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1 .. Introduction 

The one - dimensional anharmonic oscillator is a touchstone for demon
strating any novel mathematical method. This is for three reasons. First, 
a great number of various physical problems has the mathematical _struc
ture similar to that of the anharmonic oscillator; among them e.g. is the 
so - called cp4 model of quantum field theory. Second, the standard 
perturbation theory with respect to the anharmonicity parameter yields· 
series with a zero radius of convergence [1]. Third, there are exact numer
ical results for the eigenvalues of the anharmonic oscillator [2-4] together 
with the corresponding asymptotic expansions in the weak coupling [1-
3] and strong coupling [5-7] limits, which allows a direct estimation of 
accuracy for new methods. 

When many first terms, about ten of them, of perturbation theory are 
known, one can find an effective sum of divergent series invoking some 
of the existing resummation techniques like the Pade approximation or 
Borel transformation. However, for the overhelming majority of realistic 
problems one is able to calculate only a few terms. Then the usual 
resummation techniques cannot be applied. In a situation like that there 
was a necessity to invent a method which could allow one to find, using 
a minimal number of first terms, an effective sum of a divergent series 
with a reasonable accuracy. 

Such a method has been formulated in Ref. [8]. This method is based 
on constructing a convergent sequence of approximations using the prop
erty of functional self - similarity, because of which it has been called the 
method of self - similar approximations. The advantage of the method is 
in the use of only two first terms of perturbation theory in conjugation 
with a high accuracy. Using only two terms, the method [8] makes it 
possible to reach a better accuracy than either the Pade or Borel sum
mations emploing ten terms. The method of self - similar approximations 
[8] was applied for finding out the ground - state energy of the anhar
monic oscillator [8,9] and for considering several problems of statistical 
mechanics [10]. · 

The aim of the present paper is to show that the method of self -
similar approximations [8-10] retains its high .accuracy not solely for the 
ground - state energy. but for the whole spectrum of the" anharmonic 
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oscillator. All energy levels as well as all anharmonicity parameters are 
considered. We also analyse several variants of the method in order to 
choose the most accurate among them. 

2. Formulation of method 

Here we present the scheme of the method of self - similar approximations 
whose detailed description is given in Ref.[8). Let us have a sequence of 
functions fk(g) , where k = o; 1, 2, ... is a number of approximation 
and g , a parameter, which we shall call the coupling constant .. First of 
all, we should organize a convergent sequence of functions fk(9, zk) by 
introducing a set of governing functions zk(g) whoserole is to govern 
the convergence of the sequence of renormalized functions 

fk(g) = fk(g, Zk(g)), (1) 

in which the notation 

z(g) = zo(g) = z1(9) 

will be used. The governing functions are· to· be defined from a fixed -
point condition (8-10). 

Define a coupling function g(f) by the equation, 

· fo(g, z(g)) = f; g = g(f). 

Introduce the function 

Yak(/)= [fa(g(f), Zk(g(f))) - /k(g(f), Zk(g(f)))r1 

satisfying the normalization 

J.(g) 

j Yak(/)df = 1, 

hc(g) 

in which J.(g) is just the sought self - similar approximation. 
latter, generally, can depend on any number of other parameters. 
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Given exact numerical values for the function of interest f(g) , the 
accuracy of the method will be found be calculating the maximal error 

I J.(g) I 
f* = s~p 1 - f(g) . 

When considering the spectra of Schrodinger operators we shall deal, in 
the place of the function f.(g) , with the energy levels e.(n,g), where 
n = 0, 1, 2 ... is a level number. Then the maximal error.will be defined 

as 

l

e.(n,g) I 
f* = sup sup ( ) - 1 , 

n g e n,g 
(5) 

where e(n,g) is an exact value. 

3. Anharmonic oscillator 

Consider the eigenvalue problem for the operator 

1 d} mw2 2 2 4 H = ---+--x +Am x, 
2mdx2 2 

(6) 

in which m,w,A > 0 and x E (-oo,+oo). The eigehvalues, or energy 
levels, En(g) are enumerated with the index n = 0, 1, 2, ... and depend 
on the dimensionless coupling, or anharmonicity, parameter 

A 
9=3• w . 

For convenience, we introduce the dimensionless energy levels 

'( ) _ En(g) en,g =--; n=0,1,2, ... 
w 

(7) 

(8) 

Enumerating the number of approximation by k = 0, 1, 2, ... , we write 

ek(n,g) = ek(n,g, zk(n,g)). (9) 

Take as a zero approximation the harmonic oscillator Hamiltonian 

1 d} mw5 2 H0 =---+--x, 
2mdx2 2 

(10) 
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and define the trial parameter 

Wo 
Z::-. 

w 
(11) 

Starting with (10), we have to choose a particular sequence of approxima
tions together with a fixed - point condition for the governing functions. 

Let us use the Rayleigh - Schrodinger perturbation theory for con
structing the corresponding approxi~ations 

Eik>(g) 
ek(n,g,z) = -_..;.......;_; k=0,1,2, ... , 

w 
(12) 

where Eik>(g) is the k-th approximation for the n -th energy level. 
The initial approximation, connected with (10), is 

eo(n,g,z)= (n+½)z. (13) 

It is not too difficult to find the first 

· ( 1) 1 -z
2 

( 2 1) 3g ~1(n,g,z) = e0(n,g,z) + n + 2 ~ + n ,+ n :+ 2 2
z2 (14) 

and second 

. ( 1) (1 - z
2
)
2 

( 2 1) 3g(l - z
2
) e2(n,g, z) = e1(n,g, z)- n + 2 Sz3 n + n + 2 2z4 

- ( n + ½) (17n2 + 17n + 21) ::
5 

·, (15) 

approximations. · 
A fixed - point condition for the governing functions can be written in 

one of the forms, either as a minimal - difference condition [11-15] or as 
a minimal - sensitivity condition [16-20]. Let us begin with the minimal 
- sensitivity condition 

a 
az e1(n,g, z) = O; z = z(n,g), (16) 
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which gives the equation 

z3 -·z - 6'Yn9 = 0 (17) 

for the governing function z(n,g). In Eq.(17) the notation 

= n2 + n + 1/2 (lS) 
'Yn n + 1/2 

is used. The solution to Eq.(17) supplies the governing functions 

in which 

z(n,g) = 
{ 

73cos(~ ); g ~ 9n 

A! + A;;; g ~ 9n 

g 
On = arccos(- ), 

9n 

[ ]

1/3 

A~= (3g)113 1 ± Jl ~ (gn/9) 2 
, 

9n = (9J3"Ynt1 = 0.064150"'(;
1

• 

(19) 

Eqs.(14) and (15), taking account of (17), can be simplified becoming 

e1(n,g, z) = n + - --, (20) ( 1) 3z
2 + 1 

2 4z 

( 
1) an(l - z

2)2 
e2(n,g,z)=e1(n,g,z)- n+ 2 . 48z3 , (21) 

where 
_ ( 1)

2 
34(n2 + n + 1/2) + 25 

an= n + 2 6(n2"+ n + 1/2)2 -
6

· 
(22) 

Eq.(2) for the coupling function g(n, J) reads 

eo(n,g) = /; g = g(n,J). (23) 

The function (3), defined as 

Y21(n, /) = [e2(n,g(n, J)) - e1(n,g(n; J))t
1
, (24) 

s 



takes the form 

. 48/3 

Y2i(n,f) = - an[/2 - (n + 1/2)2]2" (25) 

Finally, the normalization ( 4) yields the equation 

e;(n,g) - (n + ½)2 

eUn,g)-: (n + ½)2 -

=exp{ (n+½)2 - (n+½)2 _an} (26) 
e~(n,g) - (n + ½)2 eUn,g) - (n + ½)2 24 

for the self - similar approximation e.( n, g) of the anharmonic - oscillator 
spectrum. The comparison of the self - similar approximation given by 
(26) with exact numerical results [2,3] shows that the error very rarely 
exceeds 0.3% the maximal error (5) being 0.4% for any energy level 
n = 0, 1, 2, ... oo and all anharmonicity parameters g E (0, oo) . The 
corresponding values are shown in Table 1. 

It is instructive to consider the strong anharmonicity limit g - oo . 
Then, the governing function (19) becomes 

z(n,g) ~ (6,ng)113; g - oo. (27) 

The first and second terms (20) and (21) are 

3 ( · 1) e1(n,g) ~ 4 n + 2 (6,ng) 113, (g - oo), 

e2(n,g) ~ ¾ ( n + 1) (1 - ;~) (6,ng)1
1
3. (28) 

The self - similar approximation defined by (26) is 

e.(n,g) ~ e1(n,g)exp (-:;) ; g - oo. (29) 

Consider in addition the asymptotic expressions as n - oo. Using 
the notation (18), (22) can be presented as 

( 
1) 17 25 

an = n + 2 3 + 62·- 6. 
'Yn In 

6 

.., 

;• 

In the case of high energy levels 

'Yn ~ n, 
1 

an~ -f n ~-1. 

With these properties (27) gives 

and (28) yields 

z(n,g) ~ (6ng)113; n,g ~ 1, 

3 . 
e1(n,g) ~ -n4f3(6g)1t3, 

4 

109 e2(n,g) ~ 144 n4/3(6g)I/3, (g, n ~ 1) 

For the self - similar approximation (29) we obtain 

3 ( 1 ) - , e.(n,g)~4exp 144 _n4/3(6g)I/3; g,n~I. 

(30) 

(31) 

The latter formula can be compared, with the exact asymptotic form [3] 

[ 
3 14/3 

e(n;g) ~ 7r2 f2(1/4) . n4/3g1f3; g, n ~ I. (32) 

For a more visual comparison let us rewrite (30) as 

e1(n,g) ~ I.362840n413g
113

, 

e2(n,g) ~ I.375459n413g1l 3, (g,n ~ 1) 

the s~lf - similar approximation (31) as 

e.(n,g) ~ 1.372338n413g1l3; g,n ~ 1, 

and ~he exact asymptotic limit (32) as 

e(n,g) ~ 1.376507n413g1l3; g, n ~ I. 

(33) 

(34) 

(35) 

Eqs.(33) - (35) show that in the asymptotic region g, n - oo the 
accuracy of e1(n,g) is 1%; of e2(n,g) is 0.08% and that of (34) is 
0.3% . Remind that the maximal error of e2( n, g) in the whole range of 
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g E (0, oo) and n •= 0, 1, 2, ... oo is about 1 % while that of the s~lf, 
- similar approximation is 0.4% . The fact that in the asymptotic limit 
g, n - oo the self - similar approximation gives smaller accuracy than 
the second order renormalized perturbation theory is purely accidental. 
This is clear from the Table 1 which shows that the accuracy oscillates 
with changing n and g. Thus, only the maximal error can characterize 
a method as a whole. 

4. Analysis of procedure 

To check the optimum of the procedure followed in the previous section, 
it is useful to try some other variants. 

Let us take a fixed - point condition not in the form of the minimal 
- sensitivity condition (16) but in the form of the minimal - difference 
co~dition [11 - 13] defining the governing function from the equation 

e2(n,g,z)- e1(n,g,z) = 0-. 

The distribution of approximations (3) will be taken as 

Y20U) = [e2(n,g(n, J)) - eo(n,g(n, f))J-1
• 

Eq.(36) yields the equation 

z6 
- 2z4 

- 12g1nz3 + z 2 + 12g,nz + 2g2(17n2 + 17n + 21) = 0, 

(36) 

(37) 

for the governing function z = z( n, g) . This equation for n = 0, 1 has 
no real solution and for n ~ 2 has two solutions z = Z±(n,g) whose 
asymptotic expression is 

Z±(n,g) ~ (6 ± v2)1/3(ng)t/3; n,g ~ 1. 

Constructing a self - similar approximation in this case and analysing 
its accuracy for the whole range of g and n including the strong cou
pling and high level limits, we find the maximal error (5) to be t:. ~ 10% . 
Therefore, the minimal - difference condition produces less accurate re
sults than the minimal- sensitivity condition (16), which is in agreement 
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with a similar analysis made by Stevenson [17] for modified perturbation 
theory. 

Another possible change which we can make in our procedure is to use 
some other iterative scheme for obtaining a sequence of approximations 
in place of Rayleigh - Schrodinger perturbation approach. For instance, 
based on the spectral equation H t/Jn = En t/Jn we can define the eigen-
values as 

+oo 

En= (t/Jn,Ht/Jn) = j t/J:(x)Ht/Jn(x)dx, (38) 

-oo 

and the eigenfunctions as 1Pn == CnH t/Jn , where the constant Cn is to 
be defined from the normalization condition ( 1Pn, t/Jn) = 1 · which gives 
Cn = ( 1Pn, H2t/Jn)-1l2 . Thus, the eigenfunctions are 

1Pn = Ht/Jn/(t/Jn, H2t/Jn)112 = Ht/Jn/llHt/Jnll- (39) 

Considering (38) and (39) as equations to be solved by iterative process, 
we may define the latter by the recurrence relations . 

E(k+l) = (·'·(k) H·'·(k)) n Y-'n , 'r'n , 

tfJ!ik+I) = Ht/J!ik) IIIH,J,!ik)II- . (40) 
' t 

Starting with the harmonic oscillator Hamiltonian (10) we can, find 
all further approximations by means of relations ( 40) and the integral 

1 +oo 

2nJ7rn! J x2me-x2 H~(x)dx = 
-oo 

= _1 _ ~(-l)kCk (n + 2m - 2k)! 
Vmm! L- m (n - 2k)! ' 

k=O , 

in which Hn(x) is the Hermite polinomial. For example, for the ground 
- state level, emploing the notation 

ek(g,z) = ek(0,g,z); n = 0, 
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and defining the governing function z = z(O, g) from equation (17), we 
get 

1 
e0(g, z) = 2z, 

3z2 + 1 
e1(g,z)= 

8 
, 

, z 

( ) _ 857 z6 
- 1639z4 + 1139z2 

- 165 
.e2 g,z - 8z(35z4 +2z2 +11) · 

However, the use of the iterative procedure ( 40) supplies the results whose 
accuracy is much poorer than the accuracy of the self - similar approx
imations obtained by invoking the Rayleigh - Schrodinger perturbation 
scheme. 

The reason why the accuracy of the procedure of Section 3 is suffi
ciently higher than that of the variants analysed in the present section 
can be easily understood if one considers the corresponding mapping 
multipliers · 

Mk(n,g) = lim I aaJ. ek(n,g(n, J))I-
J-e.(n,g) . 

(41) 

Calculating the latter it is not too difficult to make it sure that the 
mapping of Section 4 are not contracting, since Mk( n, g) becomes equal 
or surpasses unity for some of parameters, while the mapping of Section 
3 is contracting. 

5. Discussion 

We have shown that the method of self - similar approximations [8-10] can 
be applied not only for finding out the ground - state energy of one - di
mensional anharmonic oscillator but_ for calculating the whole spectrum. 
From an analysis it follows that to achieve a high accuracy one has to 
deal with contracting mappings. Then the spectrum of the anharmonic 
oscillator can be found with a very good accuracy notwithstanding the 
use of only two terms of the Rayleigh - Schrodinger perturbation theory .. 
The maximal error is 0.4% for any energy level n = 0, 1, 2, ... , oo and 
any anharmonicity parameter g E (0, oo) . For a better comparison of 
our method with the renormalized perturbation theory we adduce Table 
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2 presenting the results of the first and second order perturbation terms 
given by Eqs.(14) and (15), respectively. 

In order to offer an additional proof for the above mentioned state
ment that it is by pure accident the asymptotic limit n, g -+ oo of the 
self - similar approximations has smaller accuracy than the second order 
renormalized perturbation theory, we have considered the next step for 
the self - similar approximation. That is, we have calculate the self -
similar approximation e;2(n, g) given by the equation 

in which 

e;2(n,g) 

J Y32(n, f)df = 1, 
e2(n,g) 

Y32(n, J) == {xJ(n, f) - x2(n, J)}-1
, 

xk(n, J) = ek(n,g(n, f), z(n,g(n, J))), 

(42) 

and the governing function z(n,g) -is defined by (19). In the limit 
n, g -+ oo this gives 

e;2(n,g) ~· 1.316653n413g1l3. (43) 

The term e3(n,g,z) is the third order approximation obtained by the 
Rayleigh - Schrodinger perturbation theory in analogy with (14) and 
(15). Substituting here z = z1(n,g) = z(n,g) given by (19) we have 

e3(n,g, z1(n,g)) ~ 1.377037n413g1l3 , (44) 

as n, g -+ 00 • While if we substitute the governing function Z3( n, g) 
defined by the equation 

a 
8z e3(n,g,z) = 0, Z = Z3(n,g), 

then in the limit n, g -+ oo 

e3(n,g,z3(n:g)) ~ 1.377545n413g1l3 • (45) 

The errors of ( 43) as compared with the exact expansion (35) is 0.01 % ; 
the error of (44) is 0.04% ; and that of (45) is 0.08% . As we see, the 
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Table 1. 
The energy lelels of the· one - dimensional anharmonic oscillator. in 

the self - similar approximation defined by eq. (26) compared with the 
exact numerical values. 

g n e(n,gJ e.(n,g) error'n, 
0 0.50726 0.50728 0.004 
1 1.5357 1.5358 0.007 
2 2.5909 2.5909 0.000 
3 3.6711 3.6709 0.006 

0.001 4 4.7749 4.7743 0.013 
5 5.9010 5.8998 0.021 
6 7.0483 7.0463 0.028 
7 8.2158 8.2129 0.o35 
8 9.4030 9.3987 0.046 
0 0.63799 0.63959 0.25 
1 2.0946 2.0987 0.19 
2 3.8448 3.8407 0.11 
3 5.7970 5.7853 0.20 

0.3 4 7.9100 .7.8933 0.21 
5 10.167 10.141 0.26 
6 12.540 12.511 0.23 
7 15.030 14.992 0.26 
8 17.620 17.573 0.27 
0 0.80377 0.80606 0.28 
1 2.7379 2.7429 0.18 
2 5.1780 5.1683 0.19 
3 7.9400 7.9207 0.24 

1 4 10.960 10.932 0.26 

" 5 14.203 14.161 · 0.30 
6 17.630 17.581 0.28 
7 21.240 21.172 0.32 
8 25.000 24.919 0.32 
0 3.9309 3.9284 0.06 
1 14.059 14.061 0.ot 
2 27.550 27.447 0.37 
3 43.010 42.852 0.37 

200 ·4 60.030 '59.830 0.33 
5 78.400 78.127 0.35 .• 
6 97.900 97.575 0.33 
7 118.40 118.05 0.29 
8 139.90 139.46 0.31 
0 18.137 18.121 0.09 
1 64.987 64.987 0.00 
2 127.51 127.02 0.39 
3 199.20 198.43 0.39 

20000 4° 278.10 277.15 0.34 
5 363.20 362.00 0.33 
6 · 454.00 · 452.20 ,. 0.40 
7 548.90 547.17 0.32 
8 648.50 646.47 0.31 

12 

Table 2. 

The energy spectrum of the one - dimensional anharmonic oscillator 
given by the renormalized perturbation theory of first and second orders · 
with the corresponding errors. 

g n e(n,g) e1(n,g) error% e2(n,g) error% 
0 0.50726 0.50729 0.006 0.50725 0.000 
1 1.5357 1.5358 0.009 1.5356 0.000 .. 
2 2.5909 2.5909 0.001 2.5908 0.001 
3 3.6711 3.6708 0.008 3.6711 0.001 

0.001 4 4.7749 4.7740 0.019 4.7748 0.001 
5 5.9010 5.8993 0.030 5.9009 0.002 
6 7.0483 7.0455 0.040 7.0482 0.002 
7 8.2158 ·8.2116 0.051 8.2156 0.002 
8 9.4030 9.3968 0.066 9.4024 0.006 
0 0.63799 0.64163 0.57 0.63698 0.16 
1 2.0946 2.1050 0.49 2.0921 0.12 
2 3.8448° 3.8424 0.06 3.8392 0.15 
3 5.7970 5.7795 0.30 5.7898 0.12 

0.3 4 7.9100 7.8782 0.40 7.9040 0.08 
5 10.167 10.115 0.51 10.158 0.09 
6 12.540 12.474 0.53 12.534 0.05 
7 15.030 14.942 0.59 15.022 0.06 
8 17.620 17.510 0.62 17.610 0.06 
0 0.80377 0.81250 1.10 8.0078 0.37 
1 ;2.7379 · 2.7599 · 0.81 2.7314 0.24 
2 5.1780 5.1724 0.11 5.1658 0.23 
3 7.9400 7.9079 0.40 7.9276 0.16 

1 4 10.960 10.900 0.55 10.948 0.11 
5 14.203 14.109 0.66 14.186 0.12 
6 17.630 17.508 0.69 17.615 0.08 
7 21.240 21.076 0.77 21.216 0.11 
8 25.000 24.800 0.80 24.972 0.11 
0 3.9309 4.0085 1.97 3.8994 0.80 
1 14.059 14.234 ·.L24 14.000 0.42 
2 27.550 27.484 0.24 27.434 · ·o.42 
3 43.010 42.746 0.61 42.888 0.28 

200 4 60.030 59.582 '•I 0.75 59.913 0.19 
5 }8.400 77.735 0.85 78.259 0.18 
6 97.900 97.034 0.88 97.756 . 0.15 
7 118.40 117.36 0.88 118.28 0.10 
8 139.90 · 138.61 . ,0.92' 139.74 0.11 
0 18.137 18.502 2.01 17.988 0.82 
1 64.987 65.803 · _1.26 64.707 0.43 
2 127.51 127.19 0.25 126.96 0.43 
3 199.20 197.93 0.64 198.59 0.30 

20000 4 278.10 · 215:99 · 0.76 277.53 0.20 
5 363.20 360.16 0.84 362.61 0.16 
6 454.00 449.67 0.95 453.03 0.21 
7 548.90 543.93 0.91 548.23 0.12 
8 648.50 642.50 0.92 647.78 0.11 
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self - _similar approximation ( 43) has better accuracy than both variants 
of the renormalized perturbation theory, either (44) or (45). A more 
detailed analysis of higher order terms ·of the renormalized perturbation 
theory as well as of the method of self - si~ilar ·approximations involves 
quite complicated formulae and needs a separate consideration which will 
be given in another paper. 
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~KanoBa E.n., ~KanoB B.~. 
OtJ,HOMepH,bllA aHrapMOHVl'-leCKVIIA OC'-'Vlnm1Top 
B aBTOMOtJ,enbHOM npvi6nvimeHVIVI 

£5-92-326 

HOBWIA MeTOA, 
0

Ha3BaHHWIA MeTOAOM aBTOMOtJ,enbHWX npvi6-
nvimeHVIIA, npviMeHeH tJ,nH BW'-IVICneHVIH cneKTpa OAHOM~pHoro . 
aHrapMOHVl'-!ecKoro oc4vinnHTopa. npeviMyll.leCTBo tJ,aHHoro Me
TOAa COCTOVIT B B03MOmHOCTVI BOCCTaHoBneHVIH n~6oC1 VICKOMOIA 
IPYHK4VIVI Ha OCHOBe BCero nVIWb ABYX nepBblX '-lneHOB TeOpVIVI 
B03MYll.leHVIIA. HeCMOTpH Ha CTOflb orpaHVl'-leHHY~ VIH<pOpMa'-'VIIO 
y~aeTCH HaC1Tvi.nonHwC1 cneKTP aHrapMOHVl'-le~Koro oc4vinnH~ 
TOpa C O'-leHb XOpOWe!A T04HOCTb~ tJ,nH BCeX. 3HepreTVl'-lec
KVIX ypoBHe!A VI Bcex KOHCTaHT aHrapMOHVl'-IHOCTVI C MaKCVIManb· 

.HOIA OWVl6KOIA nopHAKa 10- 3 •. . 

Pa6oTa BblnOnHeHa B na6opaTOPVIVI T·eopern'-!eCKOIA !pVl3VIKVI 
0~$1~ •. 
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One-Dimen~ional Anharmonic bscillator 
in'Self-Similar Approximation 

A new method, called the method of self-similar ap
proximations, is applied here for calcul~ting,the spec
trum of the one-dimensional anharmoni c osci 11 a tor. The 

· advantage of this method is the possibility of reconst-· 
·ructing any sought function using only two first terms 
of peiturbation theory. Notwithstanding such a limited. 
information,· the whole spectrum of the anharmonic oscil
lator can be found with a ~ery good accuracy for all 
energy levels and all. anharmonicity constants with the· 
maxima 1. error of an order 10- 3 • · · • · 

. . 
.- Thi investigation has been:performed at the Lab~ra~ 

tory of Theoretical Physics, JINR. 
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