

объединенный ИНСтитут ядерных
 исследований дубна

E5-92-23

P.E.Zhidkov

A REMARK ON THE INVARIANT MEASURE FOR THE NONLINEAR SCHRÖDINGER EQUATION

Submitted to "Дифференциальные уравнения"

Жидков П.Е.
Замечание об инвариантной мере для нелинейного үравнения Шредингера

Строится инвариантная мера для нелинейного уравнения Шредингера со степенной нелинейностью. Доказательство опирается на более раннюю статью автора. Полученный результат позволяет применить теорему о возвращении Пуанкаре к нелинейному уравнению Шредингера.

> Работа выполнена в Лаборатории теоретической физики ОияИ.

Препринт Обединенного института мдерных исследований. Дубна 1992

Zhidkov P:E.
E5-92-23
A Remark on the Invariant Measure for the Nonlinear Schrödinger Equation

Ihe invariant measure for the nonlinear Schrödinger equation with the power nonlinearity is constructed. The proof is based on the earller author's paper. Due to the result obtained one can apply the Polncare recurrence theorem to the nonlinear Schrödinger equation.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
I°. In this paper the invariant measure for the dynamical system defined by the nonlinear Schrödinger equation is constructed. Really, the polynomial nonlinearities are considered. In the previnonus author's paper [I] the analogical result was proved for stronger assumptions. There are a lot of papers on this matter for other equations of mathematical physics [2-4]. Unfortunately, in the paper [2] the proofs of the important properties are omitted. In the papers $[3,4]$ the invariant measures for the Vlasov equation and the Euler equations are constructed, respectively.

Let us consider the following problem:

$$
\begin{align*}
& i u_{t}+u_{x x}+f\left(x,|u|^{2}\right) u=0, x \in(0, A), t \in R \tag{I}\\
& u(x, 0)=u_{0}(x) \tag{2}
\end{align*}
$$

with two kinds of the boundary conditions:
(a) the vanishing boundary conditions

$$
\begin{equation*}
u(0, t)=u(A, t)=0 ; \tag{3}
\end{equation*}
$$

(b) the periodio problem with periodic functions $f(x, s), U_{\theta}(x)$ with respect to $X \quad$ with a period $A>0$; it is required in this case that the solution $U(x, t)$ is periodic with respect to X with the same period A.
In what follows let us consider the problem (I)_(3) because the periodic problem may be treated by analogy.

Let us formulate the basic assumption.
(A) Let the function f be such that for any $U_{0} \in L_{2}(0, A)$ there exists a unique solution $U(x, t)$ of the problem (I)_(3) defined for all $t \in R$ of the oles $C\left(R ; L_{2}(0, A)\right)$ Such that $|u|_{L_{2}}=\left\{\int_{0}^{A}|u(x, t)|^{2} d x\right\}^{1 / 2} \quad$ does not depend on t. Let the operator $\delta(t): u_{0} \rightarrow u(x, t)$ from $L_{2}(0, A)$ to $L_{2}(0, A)$ be continuous for each fixed t. Let there exist a sequence of continuously differentiable functions $f_{N}(x, s)$ converging to $f(x, s)$ for any fixed x, s pouch that $\left.f_{N} N(x) s\right)$

SHETVIStETA
(I)-(3) has a unique solution $u_{N}(x, t) \in\left(\left(R ; L_{2}(D, A)\right)\right.$ converging to $U(x, t)$, when $N \rightarrow \infty$ for a fixed $t \ln ^{\prime} L_{2}(0, A)$, and let there exist $C_{N}>0$ such that

$$
\left|f_{N}(x, s)\right|+\left|\frac{\partial}{\partial x} \cdot f_{N}(x, s)\right|+\left|(1+s) \frac{\partial}{\partial s} f_{N}(x, s)\right| \leqslant C_{N}
$$

for all $x, 5$.
Remark 1
For $f\left(x,|u|^{2}\right) u=\lambda|u|^{k} u, \quad k \in(0,4)$,
the assumption (A) was proved in the paper [5] for the Cauchy problem (with $x \in(-\infty, \infty)$ and the space, $L_{2}(-\infty, \infty)$ in place of $L_{2}(0, A)$. For this function f the proof is valid for the problem (I)-(3).

Let us rewrite the problem (I)-(3) for $V=\operatorname{Re} U$, $w=\operatorname{Im} u$:

$$
\begin{align*}
& v_{t}+w_{x x}+f\left(x, v^{2}+w^{2}\right) w=0 \tag{4}\\
& w_{t}-v_{x x}-f\left(x, v^{2}+w^{2}\right) v=0, x \in(0, A), t \in R, \tag{5}\\
& v(x, 0)=v_{0}(x), w(x, D)=w_{0}(x) \tag{6}\\
& v(0, t)=v(A, t)=w(0, t)=w(A, t)=0 \tag{7}
\end{align*}
$$

One can easily formulate the assumption (A) for the problem (4)-(7).
Let $F(x, s)=\frac{1}{2} \int_{0}^{5} f(x, p) d p, \quad \phi(u)=\int_{0}^{A} F\left(x,|u(x)|^{2}\right) d x$. On the phase space $L_{1}=L_{2}(0, A) \times L_{2}(0, A)$ (here $L_{2}(0, A)$ is the space of real functions) oonsider the centered gaussian measure the space of real functions) oonsser $B=\left(-\frac{d^{2}}{d x^{2}}\right)^{-\lambda}$. (the operator $-\frac{d^{2}}{d x^{2}}$ is taken with the vanishing boundary conditions on L). It is proved [1] that the Bored measure

$$
M_{N}(\Omega)=\int_{\Omega} e^{\Phi_{N}(u)} w\left(d_{n}\right)
$$

${ }^{1} A^{s}$ invariant for the problem (4)-(7) with $f=f_{N}$ (here $\phi_{N}(u)=$ is invariant for the problem $(4)-(7)$ with $f^{f}=f_{N}$ (here $\Phi_{N}(u)$
$\left.\left.\int_{0}^{t} F_{N}\left(x,|u(x)|^{2}\right) d x, \frac{1}{2} \int_{0}^{s} f_{N}(x, s) p\right) d p\right)$.

Let $S_{N}(t): u_{0} \rightarrow u(x, t)$ ion for the problem (4)-(7) with $f=f_{N}\left(U_{N}\right.$ is the solution of the problem (4) (7) corresponding to $f=f_{N}$).

The invariance of the measure means that $\mu_{N}\left(S_{N}(t) S\right)=$ $\int \mu_{N}(\Omega) \quad$ for any $t \in R$; and Bored's set $\Omega<L$. Let us consider the measure μ on L :

$$
\mu(\Omega)=\int_{\Omega} e^{\phi(u)} w(d u)
$$

The basic result of the paper consists of
Theorem
Let the assumption $(A)_{1}$, be valid and let $C_{1}\left|1+|s|^{d}\right) \leqslant$ $\leq f(x, s) \leqslant C_{2}\left(1+|s|^{1-d_{1}}\right)$ for some $C_{1}<0<C_{2}, d>0,0<d_{1}<1$ and for all X, S. Then, the measure \mathcal{M}^{1} is invariant for the problem (4)-(7).

Example
The assumptions of the theorem are valid for the equation

$$
i u_{t}+u_{x x}-|u|^{2} u=0
$$

20. Let us prove the theorem. Let $|u|_{L}=\left\{\int_{0}^{A}\left[v^{2}(x)+\right.\right.$ $\left.\left.+\omega^{2}(x)\right] d x\right\}^{4 / 2}$ be the norm in L and let $B_{p}=\left\{\left.u \in L_{L}| | u\right|_{L} \leq p\right\}$.

Lemma _1
$\lim _{N \rightarrow \infty} M_{N}(\Omega)=\mu(\Omega)$ for any $\rho>0$ and for any measurable $\Omega \subset B_{\rho}$.

Proof
Admitting the value $\phi(u)=+\infty$ we shall get that for any $u \in L \quad \phi(u)=\lim _{N \rightarrow \infty} \phi_{N}(u)$; hence, $\phi(u)$ is a measurable functional. After that the statement of the lemma is filowed by the Lebesgue theorem.

Let $\Omega_{N}=\int_{N}\left(t_{2}-t_{1}\right) \Omega_{1}\left(t_{1}\right), \quad A_{k}=\bigcap_{N \geqslant K} \Omega_{N}, \quad A=\bigcup_{k \geqslant 1} A_{K}$. It is clear that $A_{1} \subset A_{2} \subset \ldots \subset A_{k} \subset \ldots$.

Lemma 2
Let ma $\frac{2}{Q}\left(t_{2}\right)$ be open. Then, $\Omega\left(t_{2}\right) \subset A \subset \bar{Q}\left(t_{2}\right)$, where $\widehat{\Omega}\left(t_{2}\right)$ is the closure of $\Omega\left(t_{2}\right)$.

Proof follows from the assumption (A).
$\overline{U s i n g}$ lemmas $1 ; 2$ we get the sequence of inequalities

$$
\mu_{N}\left(\Omega_{1}\left(t_{1}\right)\right)=\mu_{N}\left(S_{N}\right) \geqslant \mu_{N}\left(A_{k}\right) \quad(N \geqslant k) .
$$

Hence, by lemma 1 for any $K \geqslant 1$

$$
\mu\left(\Omega\left(t_{1}\right) \geqslant \mu\left(A_{k}\right)\right.
$$

and then the 1 inequality

$$
\mu\left(\Omega\left(t_{1}\right)\right) \geqslant \mu(A) \geqslant \mu\left(\Omega\left(t_{2}\right)\right)
$$

follows.
Due to the arbitrariness of $t_{1}, t_{2} \quad 1 \mathrm{t}$ implies

$$
\begin{equation*}
\mu\left(\Omega\left(t_{1}\right)\right)=\mu\left(\Omega\left(t_{2}\right)\right) \tag{8}
\end{equation*}
$$

for arbitrary, open $\cdot \Omega \subset B_{\rho}$. Obviously, (8) is valid for closed
$\Omega<{ }_{\text {Bor }} \mathrm{P}_{\mathrm{an}}$, too.
${ }_{\text {For }}{ }^{1} P_{\text {an ambit tracy }}$, morel set $\Omega \subset B_{p}$ we get the equality (8) by the approximation of the set Ω by closed sets from within and by open setts from outside.

Theorem is proved.
3°. Let us prove
Proposition
Under the assumptions of the theorem $O<\mu\left(B_{\rho}\right)<\infty$ for any $\rho \in(0, \infty)$.
Let Δ be the closure of the operator $-\frac{d^{2}}{d x^{2}}$ with the vanishing boundary conditions on 4 . Then, Δ is a selfadjoint operator. Let us denote by H^{α} the space of elements $u \in L_{i}$ such that $\Delta^{\frac{\alpha}{2}} u \in L$, and let $(u, v)_{\alpha}=(u, v)+\left(\Delta^{\frac{\alpha}{2}} u, \Delta^{\frac{\alpha^{2}}{2}} v\right)^{\prime} H^{\alpha}, ~ b e ~ t h e ~ s o a l a r ~ p r o d u c t ~ a n d ~ t h e ~ n o r m ~ i n ~$$H^{\prime}$ Hull $\alpha_{\alpha}=(u, u)_{\alpha} \quad$ be the soalar product and the norm in H where $(u, v)=\int_{0}^{n}\left\{u_{1}(x) v_{1}(x)+u_{2}(x) v_{2}(x)\right\} d x, U=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v v_{2}\right)$. As it is proved in [1] (see [6], too), for any $\alpha \in\left(0, \frac{1}{3}\right)$
$\omega\left(H^{\alpha}\right)=1=\omega\left(L_{1}\right) \quad$; hence, for any Bored Ω

$$
w(\Omega)=w\left(\Omega \cap H^{\alpha}\right)
$$

Furthermore, we have

$$
\begin{equation*}
w^{w e} \text { have }\left(B_{\rho}\right)=w\left(B_{\rho} \cap H^{\alpha}\right)=\sum_{k=1}^{\infty} w\left(B_{k}\right) \tag{9}
\end{equation*}
$$

where $B_{k}=\left\{u \in B_{p} \cap H^{\alpha} \mid \quad\|u\|_{\alpha} \in[k-1, k)\right\} \quad$. ${ }^{\text {hen en, }}$, by
the embedding theorem there exist $\alpha \in\left(0, \frac{1}{2}\right),(>0$ such that

$$
\begin{equation*}
\int_{0}^{A}|u|^{2 d+2} d x \leq C\|u\|_{\alpha}^{2 d+2} \tag{IO}
\end{equation*}
$$

for each $u \in \mathcal{M}^{\alpha}$. By (IO) and by the assumptions on f for any K there exists $a_{k}>0$ such that

$$
\begin{equation*}
e^{\Phi(u)}>a_{k} \tag{11}
\end{equation*}
$$

for any $u \in B_{k}$. Using (9)-(II) and the inequality $w\left(B_{\rho}\right)>0$ [1] we get $\mu\left(B_{\rho}\right)>0$.

Furthermore, by the theorem's conditions on f and the embedding theorem we have

$$
e^{\phi(u)} \leq C_{1} e^{C_{2}(p)\|u\|_{1 / 2-r}^{2-\gamma}}, \gamma, r, C_{1}, C_{2}>0
$$

hence (see [6], ch. III, theorem 3.1)

$$
\mu\left(B_{\rho}\right)<\infty
$$

Proposition is proved. .
It follows from the proved theorem and proposition that one can apply the Poincare's recurrence theorem for each ball B_{ρ} [7].

References

1. Zhidkov P.E. On the invariant measure for the nonlinear Schrödinger equation. Doklady Akkad. Nauk SSSR, 1991, t. 317 , N 3, 543-546. Preprint JINR, 1991, E5-91-174, Dubna.
2. Friedlander L. An invariant measure for the equation $u_{t t}-u_{x x}+u^{3}=0$. Commun.Math. Phys., 1985, v.98, p.1-16.
3. Arsenev A.A. On invariant measures for classical dynamical systems with the infinite-dimensional phase space. Matem.Sbornik, 1983, t. 121 (163), N 3, p.297-309. (in Russian).
4. Albeverio S., Cruzeiro A.-B. Global flows with invariant (Gibbs) measures for Euler and Navie-Stockes two dimensional fluids.
Common, Math. Phys., 1990, v.129; p. 431 -444.
5. Tsutsumi Y. L_{2}-solutions for nonlinear $S_{\text {chrödinger }}$ equations and nonlinear groups. Funkcialaj Ekvac., 1987, v.30, p.115-125.
6. Kuo H. -H. Gaussian measures in Banach spaces. Lect. Note Math. 1975, v.463, Springer-Verlag.
7. Halmos P. R. Lectures on ergodic theory. Tokyo, 1956.
