


1. Introduc'tion-

In this paper ‘the invariant measure i‘or a dynamical system
defined -by the nonlinear wave equation ‘ : e T

,Kft un +)‘(x,u) 0, xe(o /)) iel? o
u(x) 0)= \A (X) Ut (X {0) ui (X) ' ,.,(‘2)

' with vanishing boundary conditions

SUgh= ud,) = O it (3) .

: is constructed. ,Here { is a smooth function satisfying some P '
conditions of growth. In the same way one can’ simply construct’ an

 invariant measure for the periodic problem when U(x+ﬂ {) U(x,l-)

'biforany)({;-’.’ ‘ R , :

' .There are several papers on- this matter for various partial

differen}ial equations of the mathematical physics /1__5./ In the : -

. paper the invariant measure i‘or some abstract equation :l.s const-
- ructed, and in - the same measures are constructed for: two physi—

cal systems. Unfortunately, in the paper 3/ some kimportant steps o
- of the proof are omitted. In the papers 4 5 ‘the/invar'iant‘me’asure,”l;"‘

"1s introduced for the one-dimensional nonlinear schrodinger equa- -
. tion with /the polynomial nonlinearity. Measures similar to. those: Were
considered in the papers 6-9 ) but with other" aims and without

the proof of the inva.rianoe. The paper is organised as’ follows. In§ 2.

the basic notation is- introduced a.nd the basic results are formula—f
ted. In §3 the problem (I)-(3) 1s investigated. In addition; the
,convergenoe of the solutlons of the finite—dimensional problem
‘arising in the approximation of (I)-(3) to the solution of (I)- (3)
is: proved. In§4 the, invariant measure for the dynamical system de-—
fined by (I) (3) is constructed. Section 5 contains some generaliza—;
tions and applications: to physics.

2. Notation. Basic results

5 Let L be the real space of quadratic integr. ble functions
'defined on [o)ﬂ] with the scalar product (9,1\) ,( ﬂ(x) l\(x) dx

§id

I i SR

i el LD

R

e N

e Y

and the norm “(au

of the operator —

345,9)

infinitely differentlable func t1

<73

Then is a self-adjoint operator on
4 be the supplem gnt of L'L acoording to Hausdorff

Let §<0, H*

with respect to the norm “9"5‘“4 L H I k” {
space with the scalar product (3’1\)5 q{“ﬁ‘l’ u é’
If §>0 , we define the space HS ".on the usual way. ;

‘ ~be the basis .of the orthogonal normed in

fen;“‘lﬂﬂ'

L‘l eiaenfunotions of

3|l

. We denote by A the-closure in Zl .
efined first on the space C (q,q iof

ons satisfying L(o) L() O

.

is a Hilbert :

sorresponding to the eigenvalues '

0< < hS e AL Lt ‘Xh: SPM{ei)_._,Q{,;,. 1
and let n be the orthogonal pro'.]ec lor onto X ‘in L. ~.edn

constants.

‘Finally, we denote by C‘:[I X
"space of ‘X times continuously iy :
. WhereI CX is aéinterval and is'a Banach space’ and let

: 9“'} \\ d‘l"‘ "X ,-where “ “X is the norm |
in X Then,C I X) :

Ilu()l]c; X)

I'he hypothesis on

- what follows we denote by(, 45 Z;C ('_) -

n oo
‘arbitrary,positive R

(k=0,152y4+0+) the Bamach _
erentiable functions W! 1'—>

.1s’'a Banath space.
+ . consists in the following-

(f) -s: is a real contlnuously- differentiable function and’

there exists (120, such that

\’s(lqu\/(iw /z + [,:o-a&(x u)j </}

for all 'I- u.

To investigate the problen (I)-(B), consider the equation

Y ({) kd
where \(Ch

of. the. real argument £ wi

+I(c o)W~ LH(& 7) )(( \Om)
SW\ A Ié ‘ando_‘f

is the unknown function :

th values in some space "of functions’ of'r

Also let us iutroduce the finite—dimensional problem

,‘ Uh - u;x" N .Ph E ;'(-)l(h)];;o) X 6(0) A)) 'éf p) ,

“ (X,éo)

One can ea.sily wr
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© (b)) for any finite _[ C R

"It may be simply ‘seen that (5)- (6) define the system of ordinary '
differential equations i ’

Tf"? Oy + "x‘l\( “+ :(,;("E) ::o ) %6[2,‘ SRR '(é)'

aK({'):(uo,e;) ”"‘K“lo) Ao w8, (un)‘s’

where (L= («i,- h) )C (a)i { fox, utxh) ek(x) dx
~ and u Z QKQK . Hence (5)-(6). h?as a unique solution U (l;'f)
' which 1s: det"med for a1l eR by the hypothesis (). The first
. result of: the paper. consists in o ’
Theorem 1 : : ~
Let the hypothesis (£) be valid. Then ‘
"(a) the ‘problem " has a unique solution which ‘belongs to
c(T;4%) N Ci(I) H) -
and for any W, EL ) u €H§

‘) uO Gl, Ud_ GH

)
w n w h
‘Hw{ Sup Ilu G-l b+ 8 Plla—[u (,b-9( é)]}l

(¢) for any finite IC R €>0 there exists %>O

. such that

Swp W (- U2 (bl + Sup "T[ui( b-ulehl <€
.'and V

SL‘P“‘fi( by.( b I+ S‘&IP ll;r[’h( t- ‘97_( {)]n_fﬁs )

V\

. for any two solutions u‘_ 2 of the problem (5)-(6) or for any- -

two. solutions of the problem (4) for owndeh

,\\uLL,LQ- e ol + | a—[u by - WL 3]|| <5‘

;and

\w - . Lol + | Hm -9 (m])] <%

‘ v(d) the problem (‘j defb_nes t—j dy-namical system on the phase . °

space \97‘ft

' for any T>0 ana I-HDTI("'TJ 3 ‘

R e ot 5

‘see :
~and (4) is obvious

oodin

Ly (D-0).

,/101/

" Remark 1 . - :
) In what follows we call the solutions of equation (4) as the Y
generalived solutions of (I) (3). For the reason of- this definitiop -

’11/ - for e*canple. Formally the connection between (I)-(B)

Let Flot,w)= § $x,pdp ¢(u)~ ,{ Fox, ux) dx

. Let! 'U‘ ‘and W be' the pentred gaussian ﬂxeasures on L2 ‘and H with

identical correlation operators A + Since this operator 1s nuclear
Y and W are 0 -additive Borel measures. Let ‘j’k"U'QWi B

"/ "be a direct product of the measures U and LU" whic\:h&s “the meésu— St
: r~re‘}on ; . Let :

Ju(SZ)— f ot y(dg)

'for any ‘Borel’ set Q CX where ¢(j)" ¢(3z if 3 (JIJQ'L

. 'The basic result of the paper: consists

where 51 €L ; 99_ eh

. Theorem 2 i

JU\ " is an iniréx-iant measure for the dyhamicjal system' defined

/- 3. Proof ‘of theorem 1 -

We only sketch the proof because the methods of” investiration ':
of the problems (I)=(3) and (4) are well-known (see, for example, " .
. One can easily see that for small ‘T > 0 and =
~E'{: -T io“’TJ‘ .the operator on the right-hand side -of (4) i

'the, contractlon ‘of the complete metric vaceC{I’X)and the local e
result (a) 1ls valid. The global exlstence i‘ollows from ‘the estimates o )

gl Gl Cyllull +,C3I gt d'\
e
tl\‘tf‘ )“{S

Then, using the hypothesis (£) one has the inequality’

Cllual + €l + Gy S{ el &,

ooy, - foopali< = all }_ (9) ,\

with. C"’ COHS{ >0 independing of \?1,\{)2_64 . Henée, for any

T>O - I 7[£o T {-Q +T] and for any -two solutions *
B - . I 5 R B




B, \{1 and \f’l of (4) of the class C(I ['2) the 1nequality

fv;» “‘Pﬂb ‘fl(é)” ‘Ci" ‘ﬁ([‘o) \oz((a\""'(zh;rfﬁ(l) \01(( ﬂ *Qfﬂ&(ﬂii("/h‘r

‘s valid and the statement (c) is proved (For the problem (5) (6)

"and for first derivatives the proof may be hold by analo Ve
T Let7us. prove (b) .For W& ( ‘h, ?({') € ( (I Ll) /‘3}7
(\ C!-(T H ) " we get by (9)

\\w‘( b= \f(f)lI<Ci\Iu(£o)— \y(fo)uarc llr[u( !o>
%
f*CZS uy(w u%;wu¢~+(_“”(ﬁ(ﬂ

0

a + C guo() uﬂﬁmd

oﬂu +

where Q.“>0 and - Ry, tends to 0
- result of (b) 1s proved: The sécond one follows by analogy.

o is ‘proved - ;
4 An imrariant measure

’I‘he system (5)-(6) ‘1s ha:nlltonian by (7)-(8) For Borel'

ﬂ CX "X;\' let

5 . ‘4; n- . e ,v  \ ‘j
e ?“(ﬂ): (T'r)‘h, r{ ’\%Se g E"( I\KXK+2K) d)( "(}j 9 (IO? oE 4 o

F
‘x%x x ), Y= ( y.,)eR WX, dy
are the Lebesque measures i%R . {(1)3), ZXKEK )Z\JK K)éﬂj
and let j\A“kA) g P (d%)

Then, using (7)~(8) one' can easily prove that
\riant neasure for (5) (6) and that P“ X X
S One define measures on the Borel s
gebra in X using the rule E A

mm gamﬂtx xXl) Wﬂ) JM A(\D( xX])

- .where.

is the inva- s :

Gial-’

Fimally,. (d) is valid by the proved statements, and theorem 1 L

when V\*OO y and. the - first FRICHE WIS

:—y S

e S

. 1dentical correlation ooerators A
o and W are [ —additive Borel measures . Let

be'a direct product’ of the measures 'U" and W
'k'reon’ o« Let :

7 }for any ‘Borel ‘set Q CX
. by (I) (3).

=2 [EemT bt T
the . contraction of the complete metric >”'109C(I T
: result (a) is valid. The global existence follows from the" est1r1ates )

oy \t)ll< C gl Cy ugl, e f "‘9(”)“ dr\'“

‘ wlth C‘ CUhS{ >0

Re’nark 1

In what follows we call the " solutions of equation (4) as the

gene*alized solutions of (I) (3) For the: reason of this definition

see /IO ll/ 3 for exanple. Formally the ‘connection between (D)< (3)

" and (4) is obvious.

Let Flot,w= f Sopdp,  Pluy= j Foouro)dx., |, o
Let” U and "W e’ the pentred gauf‘sian easures on L2 and H with .
Since this ooerator is nuclear

‘U@W‘

whlch is the measu-

Ju(gz)-,f e W’a

where d)(ﬂ)- ¢(31 it 3 (51797_)

where" Si 6[, N 91 € H"l . The .basic result of  the paper: consists“ ‘
ln . A‘ .
"~ Tneoren 2_ T -

JL\ is an inva.. iant neasure for the dynamical syotem defined

3 “Proof of theorem l

“We. only sketcn the proof ‘because. the methods of invest* gation s

‘of the problems (1)- (3) and (4) are well-known (see, for example,

/10,11/ and -

. One can easily see “‘that'for small T >70
the: operator on the right-hand:side of (4) ig

and the local

‘and”

~Hn?%m

'rhen uﬂipr' the hypothesi" (£ one has the 1nequa1ity

quu+cuumi+c Suymu#

\\f(x,\f_,_) ~ f(x,\pt)ll C "‘?1 ‘?1“ AA ,(9{).

independing of ‘?1,‘?7_61, . rlence; for an,v"
I [:fo T fq + T_j and . for any 'two -solutions-

5 -

T>0



\fii‘ and Yl ‘o2 (4) of the class C(I 4?) tne 1nequa11ty

"/N‘ﬁd) 5"1(()" < Cill ‘ﬁd-o) P;((a)fl+(z|'a'[\§( - Y’lc/o)] +Q,(ﬂ&(r)‘§§ﬁ/l# ‘

is valid and - the statement (c) is proved (For the problem (5) (6)
and’ for first derivatives ‘the proof may be hold by analo R

Let.us prove (b) For W " {) ?( Ye. C(I [,")
n C!' T H ) "';: . we get by (9):

l\u“( H=9(hll € Gk - ‘f(fo)"\“C Mr[u“( !o) o)]M+

3 +Cg§ uso( - u"(;ﬁll**’ff f Ik #"’”’ H"’“"“’]”t

;,0

é (l + C gw(n u"( )lld

'where %)0 and 0\.“ tends to O when Y\"OO » and the first

result of (b) is proved. The second one follows by analogy.
Finally, (d) 1is valid by the proved statements, and theorem 1
is proved : :
o 4 An invariant measure

The system (5) (6) 1s hamiltonian by (7)-—(8) For Borel'

“ﬁ cX xX- 0

v\

: A?(H) (" ﬂ{\ éeé 1(1\ X +3~<) o(xp(z’ ~» (I°>

 where 'x~(x M)y Y= (4, - yh)ek A%, dy
‘are the Lebesque measures in 'R ; ,F {(’X))), ZXKEK )‘Z\JK K)Eﬂ;

and Tet - “(m g it R‘(d ).

Then, using- (7) (8) one can easlily prove that- is the inva- .-

riant measure for (5)~(6) and that ‘P (X X

One y define measures on. the Borel s -(;-al-

gebra in using the rule '

N\) pfl) [X XXb ' J\mﬂ) tithe xX})i'

- compact.

ot

]

o o e

I

S S:ane ﬁﬂ[X XX]iS open, if HCX is open, this is correct

Lemma 1 -

' Let the hypothesis (f) be valid. Then, the sequence fﬁ‘f :
weakly covergesto D e
Proof

First, let us prove the weak compactness of 5[),,,]

Let S e(ou_))E {@)A)GHS“XHfil“f]"sz "M ,\iand %

L let be the ‘closure of ER in . Then, . is 2 compact

/12/

By lemma II.1.1 from one has

fn(X\s ) < [Il%f_ T 20

R

"Hence, by the Prokhorov s theorem the sequence ) ' is weakly

© Iater, let M {(ﬂ L)eX [(g, -(j; l‘}je ), (U }l? .

. be the cylindrical set in where I ¢ ig a Borel's set in
and Bki )\. 1f Kt‘h orkDm and K:f. ¢ By the definiticn (10)

?n(M):(ﬁTé ”)\J | 5) »K’ dx ”f(M)

‘ ) K.4 . F

" where: - N —()(17 L. 'X,a) 7 ‘ for sufficiently o
large h Since there exists a unique continuation of the measure
from an algebra to the minimal ' (< algebra, P" —>P weakly o

Lemma 1-1s proved

i Lemma 2
Im ¥ { J'““(Q)>1M(Q) R ,if-gZ;CX is open.

.ka\ Swp J‘Ah (k\ <J\A(K) S if KCX 1s closed.
" ..For the g;“j‘: se /13/ k a0
g Let SW): ‘"’ . bg an opere.tor mapping (\l( ,L\ \1*( )) ‘ - g
~ 1into (\A( e L) U*( t’f‘\)): ¥here U( % is an arbitrary .
“ solution of (I)- (3) By analogy, let . (.h XX 0( XX\ o
be an operator mapping any - (\L"‘ (-7'?) uh- ;T)\ ~into . :

W t*ﬂ,{};u\ £+7) ama 1et ' Lt)—SV(‘)Ph-V By

... theorem 1 the’ Operators S‘L{,\)
. for any '

n(‘h are contilnuous .



o equality

Proof of theorem 2

be open, (."2_)\ S(t - 1)9( i)) J/((SZ(L‘) <D°

i LetQ ﬁ?
. By theorem 1 t 1) is open, too. Let us fix -£>0 . There °

- exlsts a compact ki ) - ‘such.that. J‘(S?.({ﬂ ki <£
- Let k,_=.g\{-r{1) kl_‘ , . Then, K CQ( 2) is a compa ct
’ Let i

OL\ h‘\m{d\&{ (Ki7%2di)\ ‘1‘5* “(7-) ’DQ({Z)){

Then A >0 By theorem 1. for. a.ny Gk there e,cists a ball

&( ) < Q( i) : such that dl(zt(l d il

T“L{ Aah) OL for all l\é 3(3)

‘and for all" h . Let QF(L‘L) {3652( 1)| v((sf (3,'352tl1))>j2}

‘and let B(gi), o ;}(32) “be a finite covering of
- by the balls,v D= U B(a") . By constructlon -,;('t ti) $

C Q* thy . rot all Sufflciently large h . Then, vy 1?,”,‘,‘“,3 2

fh(SMi,)qh )+€ € fom ch,tju (D) +¢

N0

-3._4,“ U\)[ M(g‘“d {1) [MD{ )(X )]) i‘f‘@(é»,gf

x'

" 'Due to the ar'bitrarlness of {:1 )'Ll and £>O one gets the

- “For any Bore1'° set’ Q(L )CX we' ‘get ‘the equality (11)
" ‘appro ximating ( O ‘L 1 Q_) by open sets from~-outside and by
closed sets from inside. ‘ :
~Thus," theorem ? 18 proved.

5. Generalizations and appllcations :

RS For the proof of theorem:2 the strong hyoothesis ) was
_-assumed. ‘In fact, this assumption was only used to prove theOrem l, .
Let us formulate the conditlon : :
( C ) Let a. continuously differentiable function {(x)u)

‘be such that theorem 1: (a) is valid and let there exists a. sequence::

4““’“) converging to s()(,u) for any A,y - : satisiyinr’«
, (f) with the following property: for any b(o 6[, ) b(uf H
o and | >0 the sequence l.(N(x)t) ‘oonverges to L((x){) in
8

> Let_\si'é(é;i)) {@,,\)GHS"XH fi l}“{ﬂnsfk "L, 2"31 én\’d‘;

. ; compact.‘

“Mgwﬂ J“(gz( 2. (11)

Since Hn [X XX}is open, if HCX is open, this is. correct.‘ o
Lemma 1 1 -

; Let the h.YPOthe'iis (f) be ‘valid.: Then, the sequence ;ﬁ.{ i

! weaklj covergesto P Te

Proof
Fj rst, let us prove the weak compactness of ?Ph} .

let ‘ be the closure of 4in JE Then, ; BR isfafcompact.’;f' :
By lemma II.1.1 from /12/ S ‘ RIS T

=Sy 2 :
plRE) < [Ra T

one has

_~Hence, by the Prokhorov s theorem the sequence is weakly

[9:8,), 55, L;je Wiet }gg

Later, let M {(ﬂ '\)GX

S be the oylindrical set in- where "I is a Borel's set in

Vand )ki )\ S Af K’(,Qn orkDm anﬂ "k¥ L .v Ey the definition (1@

4 n \___
1] )\J‘ 2 A o{x *ﬁ(M

: k=4 K. F :
,"where N ’(xi; .. 'x,e) 9 : . for sufficiently
' large. h Since there exists a unique continuation of the measure
. from an algebra-to the minimal- algebra, P" —>J’J wea.kly. f
" +Lemma 1 is proved. L
Lemma 2 ;
Km \,n-; J\.\“(Q))J\A(Q) 42 SZCX 1s kopenﬁ. :
h00 PR
L swp J"‘h (K) <J\4(K) 1f KCX is closed.
For the preat’ /13/ ‘
~Yor the proof se .
‘Let - p ) X be an operator mapping (U(,d \1*( t))
i'»"into (\.k( 4 \,) \A*( {:+t)), yhere } ° - 1is an arbltrary.
solution of - (I) (3) By analogy, let (-h XX ")0{ XX\
. be an operator mapping any (wr (-,T) u (- ;'ﬂ\ L inte
\\\\ &*\))%\k\ k"’T)) . and let l d’.)"s ()P
wv,theorem 1 the operators Qk’h ) {3 "\) - are. continuous .

. for any .



Proof of theorem 2 . L T
“Let Q ) be open, 52(,{2,)‘ S(‘ )g)‘!i)) JJ(Q(L,)VW
By' theorem 1 ét 7_) .

is open, too. Let us fix £>0 . There

" -exists a compact - ki ) ‘such that y(Sldn K1)<€
Let k1~ g\{—r‘{i) kj_' . ZThen, K CQ( 7.) is a comoact.
v_ Let . : .
DL m\_y\{ d\,g't (,Ki)mdi)\ ‘d\'s* (K?.) ?Q({Z))f

By theorem 1 for any ek “there e,cists a ball®

‘such that i&(ld Q

. Then OL>OSZ |
g c QR
Tv?dyz.v‘{ﬂl') < %L for all Lé B((,)

and for all' h . et 'QP(J:‘,_) {QGQ( 1)| dist (3,952({1))>J2}
ana 1et Brgy, ~~.,}(3e)
.by the balls, D= 30 By construction -,;('t ti) $ b
i’or all sufficiently 1arge h ,' Then, b,y.r 1emma_ 2

Cgh-dly
+£ £ /&M ;Lh‘)[j\/(

’viwﬁhﬁﬂ‘f* e ($)+{ =

\-(&M , Lh{ Mal Q,({ {1) [%/NX xX ﬂ)ﬂ ‘J"‘(Q‘A)

’,

+ Due .to the arbitrariness of '1:1 )“: nd E)O one gets the
‘~equa11ty . .

J\k(gQ.L£1)

o For any Borel's set Q(L,ﬂ(X’ .we get the eguality (11)
appro*{imatinv .SZL{:L) (¢= 179.) by open sets from out51de and by
closed sets .from inside.
- Thus, theorem 2 1is .proved.

. 5] Generalizations “and’ alppllcatl°ng '

For the proof of theorem 2 the strong hyoothesis (l) ves
: >assumed. In’ fact, this assumption was only used to prove theorem ,l,
I:et us formulate. the condition. :
: ¢ C ) Let a continuously differentiable’ function {('x u)
- be such that. theorem 1 (a) 1s ‘valid: and let there exists a:sequence:
-g (%,u) converging ‘to ;S()(,u) _for any 'X,L( and £ g
(£ with the following proyerty- for any. L(O 6[, y Ug€. H N
s and |>O the sequence L(“(x)t) converges to U{x f) in

8

be al finite covering of T

‘J‘A(Q(!q‘));ﬁ : = _;‘ | ) -; ‘ ‘; :

“satisfylnge .. L0

€Tt TN CH T T Y. e

isa solution of (I)-(3) corresponding to ‘ ](N Under the
“assumption (C) one can construct an invariant measure for (I)-=(3)

§0 as. in the paper /5/

for the nonlinear bchrodinger equation.
For the application one can use the Poincare recurrence theorem.

Theorem 3 /14/

Let £ be such that \/H(4X3<°° Then, almost all points .of ;Xi

~are stable in the Poisson sense.

This 1s an important result for the theory of "soliton "
eqguations, There exists an old observation by Fermi -, Past and Ulam.
These authors considered a chain of balls'with a nonlinear inter—
action between them: fhey discovered the phenomenon when an
arbitrary solution of the 'Cauchy problem from time totime returns.
back’ to its initial data wlth, any accuracy. Later, in the- soliton
theory this return:-was called the Fermi -~ Past — Ulam phenomenon.r
By computer simulation 1t was observed for many "soliton" equations

(see ,'/1.5/ e : - v
And- finally, jiheorem 2 is-valid for two ohysical n£nlinearit1 es
{(x)u\ au - 4%- U - and '}()()M) au- ue ».where

(X)d\ are positive constants /;
paper are applicable to the nonlinear Schrodinger equat ion.

’ References

1. Arsen'ev A.4. Op the invariant measures for the classical dyna-
mical systems with infinite-dimensional phise space. Matem.
. Spornik. v. 121, 297 (1983) (in Ru531an) :
2. Casati G., Guarneri I., Valz-Griz F, Preliminaries to the ergodic
theory of the infinite-dimensional systems? A model of rudic.nt '
 cavity. J.Statist. Phys. v.30, No.l,.195 (1983). ;
3. Friedlander L, An invariant measure for the equation
‘ \'\{.t xx + w20 | Commun.Math. Phy's. Ve 98, 1 (1985).

"“f“‘""“t."zrridkov PrE O the“i‘mrarian‘t ‘measure for the nonlinear Schrb-

_ dinger equation. Doklady Akad.Nauk SSSR. v. 317, Mo, 3, 543 (1991),
~ Preprint JINR, E5-92-174, Dubna (1991).

5. Znidkov P.E, 4 remark on the invariant measure for the nonlinear
Schrodinner equation. Prepr.JINR, E5-92-23, Dubna (1992), To'
“appear in "Different.Uravn,"

6. Chueshov I,D, Equilibrium statistical solutions for dynamical
systems with an infinite number of degrees of freedom. Math.USSR
Sbornik, v.58 , fi0.2, p.397 (1987). ‘

)

{We remark that the methods of this ‘



7. éhueshbv I.n. On the structure of equilibrium states for 'a class
* of dynamical systems connected with Lee -~ Poisson bracketse
Peor.Matem.Fiz., v.75, No.3, 445. (1988) (in Russian). »
8. Peskov N.V..On the Kubo - Martin - Schwinger state of the
sin-Bordon system. feor.“atem.Flz. v.64, No.l, 32 (1985) (in
: .Russlan) i ) f‘
‘ 9‘ Lebowits J.L.; Roge R.A., Speer E.R. Statistical mechanics of .
' the nonlihear Schrodinger equat ion. J.btatist.Phys.‘v.50, 657
(1988). : ~

IO Reed M.; Simon B. Methods of Modern mathematical'physich‘V?Z’L_J;“

“‘pcad, Press, New York (1975)

11.Ginibre J., Yelo G. The global Cauchy problem for the non—linea‘"
Klein _ Gordon eguation. Math.Z. v.189, 487 (1985) :

12,Duletskii Yu.L., Fomin S,V. Measures and differential equatlons ).
in 1nf1n1te—d1men51onal spaces “"Mos cow, Nauka (1983) (in Russian

‘13.Prokhorov Tu.Vey' Rosanov Yu. & Probabillty theo;y. Moeeow, Negke

87). (in BRussian).. e oo

(‘14 giimos P.R, Lectures on ergodlc theory. Tokyo (1956).. ;

'15 Dodd R.K.j. Eilbeck J. C., Glbbon J.D, Morris. H.C. Solltons eeel_\
nonlinear wave equations. Lonaon Acad Press (1984) '

‘16.Michalache D,y Navmitdinov R.G., Fedyanin V.K. Nonlinear optlcal

waves in 1ayered ‘structures. Prepr. JINR, E17-88-66 Dubna (1q°3)

Recaived by Publishing Department
_on. July 15, 1992. .

10

: BOHHOBOFO ypaBHeHMﬂ

~ OMpeAenseMoii 3TUM ypaBHeHNeM. BawmHbiM_ npunomeninem sToro

: Topa Ha aty Temy.

Maxos M.E. L  E5-92-305
ViHBapuaHTHas Mepa ans HenMHeMHoro ) :

anBeAeHbIAOCTaTOHHHe ycnosmg KOppeKTHOCTM cmewaH-~
HOM 3aaaqm

Upe =2U +T(x u)-O X e(O AL t ER
~u(0, t) = u(A t) =0, : ; ’
“u(x,ty) = u(x) u1 (x t ) —'u (x) :
ﬂocrpoeHa MHBapmaHTHaﬂ ﬁopenescxan Mepa ANS AMHaMMHeC‘
KO cucTemsl (C 5eCKOHeHHOMepHHM ($a30BbM MPOCTPAHCTBOM),

pesynbTaTa fBNAETCH TeopeMma O BO3BpaleHUM MyaHkape.
PaboTa sBRseTcs npvonmeHmeM HECKONbKMX nyﬁnMKaumm aB—

PaﬁoTa BunonHeHa B ﬂaﬁopaTopmm Teopequecxom ¢M3MKM
OMQM o <

. Hpenpum Oﬁennueuuoro uHcmryra smepm:xx ucc.ne:(oaamm I_lyém. 1992

Zhidkov PLE.
| An Invariant Measure for a Non11near
A:;Wave Equat1on R TR Pt SRR

| xe (0,A); te R, uo,t) =
‘«;;U(X to) = u, (X), 1(X to ) ul(X)

‘are formu]ated ‘An. 1nvar1ant Bore] measure is const—
.dimensional phase space) defined by this- equat1on. Aél

e'>an important application, the Poincare recurrence the-
‘orem follows from this result. The 1nvest1gat1on is . a

iftory of Theoret1ca1 Phys1cs JINR.

- E5-92-305

Suff1c1ent cond1t1ons for the correctness of the
1n1t1a1 boundary value problem: utt<4 xx+ f(x u) =
u(A t) = :

ructed for the dynam1ca1 system (with: the 1nf1n1te—‘

cont1nuat1on of severa] ‘author s papers on th1s matter
The 1nvest1gat1on has been performed at the Labora—

e Prepnm of Lhc Jomt Insmute for ‘\udcar Research Dubna 1992




