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1. Introduction 

The calculation of eigenvalue~ of Schrodinger operators is a standard 

problem of quantum mechanics and statistical mechanics. In the ma­

jority of realistic cases this problem cannot be solved exactly, and one 

invokes perturbation theory. Usually, perturbation theory yields the se­

ries in powers of a parameter called the coupling constant. In many 

cases, such a series can be shown to diverge [1] for any finite value of 

the coupling constant .. The situation becomes even more dramatic when, 

because of the complexity of a problem, one is not able to find a number 

of terms of perturbation theory, thus being unable to resort to a resum- .· 

mation technique [2]. How then one could find a solution of the problem · 
. . . 

characterized by an arbitrary value of the coupling constadi~, if one can 

calculate only a few 
0

first terms of perturb.ation theory? 

An answer to this question has been dorie by the method o( ~elf ~- · 

similar approximations [3]. The method has be~n formulited in a general 
. ' 

form being applicable to any sequences. Different variants of the method· 

have been considered [4,5]. Here, we adapt this method for calculating 

the eigenvalues of Schrodinger operators. 

2. Self - Similar Approximation 

Let a Hamiltonian H be given parametrically depending on the variable 

g E R ~alled the coupling constant. Our aim is io find the eigenval~es 

En of the Hamiltonian; n being a parameter (multiparameter) enumer-

O~ru 11:::-·: -- ... 
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ating the energy .levels. 

It is convenient. to use the dimensionless quantities for the operators· 

• and their eigenvalues, 

H(g) = H 
w' 

e(n,g) = En 
w' (1) 

where w is an appropriate constant in energy units. The approximate 

terms of perturbation theory will be denoted by 

, Ef.k) 
ek(n,g) = --; 

w 
k = 0,1,2, ... (2) 

Perturbation theory in powers of the coupling constant is, as a rule, di­

vergent. To make it convergent, we need to construct a renormalized 

perturbation theory [6]. For doing this, take as an initial approximation 

a Hamiltonian H0 (g, z) containing a trial parameter z . The gener­

alization to the case of a sef of parameters z = { z°'; a = 1, 2, 3, ... } 

is straightforward. Use the Rayleigh - Schrodinger perturbatio{!- theory 

with respect to 

~H = H(g) - H~(g, z), (3) 

which gives the sequence of approximations ek( n, g, z) . Change the trial 

parameter z for a set of functions, 

z-+ {zk(n,g)}, (4) 

whose role is to govern the convergence of the sequence of approximations 

ek(n,g) = ek(n,g,zk(n,g)); (5) 
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this is why zk( n, g) are called the governing functions. The concrete 

forms of defining the latter will be examined below. 

Following the general way of the method of self - similar approxima­

tions [3], introduce the coupling function g(n, f) by the equation 

eo(n,g, z(n,g)) = f; g = g(n,f), (6) 

in which 

z(n,g) = z1(n,g). (7) 

Define the relative fixed ~ point distance 

8.k = (k. - k)/(s - k), (8) 

where k. is the number corresponding to the ~elf - similar approximation 

being a fixed- point of a self - similar mapping [3], and s is the number 

of the senior approximation. For' brevity, k. can be called the fixed -

point number; and s , the senior number. 

· · Write the finite difference 

a· .. : ;.,; 
~.k(n,f) = e.(n,g,zk)- ek(n,g,zk) + (z. - Zk)~ek(n,g,zk); (9) 

UZk 

in which 

g = g(n,f), Zk = Zk(n,g(n, !)); k < s, 

and the function 

Ysk(n,f) = {8sk~sk(n,f)r
1

• (10) 
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Function {10) is normalized by the integral 

e.(n,g) J y.,k(n,J)df = 1, (11) 
e1r(n,g) 

where the upper limit is the sought self - similar approximation for the 

eigenvalue of the Hamiltonian H(g) . Integral {11) resembles the nor­

malization condition for a distribution, because of which the function 

{10) could be called the distribution of approximations. However, this 

similarity is purely formal since the function {10) is not, in general, non­

negative. 

The self - similar approximation e.( n, g) is a fixed - point of a self -

similar mapping (3). To define a convergent procedure, the fixed point is 

to be stable. The stability is characterized by the mapping multipliers 

Mk(n,g) = lim laaJ ek(n,f)I, 
J-e.(n,g) 

{12) 

in which 

ek (n,f) = ek(n,g(n,f)), {13) 

and by the Lyapunov exponents 

A.,.(n,g) = -lim 
8
8

1
6..,,.(n,f). 

J-e.(n,g) . 
(14) 

The stability conditions read 

M,.(n,g) < 1, A.k(n,g) < 0. {15) 

Conditions (15) for the method of self - similar approximations have been 

established in Ref.[7). 
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The ~ccuracy _of the renormalized approximations Un is characterized 

by the quantity 

. --1 ek(n,g) - 11 
Ek(n,g) = e(n,g) (16) 

showing the error of (5) with r~spect to the exact value "e(n,g) . The 

corresponding error for the self - similar approximation is 

( ) _ ,e,.(n,g) I ; 
E,. n,g = e(n,g) -1 . (17) 

It is instructive to define the maximai errors, 

·Ek= supEk(n,g) (18) 
n,g 

and 

E,. = supt:.(n,g). (19) 
n,g 

The accuracy of a method, as a whole, must be defined just by its max­

imal error. Provided the stability conditions (15) are true, it should be 

f,. < inf fk. 
- k 

3. Anharmonic Oscillator 

(20) 

To illustrate the method, let us consider the one - dimensional anhar­

monic oscillator with the Hamiltonian 

1 d2 mw2 

H = --- + --x2 + >.m2x4 

2m dx2 2 ' 
(21) · 

in which m,w,>. > 0 and x E (-oo,+oo). Introduce the dimensionless 

coµpling constant. g and the space variable e , 
). 

9= w3' e = (mw)1l 2x. (22) 
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Then, the Hamiltonian (21) transforms into· the dimensionless form 

() lJl 12 4 H g = ---+ _& + g{ 2 d{2 2._ . (23) 

As an initial Hamiltonian we choose. 

1 d2 z2 2 

Ho(g,z) = -2ae2 + 2e. (24) 

Applying the Rayleigh - Schrodinger .perturbation theory with respect 

to (3), we can find the corr~sponding approximate terms. To simplify 

the illustration, we shall write down only the expressions related to the 

ground - state level, although the same procedure and results hold true 

for the whole spectrum [8]. The abreviated notation will be used below: 

·ek(9, z) = ek(o,g, z), ek(g) = ek(o,g), 

e.(g) = e.(o;g), e(g) = e(O,g). 

In this way, starting from the initial approximation 

1 
eo(n,g) = 2z, 

we get the first and second approximations: 

e1 (g' z) = eo(9' z) + 3g + z - z3 
4z2 ' 

e2(9, z) = e1(9, z) - 692 + (6g + z - z3)2 
16z5 

(25) 

(26) 

(27) 

(28) 

The relative fixed - point distar{ce (8) cim be defined in one of the 

following ways. The first possibility is to claim, as is usually done in the 
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renormalization - group calculations, that the senior approximation of 

the renormalized perturbation theory is equivalent to the fixed - point. 

More precisely, this means that the number of the senior approximation 

s coincides with the fixed - point number k • . Under this assumption, 

we have 

D21 = l; s = k •. (29) 

The second possibility is to treat Dsk as a fitting parameter to be 

defined from ad additional condition. In many cases, it is not too difficult 

to find the strong coupling• liinit of the spectrum. For instance, in the 

considered situation 

e(g) ~ Q.667986g1f 3
; g_ - 00. 

Then tht; fixed - point distance b21 can be found from the asymptotic 

constraint condition 

I
• e.(g) 
Im-(.)= 1. 

.g-+oo e g 
(30) 

Below, we shall analyse both these possibilities. 

4. Minimal Sensitivity 

Another choice to be made is to opt for a particular kind of the fixed -

point conditions defining the governing functions [3,7]. Two main types 

of these conditions are known, the principle of minimal difference [6] and 

the principle of minimal sensitivity [9]. To understand their comparative 

peculiarities, we consider them separately. 
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Begin with the principle of minimal sensitivity which in our case de­

fines the governing function by the equation 

a 
oz e1(g, z) = O; z = z(g) = z(0,g). 

This, together with (27), gives 

z3
- z-6g= 0. 

The positive solution to (32) is 

in which 

I 
(2/../3) cos(a/3); 

z(g) = 
A++A-; 

a·= arccos(g / go), 

9 ~9o, 

g ~ 9o, 

A±= (3g) 1
i
3 {I± [1 - (:)TT', 

1 
9o = r,:; = 0.064150. 

9v3 

For function (10) we have 

768f3 

Y2i(f) = - 821(412 - 1)20 

Sabstituting (33) into integral (11 ), we obtain the equation 

4e~(g)-1 { 1 1 821} 
4e?(g) - 1 = exp, 4e~(g) - 1 - 4ei(g) - 1 - 24 

8 

0 

(31) 

(32) 

(33) 

(34) 

i 

! 
,l 

"W' ll° 1) 

r~_•• 1 

for the self - similar approximation e.(g) . Here 

3z2 + 1 
e1(g) = 8z ; z = z(g). 

To check whether the fixed - point e.(g) is stable, we need to cal­

culate the mapping multipliers (12) and the Lyapunov exponent. (14). 

Dealing with the ground - state level, we shall again simplify the nota­

tion by writing 

Mk(g) = Mk(0,g), 

For these quantities we find 

Mi(g) = 12e~(g) - 1 
16e~(g) ' 

Ask(g) = A.,k(0,g}. 

M2(g) = M1(g) + A21(g), 

A21(g) = _ [4e~(g) - 1][4e!(g) + 3] 
768e!(g) 

The latter expressions satisfy the stability condition (15). 

The maximal errors {18) for the renormalized approximants (5) are 

t 1 ~ 2% and t 2 ~ 1 % . the exact values e(g) are given by numerical 

calculations [10). 

To find the accuracy of the self - similar approximation t.(g) defined 

by equation (34), we have to opt for a particular choice of the fixed -

point distance 821 . If we take (29) , then the maximal error of (34) is 

t. ~ 0.3% at g ~ 1 . If we assume (30), then 

821 = 0.955774. ' (35) 

The maximal error of (34) with the fixed - point distance (35) is again 

t* ~ 0.3% at g ~ 1 . A more detailed comparison of these two variants of 
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taking the fixed - point distance either from assumption (29) or from(35) 

is presented in Table 1. 

5. Minimal Difference• 

Try now to define the governing function from the principle of minimal 

difference [6] taking it in the from 

. e1(9, z) - eo(9, z) = O; ... z = z(g). (36) 

The latter leads to the equation 

z3 - z - 3g = 0, ... · (37) 

whose positive solution is 

z(g) = l (2/./3) cos((3 /3); g :s; g~,, 

B+ +B-; g ~ g~. 

where 

(3 = arccos(g/g~), 

n• = (3i)'1' { 1± [i-(~)']"'}"', 
/ 2 

g0 = r., = 0.1283. 
9v3 

Function (10) becomes 

Y21U) = 
384/3 

5621(4!2 -1)2' 
(38) 
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and the integral (11) yields 

with 

4e!(g) - I { I I 5 c · } = exp - - -021 
4eHg) - I 4E~(g) - I 4e~(g) - 1 12 

I 
e1(g) = 2z(g). 

For the mapping multipliers and the Lyapunov exponent we get 

M1(g) = 1, M2(9) = 1 + A21(g), 

A ( ) _. 5[4e~(g) - 1][4e!(g) + 3] 
21 9 - 384e!(g) · 

(39) 

The stability conditions (15) are fulfilled for M2(g) and A21 (g). How­

ever, the multiplier M1(g) · does not satisfy (15). 

The maximal errors of the renormalized approximants (27) and (28), 

with the governing function given by (36), are t: 1 ~ 8% and t:2 :::::: 15% 

at g--+ oo. 

Equation (39) containing the fixed - point distance (29) leads. to the 

maximal error t:. :::::: 12% at g --+ oo . The accuracy of (39) can be 

essentially improved if we extract 621 from the constraint condition (30), 

which gives 

621 = 0.367416. ( 40) 

Then, the max.i111al error of (39) with the fixed- point distance ( 40) is 

t:. :::::: 0.9% at · g :::::: 1 . In the latter case, the errors for different coupling 

constants are shown in Table 2. 

. Comparing the obtained results we come to the following conclusion. 

The accuracy of the method of self - similar approximations strongly 
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depends on the validity of stability conditions .(15) .. The fixed - r.o.i,nt 

condition defining the governing functions can be written either as the 

principle of minimal sensitivity or as the principle of minimal difference. 

The former provides the stability of the method while the latter does 

not. This is why the principle of minimal sensitivity yields much more 

accurate results than the principle of minimal difference. 

Table 1 

. Self - simi,Iar approximations for the ground - state energy of the one ~ 

dimensional anharmonic oscillator, given by Eq.(34), with the governing 

function defined by the principle of minimal sensitivity 

g , e(g) e,.(g) 

Eq:(29) 

0.01 0.50726 0.50728 

0.30 0.63799 0.63959 

1 0.80377 0.80606 

200 3.9309 3.9284 

20000 18.137 18.121 

e,.(g) 

Eq.(35) 

0.50728 

0.63968 

0.80634 

3.Q319 

18.137 

12 · 

,': 
.J· 

f,.(g) f,.(g) 

Eq.(29) Eq.(35) 

0.004% 0.004% 

0.25% 0.28% 

0.28% 0.32% 

0.06% 0.03% 

0.09% 0% 

') 

Table 2 

Self - similar approximations given by Eqs.(39), ( 40) with the govern­

ing function defined by the principle of minimal difference 

g e(g) e,.(g) t,.(g) 

0.01 0.50726 0.50731 0.01% 

0.30 0.63799 0.64239 0.69 % 

1 0.80377 0.81076 0.87% 

200 3.9309 3.9337 0.07% 

20000 18.137 18.138 0.006% 
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·. IOt<anosa E.n., IOic~nos 8,1,1. 
8bl'll1CfleHl1e COfiCTBeHHblX 3Ha'leHl1H WpeA11HrepOBCKl1X 
on_epaTOJ?OB np11 npOl13B0IlbHOH KOHCTaHTe .CBA311 

:t ' • ' 

ES-92-202 

. MeTOA aBTOMOAeilbHblX np1161111>1<eHl1H npl1MeHeH AilA Bbl'll1CI1eHl1A co6cr-
BeHHblX ;Ha'leHl1H wpeAl1HrElpOBCKl1X onepaTOpOB,. 8 3~0M MeTOAe aBTO~O­
AeilbHOe np1161111>1<ett11e rpaKryeTCA KaK HenOABl1>f<HaA TO'lKa aBTOMOAeilbHOro· 
oro6pa>1<ett11A. npo1.1eAypa cxoAl1TcA, ec.n11. ttene>AB11>t<HaA ro11Ka ycroH1111sa; 
AilA 11ero rpe6yercA Bbino11Hett11e coornercrsy10LL\l1X ycnosl-i~ ycroH1111socrn. 
AnA roro 11ro6b1 nocneAosarenbHOCTb np1161111>1<ett11H cxoA11nacb, tteo6xoA11Mo 
BBecTl1 ynpaBI1AIOLL\11'e cpyHKL\1111, c:inpeAeilAE!Mble 113 YCI10B11H Ha HenOAB11>KHYIO 
ro11Ky. npoattan11a11posattb1, ABa sap11attra raK11x ycnos11H: np11tt1.111n Ml1Hl1-

·~ · MailbHOH 11yscrs11renbttocr11 11 np11tt1.111n M11Hl1MallbHOH paattocrn. B · Ka11ecrse 
..,.......,__<_ ,, . ' I • ' • 

111111iocrpa1.11111 · paccMorpeH OAHOMepHblH · attrapivlott1111ecK11H oc1.1111111Arop. 

Pa6ora Bbinonttetta · B na6oparop1-111 reoper1111ecKoH cp11a11K11 Ov!Avl . 

. ·' 
npenp{mr 06be;11me1111oro, 11Hcrnry1a. 11.:1ep11b1X 11ccne;io~aH11fi. lly611a 1992 
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.. : ,The .method of self-similar approxi~ations is ~pplied for calculating the . 
. eigenvalues of Schrodinger operators. In this method the self-similar approxima­
tion is treated to be a fixed-point of a self-similar mapping. The procedure is 

. convergent if the fixed point is stable, which requires. the validity of the corres- . 
ponding stability conditions. To.make the sequence of approximations conver­
gent, one has .to introduce .the go~erning functions defined by the fixed-point . 
conditions. Two variants of these conditions are analysed: the principle of mini~ 
mal sensitivity and the principle of minimal difference: The illustration is given 
by .the one~dimensional anharmonic oscillator. · 

The investigation has been performed at the Labor11tory of Theoretical 
Physics_! ~IN R. 
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