥l =0 = g+ | - (3)

(it is implied, of course, that 67 # 0 and the same for @ ). So the question is,
which generalization of (2) might be called ‘good’. Many variants have been tried
already (see for example [8]). As a rule, they deal with certain symmetric multilinear
combinations, like 628 + 08¢ + 8¢° (for p = 2), and meet with dﬂﬁculhes when
commuting ¢ and 3.

To find a correct generalization recall that (2) allows to define the Grassmann
differential ca.lculus It shows how to push the differentiation operator 8 to the  right
of the vanable 6. On the other hand, representing @ and 6 by 2 x 2 real matrices, we
can make them Hermitian conjugate and thus interpret as annililation and creation
operators. Then Eq. (2) is the normal-ordering rule. The second important feature
of this relation is that it preserves the Grassmann grading, —1 for ‘@ and +1 for
6. In physics terminology this means that the normal-ordering is not changing the
number of ‘particles’.
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Thus, to construct a generalization of the relation (2), we first define a natural

grading in the associative algebra generated by # and & obeying Eq. (3)
deg (671068 ...0*8" ) = Lr; ~ Bs; , (4) -

and denote by H,,H(l) the linear shell of monomials of the degree I. Then our basic
requirement is

aset I = {78, r—s=1} formsabasis of Mpsa(l) - (5)

This immediately reduces the range of possible degrees to —p < I < pia.nd makes
all the subspaces Il ,;(!) and the entire algebra

Opsr = I:—pHP+l(l) | | | (6)
ﬁmtedlmensmnal
A= dzm(n,+l(z>> =p+1=l] , dim(l) = (p+1)7.
Then, by applying the assumptions (4) and (5) to 8¢ we find that
80 = by + b,00 + b,0°0° + ... + b, 0P PP, (1)

where b; are complex numbers restricted by certain consistency condltlons to be for-
mulated below. With the aid of Eq. (7) any element of the algebra can be expressed '
in terms of the basis 6"3*, i.e. in the normal-ordered form.

A useful alternative set of parameters, o, may be defined by

96* = 6F 1 4 (...)a, (8)

where dots denote a polynomial in § and 8. This relation is a generalization of the
commutation relation for the standard derivative operator, 8,2z* = kz* + z*4,, and
we may define the differentiation of powers of 6 by analogy,

(0*) = axb*, ap =0, ' , 9)

to be justified later.
By applying Eq. (7) to Eq. (8) one may derive recurrent relations connecting
these two sets of the parameters:

o = bo »
a; = bo+bo,
@z = bo+brog+bayog, (10)
‘ wieeans ,
: k
(o)
= bi——= ’
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where (ox)! = a3 - - - ok, These relations enable us to express ay as a function of
the numbers b; , 0 < ¢ < k — 1. The first few expressions are

1-82 . 1-53
ay = bo,- ag:bo‘i—:ﬁ, a;:bol—b:'*'bzbg(]'*'bl),
— b =
ay = boi :1 + bqblbg(] + bl) + bo(b3 + bgbo)(] + 61)0’3 3 o>
=un

(11)

The inverse operation, deriving b; in terms of ay, is well-defined only if all o) # 0.
The consistency condition mentioned above is that the parameters must be cho-
" sen so as to satisfy the identity
0= ggr+! .
Taking into account that the second term in Eq. (8) vanishes for k = p + 1 we
have oy = 0, with no other restrictions on the parameters oy with £ < p. The
corresponding restriction on p + 1 parameters b; follows from Eq. (10),

ap+1(bo, ey bp) = bo + blap + bgo:,ap_l +...+ bp().’p(}.’p_.l cro gty = 0 s (]2)

where the parameters o; are expressed in terms of b;. Any admissible set {6} de-
termines an a.lgebm,[l,{,l_?1 with the defining relations (3), (7). To each algebra Hﬁ}l
there corresponds a set {&}.” A priori, there are no restrictions on {} but, if we
wish to treat 9 as a non-degenerate derivative with respect to 6, it is reasonable to

require, in addition to (5), that
all ax#0. (13)

So let us call a set {b} (and corresponding a.lgebrallﬂl) non-degenerate, if the
condition (13) is fulfilled, and degenerate otherwise. As it was already mentioned,
in the non-degenerate case the numbers b; are completely determined by the numbers
ik, 50 we can use the symbol {«} as well as {b}. e

At first sight, the algebras corresponding to different sets {&} look very dissimilar.

In general, different sets {b} determine non-equivalent algebras Hig_)l. However, this

is not true for the non-degenerate ones. In fact, all non-degenerate algebras Ilf_’zl
are isomorphic to the associative algebra Mat(p+1) of the complex (p+ 1)x(p+1)
matrices. o

This isomorphism can be manifested by constructing an explicit exact (‘funda-
mental’) representation for H}{,I_’zl . With this aim, we treat ¢ and & as creation
and annihilation operators (in general, not Hermitian conjugate) and introduce the
ladder of p+ 1 states |k), £ =0,1,..., p defined by

810) = 0, [k) ~ 6|0} ,8k) = Bmalk + 1), (14)

where f’s are some non-zero numbers, reflecting the freedom of the basis choice.
As |[p+ 1) = 0, the linear shell of the vectors |k) is finite-dimensional and in the
nondegenerate cage, when all fx #0 (k =1,...,p), its dimension is p+ 1.
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Using (14) and (8) we find 4 ; }
olk) = (on/Pu)lk — 1) . \ (15)

Thus the fundamental (Fock-space) ‘representaﬁons of the operators  and 9 are
9'7"" = (m|9|n> = ﬂil;+15m,n+l ) (16)
Omn = (m|B|n) = (on/Bn)bmn-1 - (17)

It is not hard to see that, for non-zero o’s, the matrices corresponding to §™8" (m,n =
0...p) form a complete basis of the algebra Mat(p+ 1). The isomorphism is estab:
lished.

Nothing similar occurs for degenerate algebras. To show an evidence against
using them in the paragrassmann calculus, consider an extremely degenerate algebra
with bg = b; = ... = b, =0, b, # 0, so that all o4 = 0. This algebra has nothing
to do with Mat(p+ 1), and its properties essentially depend on the value of 5;. It is
abelian if b, = 1; it is a paragrassmann algebra of the type I',4;(2) if b, is a primitive
root of unity (see [1]), and so on. We hope this remark is not sounding like a death’
sentence on the degenerate algebras. At least, it has to be suspended until further
investigation which will probably prove their usefulness in other contexts. However,
if we wish to have paragrassmann calculus similar to the Grassmann one, we have -
to use the nondegenerate algebras. o :

Thus, two natural requirements (5) and (13) reduce the range of possible gener-
alizations of the fermionic algebra II, to the unique algebra Il that is isomorphic
to Mat(p + 1) . The grading (4) in II,;, corresponds to ‘along-diagonal’ grad-
ing in Mat(p + 1). Different non-degenerate algebras Hiﬁ,)l are nothing more than
alternative ways of writing one and the same algebra 11,;,. We will call them ver-
sions having in mind that fixing the b-parameters is analogous to a gauge-fixing (in
H. Weyl’s usage). :

This implies that we will mainly be interested in ‘version-covariant’ results, i.e.
independent on a version choice. Nevertheless, special versions may have certain
nice individual features making them more convenient for concrete calculations (thus
allowing for simpler derivations of covariant results by non-covariant methods). Sev-
eral useful versions will be described below. Before turning to this task we end our
gencral discussion with several remarks.

First. The existence of the exact matrix representation (16), (17) is very useful
for deriving version-covariant identities in the algebra II,,,. For instance, it is easy
to check that

{8, 09} = (Zaz) 671, (18)
{6°, 69} = My, (19)

1H. Weyl in his famous book on quantum mechanics had foreseen relevance of these algebras to
physica problems. After detailed description of the spin algebras he discussed more general finite
algebras and remarked that the finite algebras like those discussed here will possibly appear in
future physics. We think it natural to call Iy the *finite Weyl algebra’ or ‘para-Weyl algebra’.
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and to find many other relations. Here we have introduced a useful notation v
(2, W} =S¥ + ¥EV ' +.. .+ VE. (20)

The identities (18) generalize those known in the parasupersymmetric quantum
mechanics {6].

Second. One may adjust the parameters fx to get a convenient matrix represen-
tation for 0 and 8. As a rule, we take fx = 1. Note that for the versions with real
parameters o, it is possible to choose Bx 8o as to have g7 = @ . We also normalize
g and @ so that oy = by = 1. This gives a more close correspondence with the
Grassmann relation (2). .

Third. In a given (non-degenerate) version H;’_’,}l the components of the vector
R(('b)} = col{#’6*};—;= form a basis of the subspace TL,,1(!) that is completely equiv-
alent to the original one (5) having the components L({?} = col{#'®};—j=1. Hence,
there must exist a non-degenerate matrix G'ﬁ,)) € Mat(nV, C) connecting these two
bases, '

The elements of the C-matrix are certain functions of b; which are usually not easy
to calculate except simple versions. The original commutation relation (7) is also
included in the system (21), for { = 0. ,

Quite similarly, two L-bases (R-bases) taken in different versions {6} and {b’}

are connected by a non-degenerate matrix M) (Ngeny), ie.

Lgy = My Ly » (22)
R{b} = N{w}R{bl} 3 ) (23)
where the indices ({) are suppressed. The matrices M&L} (and Nf&,}) belong to
Mat(7®) and obey cocycle relations:
M{&:}M{yb} =1, M{w}M{b‘bn}M{bub} =1.
By applying Eq. (21) we immediately get the relation
Ny = Cpy My Cyy (24)

that permits evaluating C-matrices for complicated versions once we know them in
one version. In particular, Eq. (22) tells that the operator @ in any version can
be represented as a linear combination of the operators 8 , 06% , .., grlor
of any other version. We shall see soon that this, for instance, permits to realize
g-oscillators in terms of generators ¢ and 8 of other versions and vice versa.

o8
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3. Versions of the Paragrassmann Calculus

Now consider some special versions related to the simplest forms of Eq. (7).
(0): Primitive Version
Here by =...= by =0, bp=-1, s0 that s =1,

(a(o))mn = b1y O =167 0{0) . (25)

This realization of & may be called ‘almost-inverse’ to 8. In the matrix representation
(16), (17) with Sx = 1 we have 67 = 8(p). This version is the simplest possible but
the differential calculus is a fancy-looking thing in this disguise and it is unsuitable
for many applications. Still, it has been used in some applications. For example
the operators 8 and d(g) for p = 2 coincide with parafermions in the formulation o;'
the parasupersymmetric quanium mechanics [6].
(1): g-Version or Fractional Version
Here by =q¢#0, by=bs=...=b,=0,s0 that

;= l+q+...+q‘—l :-l:-i.
o I-q
The condition op4; = 0 tells that ¢P*!1 = 1, (g # 1) while the assumption that all
a; # 0 forces ¢ = b, to be a primitive root, i.e. ¢"** #1, n < p. Thus, in this
version (9 = d(y)), ‘ ‘
Fr(6™) = n~1 1- qn
W)(0™) = (n)e6™™", (n)g = =7
Th?se‘relations were introduced in Ref. [1] by assuming that J is a generalized differ-
fan.tlatlon operator, i.e. satisfying a generalized Leibniz rule (a further generalization
is 1r'|tro.duced below). The derivative ;) is naturally related to the g-oscillators (g-
derivative) and to quantum algebras (see [1] and references therein). Eq. (26) is also
extremely convenient for generalizing to the Paragrassmann algebras with many 6’s
and &'s. ’ ‘
(2): Almost Bosonic Version

For this Version

by=1, bg=...=b1 =0, b,#0, so that ax =%
and apyy = O gives b,,=-&:'!—l. Thus
(Bayhmn = 1 bmme » Bayf = 1+ 00y — -1 g 27
n=1y O2) @ = = 0% » (27)

suggesting that this derivative is ‘almost bosonic’ as 9(;)(6™) = nf0* (n#p+1).
L(;t us now discuss the interrelations between § and 8. As we have already
mentioned, the notation itself hints at treating @ as a derivative with respect to 6



(see (8)). To be more precise, let us repraent vectors of the ‘Fock space’ (14) as
polynomials in

IH=EMH¢T® Zmﬁ
=0
The action of the derivative @ on this function is defined by (14) and (15) (B = 1),
1) =0, (") =a.b™' (1<n<p). (28)

It is however clear that this derivative does not obey the standard Leibniz rule
8(ab) = 8(a)b + ad(b).
So consider the followmg modification of the Leibniz rule [1], [1 1]

8(FG) = 8(F)g(G) +g(F)d(G) . (29)
The associativity condition (for differentiating FGH) tells that g and g are homo-

morphisms, i.e.
8(FG) = g(F)g(G) , &(FG) = g(F)g(G) . (30)
The simplest natural homomorphisms compatible with the relations (28), (29), and
(30) are linear automorphisms of the algebra I,
“ g0) =1, 80)=1, (31)

where v, 7 are arbitrary complex parameters and

S ks o (32)
0 e
Now the condition (12) yields the equation

1 _ 1
Ppt1 ;‘L—ﬁ =0, (33)

¥ ’
and assuming nondegeneracy requirements o, # 0 (n < p+ 1) we conclude that 5/
must be a primitive (p+1)-root of unity. Thus we may formulate another interesting
version of the paragrassmann algebra I,
(3):g — g—Version
As the parameters oy are given by Eq. (32), we have to calculate b; by solving
Eqs.(10): .

bo=1Lbh=F+y-1Lb=F-y+7-1)/(F+), ...
Here v and 7 are complex numbers constrained by the condition that ¢ = 7/vis a

primitive root of unity
_7 p+1
(-—) =1
5

From Eqs. (29) and (31) one can derive the following operator relations for the

automorphxsms g g
: -1 =g, 00—7590 =g. v (34)

For the special case ¥ = (3)™! = ¢'/? redefining & = a, 6 = al allows to
recognize in (34) the definitions of the g-deformed oscillators in the Biedenharn-
MacFarlane form [12]. Note that Version-(1) can be derived from Version-(3) by
putting y = ¢, vy = 1 {or ¥ = 1, ¥ = ¢g). So we may regard Versipu;(3) as a
generalization of the Version-(1). Moreover, it can be shown that for p = 2 both the
Version-(0) and the Version-(Z) are specializations of the Version-(3). However, it is
not true for p > 2 and, in general, the Leibniz rule (29) has to be further modified.
To find a most general deformed Leibniz rule we shghtly change the definition of the
(g — g)-Version. _ -

(4): Generalized Version ‘
Namely, leaving untouched the equations. (28) and (32) assume that v and 7 are
arbitrary parameters not constrained by Eq.. (33), ie. ‘

+1
Gpp1 = i_-i- #0 but aper =0. (35)
Y=

Then the conditions (12), (28), and (32) are only fulfilled if the equatlons (34) are
modified as follows ‘

80— 488 = g— ‘(-’5)—‘!6”3” ) :
' (36)

30 — 360 = (&76’?3"
Note that Version-(0) may be derived from' this version by substltutmg g(t’:"‘)
640, & = 1 that means v = 0, § = 1 (or, equivalently, g = 1, §(6*) = bx0; v =
1, 4 = 0). Versions-(1) and -(3) are reproduced if we put &,41 = 0 while Version- (2)
may be obtained in the limit vy =5 — 1. Thus, Version-(4) genera.hzes all previous
Versions.

The relations (36) dictate a more general modification of the Leibniz rule

3(FG) = 8(F)g(G) + g(F)3(G) + Lx(F,G) . (37)

As follows from Eqs. (36), the additional term Lz(F, G) belongs to the one dimen-
sional space {|p)} and we suggest to call this term the ‘Leibnizean’. Note that the
associativity condition for the rule (37) requires Eqgs. (30) a.nd the additional relation

Lz(FG, H) + Lz(F,G)g(H) = Lz(F,GH) + g(F)Lz(G, H).

 Versions (1) and (2) evidently reproduce the Grassmann calculus for p=1 while
the limit p — co gives g = g = 1 and Lz = 0, thus reproducing the standard calculus
in dimension one. Other possible versions obeying the conditions lim,_,o(Lz) = 0

and lim,—c(g, &) = 1 are much more complicated (e.g. by =1, ba=... = bpp =
0,041 #0,..., by # 0, for some fixed £ > 2).
9



' Summarizing this discussion we note that in constructing a paragrassmanncal-

culus for many variables we wish to have a generalized Leibnig rule. A most natural
generalization must look like

%(FG) = ,(PE(G) + & (F(G), (38)

where g and g are some autombrphisms and the summation over ; is understood.
Only Versions -(1) and -(3) are suitable in this context. ‘

4. Paragrassmann Algebras with Many’Variables

Here we present explicit realization of some paragrassmann algebras I,41(N) gener-
ated by N coordinates §; (i = 1,..., N) : "' = 0 and N corresponding derivatives
9 ,07*" = 0. The simplest (bilinear) algebras can be constructed in Version-(1).
Thus consider the algebra H,4,(1) defined by - - = Lo :

M—-qgfd=1, Ftr=¢*"=0, (39)

where ¢ is any primitive (p + 1)-root of unity The algebra (39) was the starting
point for considering the fractional para-supersymmetry [13]. Our motivation for
using this version is its extreme simplicity. Furthermore, it gives bilinear commnuta-
tion relations for generators of Il,4; (V) that are closely related to the definitions of
the quantum hyper-plane {14], covariant q-deformed oscillators [15] and differential
calculus on the quantum hyperplane [16]. The other versions (7) can be consid-
ered similarly but they yield non-bilinear multi-paragrassmann algebras (a generic
example will be given below). ' o
The generator of automorphisms in the Leibniz rule can be expressed as

g = 90 — 60. (40)
11 is easy to check that
00 =(g~1)/(g—1), 90 =(sg—-1)/(g—1),
and

g0 = g0g, gd=q'0g. ' (41)

Using this operator we define N paragrassmann variables
0; = gﬂ‘h ® gﬂir.-n R gl’fq-l ®‘9gﬂf- ® gpf'-n ®--® g”§ (42)
with the obvious commutation relations

6:0; = ¢°96;6;, i< . ‘ : (43)

10

We wish to restrict N(N—1)/2 numbers pi; = o= ¢! so as any linear combination
of 6; is nilpotent, '

(Seort =0, (49

=0
and hence §; generate a paragrassmann algebra [pi (N). One simple choice is
pij = a; (1 <J), (45)

‘ imiti i i i i 1l 6; for i < j acquire the

where all ¢* are primitive roots of unity. With this Fhome, all ; . .
same multiplier ¢*/ in commuting through 6;. So, if Eq. (44) is valid for the linear
combinations of the first (j — 1) theta’s, we may apply Egs. (.35), (36) of Rif [1]
and thus prove it to be valid for any number of theta’s (provided that all ¢* are
primitive roots of unity). ' ’ . '

The ansatz (42) generalizes the expressions for many theta’s obtained in [1] by
certain recurrent procedure. It is natural to define the derivatives J; by

3; - ggjl ®ga"v_, ®®gd:+, ®gﬂ.§a®ga.§-x ®g"|‘ (46)

Then the commutation relations for & are (i < j)

8,0 = ¢°99;0;, oi; = ol — 0;’ k (47)
0:0; = q"f“’;:a,'e.- , (48')
0,0, = q'-a;'—pj‘ 0,0; . (49)

Here the parameters of are to be chosen so that any linear combinations of 3’; is
also nilpotent :

C, |

Qo adyt =o. (50)
=0

Now, to obtain a closed algebra with quadratic commutation relations we have

to solve the following problem (*): N
to express 8i0; as a linear combination of 1 and 6;0;, 5,7 =1,...,N .
It is more convenient to deal with the expressions :

80— g0 =g @ ® g ® gi=gll, (51)
where 7} = p} + o; , or, as well, with

8:0; — q"iG.-a.' = gfb Q@ --® gfa‘+1 ® - ® g"f = g["‘l+ . (52)
The terms 0;8; are better represented by

Ej=(qg-1)q16,0=g*® - ©gig~ )®---®gt =gt —gll. (53)

11



1t is not hard to realize that the problem (%) is solvable if and only if for any 7 there

exist a sequence of operators (53), producing (51) (or (52) as well) from 1 = gl. To

formalize this idea more rigorously, consider in an N-dimensional space 2N points
{[*], [7l+,¢=1...N } and N oriented segments [7'] — [7*];.. This set of data
composes an oriented graph G, which obviously does not contain cycles since all the

segments are mutually orthogonal. After these preliminaries, we can formulate the
following

Criterion: The problem (x) is solvable if and only if the correspondent

graph G is connected (and therefore an oriented tree) and contains the point [0].
In other words, this means that one can define an equivalence relatlon ~ on the

set T = {[0], ['], [']+,i=1...N } so that

a). [Pl ~[r]+, i=1...N,
b u=v=>u~v, VuveT. (54)
Then the criterion tells that the -entire 7 must be a single equivalency class.

This criterion gives a mmple procedure for getting the commutation relations of
0; and 6;

1. Draw an oriented tree with a root [0] and N edges;

2. Label the edges by the numbers from 1 to N;

3. Find a path from [0] to the beginning of the i-th edge;

4. Moving along this path, write

g[r‘] =1 E; :i:‘EJ", ceey

taking ‘+’, if the move agrees with the orientation of the edge Ja and ‘—’otherwise;

5. Use the expressions (51) and (53).

This algorithm exhausts all admissible possibilities. In particular, it proves that
all the numbers rj can be only 0 or 1. Thus, it brings some restrictions on the_
exponentials o} and o}, though not too strong. In fact, the most hard thing can
happen is the requirement that both p;; and pi; + 1 should be prime, which leads
p to be even number and restricts a choice of pij in a rather soft manner. There
are no direct restrictions on the values of p;; or relations between them, coming
from the criterion. So the last string of the algebra, the commutation relations of
d; and 6;, is almost independent of the first four ones, (43), (47 ~ 49). Note that
algebras corresponding to the different graphs are non-equivalent, at least at the
level of linear combinations.

Let us present now two simplest examples of the paragrassmann algebras 4.1 (N).

1). T=pJ+ d —O(z;é]),

=40, 1 (55)

12

or shortly: [#*] = [0] or [7*]4 = [0]. With this choice the algebra has the form (i < j)

0:0; = ¢*0;6; ,
3.‘3.,' = qP-'iB,-B.- s
0:,0; = qPid;h;, (56)
0,0, = ¢"98f;,
8.0, — ¢?7it16.8;, = 1.

This algebra has been described.in [1], [17]. The correspondent graph G is a bunch
of N segments coming from (or to) zero point.

2). - TJ-)=],J<1:‘,

n=0, 521, 6D
or shortly, [r] = [0], [7*+'] = [7*]+. Here we obtain (i < j)
9,‘%‘ = g¢fif;0;
89; = ¢t o, ‘
0:0; = ¢ Pidib;, (58)
0,8, = griaid;,

86 — g6:8; = 1+(q—1)3;216;9; .

This algebra resembles the differential calculus on the quantum hyperplane [16] (see
also [18] ). The correspondent graph is a chain of N arrows. Algebras of this kind
can exist only for even p, as it was mentioned.

Concluding this discussion, we would like to formulate some problems related to
complete classifying paragrassmann a.lgebras )
" 1. It is clear that algebras I'py1(NV) with different sets {a:} (see (45)) are not
equivalent (unless the two sets are proportlona.l) The question is how fully the
ansatz (45) exhausts all admissible matrices p;; in (43)7 (We suspect that for N
large enough it is exhaustive while for smaller N it is not.)

2. An algebra II,; (N) can be determined by an oriented tree G together with
a suitable set {a;} ( or, more generally, {p;;} ). Different trees and sets define
non-equivalent algebras that cannot be related by any linear transformation of §’s
and &s. The question is: can they be related by a non-linear transformation like
that connecting the versions of the algebra I,4;(1)? In other words, can different

,{,i’f}(N ) be considered as versions of the unique algebra Op41(N) or they are
distinct as enveloping algebras?

The final remark concerns posmble non-bilinear algebras Our approach can be
generalized to arbitrary version, with commutation relations (7). With this aim,
we first introduce the linear automorphism operator g in the algebra (7) with the
commutation relations (41) but considering ¢ as an arbitrary parameter. Then,

for the multi-paragrassmann generators defined as in (42), (46) one can derive the
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following algebra (i < j)

0:0; = bo+b,6;0;+bs0732 +...+ b,,e?af ,

9;191' = ¢%6;6;,

80 = ¢%9;0;, (59)
0,0; = q%0;0;,

0;6; = ¢ %6;0; .

To satisfy the equations (44), (50) we have chosen the parameters o;; = pi; = a;
for i < j and oy; = p;; = a; for ¢ > j. The integer numbers a; are restricted by
the condition that all g are primitive (p + 1)-roots of unity. The most important
feature of this construction is its independence of the version (‘version covariance’).
This property is of utinost importance in some applications, e.g. in constructing
para-Virasoro algebras to be treated in our next paper. . Note, however, that the
generalized Leibniz rule (38) is only satisfied if the b-parameters correspond to the

— g—Version. The algebra (59) may be further generalized but we will not present
these generalizations here. Non-bilinear algebras deserve a separate thorough inves-
tigation.

5. Conclusion

In this paper we have given a general construction of the paragrassma.nn calculus
with one variable and have shown that all nondegenerate algebras’ I[,,_,?1 are equiv-
alent. Still, different versions may be useful in different applications. As has been
shown in the last section, constructing algebras with many variables requires simplest
versions. There is another reason for a separate consideration of different equivalent
versions. Our approach to constructing paragrassmann calculus with many variables
was to preserve the nilpotency property for linear combinations of 6; (and of 3;).
Then the commutation relations between different elements are just calculation tools
not having any fundamental meaning. However, we may choose a different view-
point considering the algebra of commutation relations as a prime object. Then it
would be natural to look for transformations preserving the commutation relations.
Let us discuss this viewpoint. It is clear that transformations '

d; — a: =t;;0;, 0; — 9: = t;;0; . (60)

do not preserve the commutation relations (43) and(47).- To preserve these commu-
tation relations (quantum hyperplane relations) we have to consider ¢;; as generators
of the multiparametric quantum group GL,,,,. In particular, we have to require

titi; = ¢V bt

ekt;,- = t;,-@,. .
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The main paragrassmann identity now looks as
N ' , g

@ = (Q_ gt =0 - (61)

i=t o :

It is clear that
(tar0n)(tis65) = g7 (8:38;) (tixbh)

and eq. (61) is fulfilled only if q°f% are primitive roots of unity. As an example
we present the following paragrassmann quantum plane (6;)**! = 0 where §; =

gP® .. g?®0®1® -+ ® 1 The commutation relations have the form
e .

0:8; = ¢'%0,6:, (i< j). e (62)

and these relations are not changed under the transformations (60) with-¢; €
GLan(N). Then it is clear that

(kb )(ti;05) = qlte;05)(tax0k)

and, if ¢ is primitive root of unity, we obtain that (0!)*' = 0. Thus, the paragrass-
mann quantum plane (62) may be regarded as a linear space under rotations of the
quantum group GL . :
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