


1. Introduction

" The calculation of eiigenv’alues' of Schrodi‘nger operetors is a etandnrd
problem of quantum mechanics and statistica] mechantce; In the rna; |
jority of realistic cases t}ris problem cannot be solved exactly, and one
- 1nvokes perturbatron theory. Usually, perturbatlon theory yields the se-
ries in powers of a parameter called the couplmg constant In many.‘
cases, such a series can be shown to diverge’ (1] for any ﬁnitev‘vvalue of
the coupling constant. The situation becomes even more dramatic when,
because of the complexity of a problem, one is not able to ﬁnd a number
of terms of perturbation theory, thus being unable to resort to a resum-
mation technique [2]. How then one could find a s'olut‘ion’o-f the problem
- characterized by an arbitrary value of the coupling' constant, if one can ‘
calculate only a few first terms of perturBation theory? .
An answer to this question has been done by the method of self -
similar approximations [3]. The method has been formulated ina general' ‘
- form being applicable to any sequences leferent varla.nts of the methodz
have been considered [4,5]. Here, we adapt thls method for calculating

the eigenvalues of Schrédinger operators.

2. Self - Similar Approximation

" Let a Hamiltonian H be given parametrlcally dependmg on the variable

gER called the couphng constant Our aim is to find the elgenvalues ’

E, of the Hamiltonian; n being a parameter (multiparameter) enumer-
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ating the energy levels.

It is convement to use the dimensionless quantities for the operators

* and their elgenvalues

H(g)'E g: e(nag) = %1 ) (1)

where w is an appropriate constant in energy units. The approximate

terms of perturbatiorl theory will be denoted by

EX
o k=0,1,2,... : (2)

ex(n,g) =

Perturbation theory in powers of the coupling constant ts,_ as a rule, di-
vergent. To make it convergent, we need to construct a renormalized
perturbatlon theory [6] For doing this, take as an initial approximation
a Hamlltoman Ho(g, z) contammg a trial parameter z . The gener-

alization to the case of a set of parameters z = {z%a =1,2,3,...}

is stralghtforward Use the Raylelgh Schrédinger perturbatlon theory

with respect to g
AH = H(g) b HQ(!], z)’ S (3)

which gives the sequence of approximations ex(n,g,z) . Change the trial

parameter z for a set of functions,
z = {zk(n, )}, (4)
whose role is to govern the convergence of the sequence of approximations

ex(n, 9) = ex(n, g, 2(n, 9)); S (5)
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this is why zi(n,g) are called the governing functions. The concrete

forms of defining the latter will be examined below. |
Follewing the general way of the method of self - similar approxima-

tions [3], introduce the coupling function g(n, f) by the equation

co(m,g,z(m,9)=fi  g=9(nf), (6)

in which N R .
)= a0

Define the relative fixed - point distance
Ok = (ku — k)/(s — k), ‘ § - (8)

where. k. ie ttle number correspondirlg:to the self - similar approximation
being a fixed - point of a self - similar mappmg (3], and s is the number
‘of the senior approx1mat10n For blev1ty, k. can be called the fixed -
point number; and s , the senior number.

" Write the finite difference

Agk(n, f) = es(nrg, 21) = ex(n, g, 2) + (20 = 26) 5 ~ex(n, 9, 2), 9)

’

‘in which

9= g(n,f), Z :zk(n,g(n,f));. k<31

and the function

v )= Bl Y (;;0‘)




Function (10) is normalized by the integral

es(n.g)
[ vatnnrar=1, | (11)
ex(n.g)
where the upper limit is the sought self - similar approximation for the
eigenvalue of the Hamiltonian H(g) . Integral (11) resembles the nor-
malization condition for a distribution, because of which the function
(10) could be called the distribution of approximations. However, this
similarity is purely formal since the function (10) is not, in general, non-
negative. 7 »
The self - similar approximation e.(n,g) is a fixed - point of a self -

similar mapping [3]. To define a convergent procedure, the fixed point is

to be stable. The stability is characterized by the mapping multipliers

Mgz tim | Z e 12
in which L5 .
| e (nf) = elmgn,f), (13)
and by the Lyz;pqnqv exponents
Aa(g) = - 8*mn o
L of ’
The stability conditions read
Mi(n,9) <1, Ayi(n,g) <O. (15)

Conditions (15) for the method of self - similar approximations have been

established in Ref.[7).

The accuracy of the reriormalized approximations (5) is characterized

by the quantity

ex(n,g) - 16
<m9) (16)

showing the error of (5) with respect to the exact value e(n,g) . The

fk(n’g')r

corresponding error for the self - similar approximation is

e(n,g) :
€. n, = (17) .
. (.9) e(n,g) o
It is mstructlve to deﬁne the max1mal errors,
e =super(n,g) - (18)
n.g . .
and |
€. = sup e;(n,g). T (19)
ng

The accuracy of a method, as a whole, must be defined just by its max-

imal error. Provided the stability conditions (15) are true, it should be

€ < ixzf k. (20)

3. VAnharm’onic Oscillator

To illustrate the metixod, let us consider the one - dimensional anhar-

monic 6séillator with the Hamiltonian
E . 2 t
H= —— 4+ — 22 + Am?z?, (21) -

in which m,w,A >0 and z € (—o0,+0o0) . Introduce the dimensionless

coupling constant g and the space variable §,

A

9= £ = (mw)'/?z. o (22)



Then, the Hamiltonian (21) transforms into the dimensionless form

1d

H(g) = —53—5 + %52 + g¢*. (23)

As an initial Hamiltonian we choose.

1L —252. 7 (24)

Ho(g, z) = 2d£2

Applying the Rayleigh - Schrédinger .perturbation theory with respect
to (3), we can ﬁnd_ the corréspohding approfdmate terms. To simplify
the illustration, we shall write down only the expressions related to the
ground - state level, although the same procedure and results hold true

for the whole spectrum [8]. The abreviated notation will be used below:
ek(g§ Z) = ek(oi'ga 2)7 ‘ ek(g) = e‘k(01g),

cl)=elle)  e=e0g). @)

In this way, sfarting from the initial approximation

eo(n,g)=%z, " O (28)

we get the first and second approxxmat:ons

k 3 +
e1(9,2) = eofg,2) + —g‘{‘;—, (27)
692 + (6g + z — 23)?
alg,) =g - LHOEZZT) )

The relative fixed - point distance (8) can be defined in one of the

following ways. The first possibility is to claim, as is usually done in the

G

renormalization - group calcu]ationé, that the senior approximation of
the renormalized perturbation theory is equivalent to the fixed - point.
More precisely, this means that the number of the senior approximation
. Under this assumption,

s coincides with the fixed - point number k,
we have

by = 1, s = k,. (29)

The second possibility is to treat &y as a ﬁttmg parameter to be

defined from ad additional condition. In many cases, it is not too d)fﬁcult

to find the strong coupling:limit of the spectrum. For instance, in the

considered situation
g — 00,

e(g) =~ 0.6679864"/%;

Then the fixed - point distance &, can be found from the asymptotic

constraint condition

e.g) _
gl_‘; @) 1. (30)

Below, we shall analyse both these possibilities.

4. Minimal Sensitivity

Another choice to be made is to opt for a particular kind of the fixed -
point conditions defining the governing functions [3,7]. Two main types
of these conditioﬁs are known; the principle of minimal difference [6] and
the principle of minimal sensitivity [9]. To understand their comparative

peculiarities, we consider them separately.



Begin with the principle of minimal sensitivity which in our case de-

fines the governing function by the equation

5%61(9, 2)=0;  z=2(9)=2(0,9). (31)

This, together with (27), gives
B —z-6g=0. (32)
The positive solution to (32) is

(2/V/3) cos(a/3); g < go,
z(g) =
At + A7 g 2 9o,

in which

a = arccos(g/go),

VAR
NOINE
; g

= 0.064150.

A% = (3¢9)'3 {1 +

1
=93

For function (10) we have

768 f3
T on(4fr-1)7

Sabstituting (33) into integral (11), we obtain the equation

4e2(g) -1 1 1 621 '
4e2(g) — 1 ‘ex9{4eﬂg)—1"4eﬂg)—1 24 (34)

yzl(f) =

¥
'
8
i
!
i

for the self - similar approximation e.(g). Here

32241
5 = z(g)-

el(g) =

To check whether the fixed - point e.(g) is stable, we need to cal-
culate the mapping multipliers (12) and the Lyapunov exponent (14).
Dealing with the ground - state level, we shall again simplify the nota-

tion by writing
Mi(g) = Mi(0,9), As(g) = Auk(0,9).

For these quantities we find

M) =201 ae) = M) + M)
_ _[4el(g) —1]jael(g) + 3]
. A2l(g) = 76861(g) .

The latter expressions satisfy the stability condition ( 15);

The maximal errors (18) for the renormalized approximants (5) are
&~ 2% and € =~ 1% . the exact v-alues e(g) are given by numerical
calculations {10}]. |

To find the accuracy of the self - similar approximé,tion €.(g) defined
by equation (34), we have to opt for a particular choice of the fixed -
point distance 651 . If we take (29) , then the mavxirhéil error of (34) is

€. ~ 0.3% at g = 1. If we assume (30), then
621 = 0.955774. - - : (35)

The maximal error of (34) with the fixed - point distance (35) is again

€. =~ 0.3% at g =1 . A more detailed compariéon of these two variants of



taking the fixed - point distance either from assumption (29) or from(35)

is presented in Table 1.

5. Minimal Difference-

Try now to define the governing function from the principle of minimal

difference [6] taking it in the from

ei(92) — eolg,2) = 0 . 2 = 2(g). - (30)

© The latter leads to the equation

z

3239 = 0, S (37)

whose positive solution is

(2/v/3) cos(B/3); 9 < g0,
Ag)=4{ . ,
B*+B7 . 92,
where

T B = arCCOS(g/g(,))a k
. T ] 12 v
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Function (10) becomes

3843
ya(f) = TS =1

10

and the integral (11) yields

del(g) — 1 1 1 5 D
" def(g)~1 exp{463(9) ~1 4e(g)—1 oy 39

with
eil(g) = -;-Z(y)- '

For the mapping multipliers and the Lyapunov exponent we get

My(g) = 1, My(g) = 1 + Axl(g),

_ . 5ldel(g) — 1][4e2(g) + 3]
A2l(g) == 384e§(g) .

The stability conditions (15) are fulfilled for M(g) and Az1(g) . How-

ever, the multiplier M, (g) “does not satisfy (15).

The maximal errors of the renormalized approximahts (27) and (28),
with the governing function given by (36), are € & 8% and €; =~ 15%
at g = 00.

Equation (39) containing the fixed - point distance (29) leads to the

 maximal error €, = 12% at g — oo . The accuracy of (39) can be

essentially improved if we extract §;; from the constraint condition (30),
which gives | ‘\

’ b = 0.367416. . (40)
Then, the maxj,u}alkerrqr of (39) with the fixed- point distance (40) is
€. ~ 0.9% at g~ 1. In the latter case, the érfors'for different coupling
constants are shown in Table 2.

Comparing the obtained results we come to the following conclusion.

The accuracy of the method of self - similar approximations strongly

11



.depends oﬁ the validity of stability conditions (15).. The fixed -‘p\o}iyn't”
condition defining tfle governing fuﬁctions can be written either as the
I;fiﬁciple of minimal sensitivity or as the principle of minimal difference.
The former provides the stability of the method while the latter does
- not. This is why the principle of minimal sensitivity yields much more

accurate results than the principle of minimal difference.

Table 1

- Self - similar approximations for the ground - state energy of the one -
dimensional anharmonic oscillator, given by Eq.(34), with the governing

functjdn defined by the principle of minimal sensitivity

g |ele) | elg) | edy) | elg) | el9)

| Eq:(29) | Eq.(35) | Eq:(29) | Eq.(35)
0.01 | 0.50726 | 0.50728 | 0.50728 | 0.004% | 0.004%
0.30 | 0.63799 | 0.63959 | 0.63968 | 0.25% | 0.28%
1 | 0.80377 | 0.80606 | 0.80634 | 0.28% | 0.32%
200 | 3.9300 | 3.9284 | 3.9319 | 0.06% | 0.03%

20000 | 18.137 | 18.121 | 18.137 | 0.09% 0%

12 -

Table 2

Self - similar approximations given by Eqs.(39), (40) with the govern-

ing function defined by the principle of minimal difference

g e(g) | edg) | el9)
0.01 |0.50726 | 0.50731 | 0.01%
0.30 | 0.63799 | 0.64239 | 0.69 %
1 |0.80377 | 0.81076 | 0.87%
200 | 3.9309 | 3.9337 | 0.07%
20000 | 18.137 | 18.138 | 0.006%
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; IOKanoaa E I'I., lOKanoa B.W. T e E5-92-202
,T’BbmucneHMe cchraeHHblx 3HaueHm4 wpenMHrepOBCKMx : T e
‘ _oneparopoa an npoMaaoanou KOHCTaHTe ceasn '

e Meron aatomoneanblx anGnM)KeHMM npumeHeH nnn BbNMCI‘IEHMH c06c1-~ '
"BEHHbIX aHaueHui wpenunrepoacxux onepaTopoa. B atom’ MeTone aBTOMO-
' penbHoe an6nM>KeHMe TpaKTyeTcn KaK HEMOABWKHAA TouKa aBTomoneanoro- :
- OTOBpaXKeHWA. npoueaypa cxoauTtea, ecnm, HenonaumHaﬂ Touka ycmmuaa 3
" anA Jero Tpe6yetcA  BbINONHeHUe cooraercrayroumx ycnoauu yCToNuMBOCTH.

~Ana TOI'O 4TO6bI nocnenoaatenbnocn anSaneHMM cXoAaunnacs,: He06xoamvuo g
~ BBECTH ynpaanmoume dJyHKuMM onpeaenneMble v3 yCnoBwi Ha HENOABWKHYIO -
S TOUKY, I'IpoaHanuaupoaaHbl nBa- BapMaHTa Takux | YCROBWIA: NPUHUMN MMHM-‘
"fmaanou qyacramenbnocm " anHuMn MMHMMaanOM pa3Hocm ‘B:kauectse

Mnnmctpauuu paccmotpeH O[lHOMeprIM aHI'apMOHM‘leCKMM OCUMHHHTOD

7 PaﬁoTa Bbanl‘lHeHa B ﬂaﬁopatopuu Teopemqecxou dmauxu OVIHVI
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",‘yukalovaEP., YukalovVI s TEE
|- Calculation of Elgenvalues of Schr d‘ingef Operators'v"
for Arbltrary Couphng o o

. E502202

S B .,The method of seIf-srmllar approxnmatlons is app||ed for calculatlng the
1 e:genvalues of Schrodlnger operators. In this method the self- 5|m||ar approxima- -
tlon is treated to, be a flxed pomt of: a:self- S|mllar mapping. The procedure lSv'
= convergent if the fixed p0|nt is stable which requnres the validity of the corres-
A pondmg stablhty condmons To make the sequence of approxnmatnons ‘conver- -
gent, ‘one has to ‘introduce the governlng functlons defined by the frxed pomt
1 condltlons Two variants ‘of these ‘conditions are analysed the prlnC|pIe of mlnl-,’
. mal sensmwty and.the principle of minimal drfference. The |Ilustrat|on is glven;.‘
by the one dlmenswnal anharmomc oscnlator. » ‘ : :

The |nvest|gat|on has been performed at the Laboratory of Theoretlcal -
hPhysrcs JINR. - . - ‘




