


method of self - s1mllar approx1mat1ons

1.. ,;Introduction .

g Recently a new method1 has been suggested for ﬁndlng out an effectlve :
lxm1t of dxvergent or poorly convergent sequences This method called )

the method of self - slmxlar approx1matlons, possesses the follow1ng main -

"advantages First, 1t 1s formulated as.a general approach that may be;' i

applxed to arbltrary sequences Second it needs to. know only the first

: few terms of a sequence The latter advantage is espec1ally 1mportant for T

; fthose compl1cated problems when one is not able to calculate many terms, L

and the usual resummatlon techn1ques fa1l The standard dlfﬁcultles'f’: o

k is such a case are beautlfully descrlbed by Stevenson2 3, ‘Third, .the

1; is constructed so that to force

" a sequence to converge as fast as poss1ble, thus. providing a max1mal -

. - accuracy extracted from-a m1n1mal 1nformatlon The convergence is to

' : be governed by spec1ally 1ntroduced govermng functlons

Although the general formulatlon of the method 1ncludes the fast &

S convergence, this can be d1sturbed in part1cular reahzatlons, for exam-

S ple, by. an 1nadequate ch01ce of the governlng functlons Therefore, it i is ’

necessary for practlcal purposes to define the conditions using which one

. 'could checlc the convergence in each concrete case. The cond1tlons of this k'

‘ 'kmd 1n the mapping theory, dynamlcal theory or renormahzatlon .group

theory are called the contraction. condltlons or stablhty conditions.. The: :

" aim of the present’ paper is to define such conditions for the method of

1

self - similar approximations” and to illustrate their: use.:

The paper is organlzedas follows In Sectlon 2a generahzed con-, o

struction of ‘the method is produced.’ The details that-are thoroughly

- explained in Ref. 1 are, of course, omitted, but the points generahzlng the

- derivation are ‘stressed. ‘As a result of the generahzatlon ‘a new ‘param-

. leter appears showing the number of steps needed to reach an eﬂ'ectlve

" limit of a sequence starting from its k -th term. The sought effective
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‘limit of a Sequenee plays the role of a fiked point for the self - similar -~

mapplng ; this is why the appearlng new parameter show1ng the dlstance

of the fixed point apart an approximate term can be ‘called the fixed -

~ point distance. In Section 3 the stability conditions controlling the con-

fvvergence are formulated. The eOndﬁtion for the self - similar mapping

to be contracting checks the choice of the governing functions, while the E '
Lyapunov stability condition for the differential form of,the self - siinilar )

relation regulates the option of a distribution function which is inversely -

‘.propOrtional to the Gell - Mann - Low function. Section 4 considers

- two main variants of the fixed - point conditions defining the governing

" functions: the principle of minimal d1fference4 5

mlmmal sens1t1v1ty6 7. The former variant is analysed from the pomt of . :

view of stability usmg ‘as an illustration the anharmonlc oscillator prob-

“lem in Sectlon 5. The accuracy of the method based on this choice of. -

‘the governmg functlon can be essentlally improved by treat1ng the fixed -
- pomt distance as a contmuous parameter. ‘The’ value of the latter may

‘be found from the strong couphng limit. The fixed - point condition i in

- the form of the principle of minimal sens1t1v1ty is examined in Section

6. It is demonstrated that this variant is preferable since it makes the

i method stable and accurate and does not need additional parameters, k
- like the fixed - point distance. Finally, in Section 7, the optimal gencral ?v
“scheme is described of the stable way wh1ch one should follow- applylng, L

the method of self - 31m11ar approx1mat10ns

2. Self-Sirnilar Approximation

- Here the Inain steps of the derivation of the method! are adduced with

an emphasis on the novelties: generalizing this approach. Let us be in- -
- terested in a function f(g) of the variable g € R. Suppose the function

o f (g) is a solution of a very complicated equation which cannot be solved

? and the prmc1ple of

i

T

sequence formed by the functions

- VWhe‘re the notation

functlon

= for}v;'hieh’(2) takes the form

e*(actly Invoklng some 1terat1ve procedure. or perturbatlon theory one
"can construct a sequence, of approxunatlons { fi(@lk: =0,1;25< 2.} If
‘thlS sequence were convergent f(g) would be its limit.- Howeven in
’;"many reahstlc cases such sequences dlverge To make a sequence con-

L velgent we have to renormalizé it by introducing an additional sequence

of governing functions {zx(g)|k = 0,1,2,...}. According to their role;

the governing functions should govern the convergence of a renormalized =~

5
s
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- Generally, it is possible to introduce a set of governing functions

ik

o) = (F@le=1,2,3,.).

Deﬁne the couplmg functlon g(f) by the equatlon

Cfelg @) =50 g =gy (2)

wea=aw @

. !lS used "The substltutlon of the couplmg function mto (1) spec1fies the

m (ﬁn@) ')

| nU)f*fff”in“ﬂﬁX

Functlon (4) is 1nvented in order to be able to write! the fastest .con-:: )

2 vergence condrtlon dlrectly followmg from the ‘Cauchy criterion, as the

‘, property of the functlonal self— s1m11ar1ty .{' ity

fk+p f) fk (f o (6)
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It would be convenient to rewrite Eq.(6) w1th a.ddltlve lndlces as. a

self - similar relation with multiplicative indices. To ‘this end we need to -

have a new variable t; = t(k) satlsfylng the property

Ctmp =iy to=1; H>1 (E>0).- )
From (7) it follows that '

t = a*; a>1. o (8)

k

Remind that in Ref.1 a particular form of (8) was taken, when t; = €.

“Introducing the notation
z(tkvg) = zk(g)7
f(tkyg’z(tkvg)) = fk(97 zk(g))1

FeN=hn, O

s owe rewrite (6) as the property of functional self - 51m11ar1ty with multi-

plicative indices

Pt ) =F ] S o

Then from the dlscrete varlable t; we pass to the contmuous variable
tby the substitution "

accompanied by the ana.lytlcal continuation of all functlons dependlng on

tx to functions dependlng on t so that when ¢ crosses tk, the continued -

functions of ¢ cross the values coinciding with the corresponding initial

’fu’n‘ctions of tx. In this way, the analytical continuationb'of (4) is the l

function

. and the continuous analog of (5) is the equa.llty
fLH="f (13)

4

tk—)tE[l 00) . : (11)

Fan= e 02

The continuous ’re'p’res.ent'ation of (10) is the sélf'sirﬁilar celation

Fwnsieiwn

cowithp > 1. _
' The functlonal equa.tlon (14) can also be wntten in the dlfferentla.l :
y'form ' o S SRS
OFeD _siar ase
in which ~ Co ‘ ' L
A= ST

"~ is the Gell - Mann - Low function.. : v
.+, 'The sought effective limit of sequence (1) is the self similar approx- o
: «Jmatlon f (9) playmg the role of ; a fixed point of relation (14), which is

reached at t =, called the saturatlon pomt1 Integrating (14) over t - '

' from tk up to t,, when functlon (12) changes from the approx1mat10n; ’

: o fk(g) to the self - similar approx1matlon f«(g), we have

2o d'f" 1.nt—')y~ R, |
ﬂ(f) S

. »fk(

~“Returning to' the discrete representatlon'we:hai/e to replé.ce the deriva:”
. tives in (15) or. (16): by the correspondlng ﬁnlte dlﬂ'erences w1th respect‘, =

" tothe va.natlon of the d1screte varlable

T,,_lntk klna ' : (18)

Then for the Gell - Mann - Low functlon (16) we can write the finite -

dlfference representation o | | o | :
D=y a9

b



in which L e o
ASk(f) = fab(gv zx) — fk(gr zk) + (Z, - zk)_a%fk(gv O (20)
where ‘ | |

- g=g(f)7 ze = z1(9(f)); ” k<s. (21)

As is seen, if the left - hand side of (15) is written in the discrete represen-:

tation and function (19) is used for the rlght - hand side, then equation
(15) becomes an identity.

For what follows it is useful to 1ntroduce the functlon

yak(f) = {ﬂsk(f) In(t. /tx)} " (22)

‘and the distance

1nd1cat1ng the number of iterative steps needed for reachmg the ﬁxed:
“point f.(g) startrng from the'k - th’ approxxmate term. I shall call (23)
© the ﬁxed ‘point dlstance Wlth (19) (21) and (23) functlon (22) reads

)= (- BfadaD ey

Note: that if in. (23) we replace the saturatlon number k by s and, con-
" sequently, the fixed - point distance 5k by s— k, then we return to the

case of : Ref 1 In general the fixed. - pornt d1stance can. be treated as an

addrtlonal ﬁttlng pararneter, not necessarlly belng an integer. ;" .o

Thus, from equation (17) we obtaln the norrnahzatlon condltlon

e (9)

IS

SR ILE R R nae fk(SJ) 1L el

for function (24). The latter function can be called the distribuition of

approximations since it shows the distribution of approximate functions
ST e STV el T s :

6

F

A&,‘*:k—k? ckshto (23)

/ynn#—l o (25)

[ I

. i
L* . - R o

. ‘between fi(g) and f.(g ) Normalization (25) is the main equatlon deﬁn-' o

“ing the self - similar approximation f. (9)-

- Strictly speaking, as is clear from (25), each‘distribution of approx-

" imations Y.k (f) defines the corresponding self - similar approximation

cf (g) When we consider a sole fixed distribution y,x(f), we may write

the self - similar approxxmatxon simply as f.(g), without indices. How-

- ever, if we take a set of distributions Ysk(f) with different indices, we shall
- obtain a sequence of self - similar approximations. For example, we can ‘
 get the sequence fZ'(g), f2'(9), f*(g),... or f2(9), f3(9), f(9),-. v

or -f2Y(g), f3(9), f2*(g),- .- or other sequences. It seems that the sim-

plest way is to construct the sequence {Ff%g)} with 5 (g) = fr+1k(g),

though a thorough investigation of these possibilities is a separate prob-

. lem to be consrdered in another paper.
3. Stability Conditions

o By constructlon of the method 1t is assumed that one can find the gov-

~erning functions such that the sequence of functions (1) would fastly‘ :
converge to an'effective limit called the self - similar approx1matlon be-
“cause it is a fixed - point of the self - similar mapplng (6). This means_
~that the fixed point is-to be stable. ‘

However, in each concrete case we always deal with a partlcular choxce S

of the governmg functions. An inadequate choice of these functions can

: '~d1sturb the assurnptlon of stability. ‘Therefore, 1t is necessary to know‘

the general stability. conditions providing the. convergence of the sequence‘
{fi(g, 2x(g9)} and making it possible.to check the adequacy of a pa.rtlcular o
option of the governing functions for each concrete problem.

" The self - similar approximation fo(9) in ‘terms of notation (4) reads

re=f.0, e
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where the couphng function g(f) is glven by equatlon (2) ‘The norninaﬁ-‘ .

tion of (26) as a ﬁxed pomt of - mappmg (6) implies -

Fe (G (M =F. (). (27)

i o Consrderlng a variation near the ﬁxed point, | o C ’
f,, N=f.H+65,, o (28)

: wehave frorn (6) } |
6 fran (f)"'([i%f—@} BN C) R (29)

b derin

The self - similar mapping (6) deﬁnes a convergent sequence when this

: \mapplng is contractlng8 whlch needs
o lim d,zg(f) <l S \‘(30)“
Sl H£—'!(!) P v
: For the mapping multlphers : |
M ‘_E : L@
u (0 ()' dffk(g(f) k(g(f»)’ S
J o condltlon (30 reads ’ . o i .
Mk(g)<1 L e e (32)

We could equally cons1der the. contlnuous representatlon (12)- for

L whlch the fixed pornt is deﬁned by the equatlon e

f(tf (f) f..(f

. B N «
EE O

. L,Then, substltutlng the var1atlon

Fth)= ()+5f(tf)

g i
-

o2
%
?

I T A R e AR

into the’ cont1nuous self’ 51mllar ma.pplng (14), we have S i
a-f( B
. 6f(ut f) [ f(g E)] CEf(mS)
€= .f (/) '

Returnlng to the discrete representatlon we again obtain the contraction

| condltlon (32) for the mapping multlphers (31).

An additional condition follows from the analysis of the contlnuous;

representatlon if- we treat the differential equation (15) as ‘the law ‘of

. motion for the function f (t, f) w1th respect to the variable 7 = Int.

Then We can use the Lya.punov theory of sta.blhty9 Llnearlzmg (15) we

N get N Gt
| Lsien= [dﬂ“)] Csien @
e 46 Jei, 0 L
The motion to be stahle requires SRR S o ) ; .
O, e
lim —=~<0. v - (34)
-1 % o o

This condition, after returmng to the dlscrete representatlon (19), 1ntro-‘

ducmg the Lyapunov exponent

A“,k’(g‘)k hjn} )Tif .k(f ) o 4(_35:)'

L and takmg into account that ‘r, > ‘rk, ylelds '.

Inequahtles (32) and (36) are sufﬁcrent condltlons for the self - snmllar ap-
proxrmatlon f.(g) to be a stable fixed point of the self - similar mapping. B
~In this case f.(g) is the sought effectlve limit of 'sequence (1) If. condl-l

tions (32) and (36) are valid, we shall say for brea.vxty that the method is
stable. It is unstable when exther (32) or (36) is not valid. When one of '

9



:the equalltles Mk(g) = 1 or A,k(g) = 0 is true, then we have a marglnal 2

situation and can say nothlng about stabrhty and convergence.
The accuracy of the self - similar approxrmatlon f (g), as compared
to the exact value f(g), is defined by the error

|flg)
f( ).

- Iis reasonable to define the accuracy of the method as a. whole by the

3 T T TR e(g)

maxrmalerror N RTRS

K

Analogously tb(37) and(38) one’ can check the accuracy of the k- th

approximation

RS : N fk(g) | C

o g mep I g g (39)
SR R FIOF | - ,,
When the method is stable, then R T T e e

For an unstable method Eq (40) does not hold

[T .
.

pe il
ST Lt

4. Fixed - Pot’nt Conditions‘

X S . oy s . oy \.,: " i V:‘: S 4 . .
As’is evident, it is very important to define thié governing functions so as

" to provide the stability of the method In accordance w1th the general

'approachl the governing functlons are to be defined by a ﬁxed point
= condltlon In the continuous representation, as follows from (15), the

fixed pomt is glven by zero of the Gell - Mann Low functlon,

T T O | ST R S RIC R P4 SRR TR

'«,u-'; Fesres e eab Yy f(ttf))—o fe

it _ e 4,
In the dlscrete representatlon, w1th regard
iR LR E 4 10 Fetietop

- potnt COndlthIl (41) can be wr1tten 1n two s1rnple forms elther as the

A TR A PR RN ; i Biedaar

,“

‘!s

10

Ko |

. G‘E}' Sup C‘(g)' L B RS D T ‘(38) “

S T AT PR e LI S PR

il (41)1’ ‘
to, (19) and (20) the ﬁxed e

=

or as the prmcxple of mmxmal sensxtxvxty

'correspondmg left hand 51des

'quences {f,c (g)la =1,2,.
‘Consequently, in the case of a set of governing functions it is easier to

principle of minimal differenceftr& / LI o e
ST fgia) = filam) =0T T (42)
6, 7 ‘

.__fk(g,zk)—o T (43

Both these condltlons have been used in constructlng the renormahzed I
perturbation theory?- -1 When (42) or (43) has no solution for 2 ;

zi(g), one can determine the latter by seekmg for the mlnlma of the

_.“ LT

‘ Having two possxblhtles, (42) and (43), for deﬁnlng governrng func-

tions, we should understand from the general pomt of view which of th1s :

‘poss1b111t1es is preferable. Flrst ‘of all we 1mmed1ately see that in the case B

of several governing . functions z; = {zf(g)le =1,2,...} condition. (43)

yields the same number of equatlons while (42) does not. .We, of .course,

are able to ﬁnd a way. out of this. trouble4 5 by, cons1der1ng several se-

.-}, but_this would complicate the situation.

" use the principle of minimal sensitivity (43)

What is more important, the pr1nc1ple of rn)nlmal difference’ (42) ]ust

because of its form, leads for some of the mapping multlphers (31) to the -
‘ equahty Mi(g) = 1. Therefore, condition (42), generally speaking,does A
* not provide the stability. of the method. . Thus, the-accuracy of the__se_lf s

- similar approximation with the 'governing‘ functions obtained from (42) -

B should be worse than that with the: governmg functions glven by (43)

~To make the above conclus1ons apparent and, in addition, to show =

how one could improve the accuracy of the method even workmg near an
unstable ﬁxed point,; we will cons1der the anharmomc osc1llator problem

with the Hamxlto_m an

1 .d% .  muw? r '
H—‘ 2mdz2+—~2 z +)\mz L : (44)

11



_in which m,w,A > 0,and z € (—oo,+oo) SRR

‘Take as a zero approximation,theharmonic - oscillator Hamiltoriian

‘Define the dlmensmnless couplmg consta.nt g a.nd the trial pa.ra.meter z,

.g_;p ,u;%u*v .‘hu-.um

‘Let us calculate with the Raylelgh Schrodmger perturbatlon theory the
d1mensnonless approxnmatlons ek(g) to the ground - state energy e(g),
E%) .

SRR =

Applying the method of self - similar approximations to this problem we

can compare the obtained results with numerical ca,lcula,tlons10 for e(g)

.and with exact asymptotic’ expansrons in the weak couphng hmlt

(y)~—+—y—§yz, g0 (48)

. : and in the strong couphng hmlt

e(g) 0. 667986g‘/3+0 14367 S g e, (49)

As representatlves for the sequence of functlons (1), we have now the

zero approximation

the first term / ,
- el(g,"z) :CO(gr z) + 422
. and thesecohd one v

. 6g%+ (69 + 2 — 2°)°

62(9) z) = el(gaz) - T 1625 . : (52) ‘ '

12

(45) \

=g @

. 'j»eo(g’ z) _ %z, e . (50) :

39+ z—=z | . (51)

e S

‘ “(42) wrltten as -

. The coupling function, defined in (2), is given by:'the"‘eqiiétion' it

%@ﬂ@”ﬁﬁ‘-g=ﬂﬁ- @

The ﬁxed - point distance (23) entering into the dlstrlbutlon of ‘ap-

N | proxxmatlons (24) w111 be determmed in two ways: ﬁrst by puttmg,

in Ref.1, R DRI AR
Ch=1 k=2, (58)
and, second, by extracting 1ts valie from the condition
| wealg) )
Clim 2L =, 95
| gm0 e(y) _ r (3)

o

: that is from the coincidence of the a.symptotlc forms for the self s1mllar,

approx1matlon e.(g) and for the exact expansron (49)

5.0 Minimal Difference

Let us find the g governmg functlon from the pr1nc1p1e of mlmmal dlfference‘: k

en(y,z(y))—eo(y,z(y))«ﬂ P -(56)

. Wthh together w1th (50) and (51), glves

za—z—3g—0 ’z-—z(g) S (57)

k In what follows we shall assume for s1mp11c1ty that zy = 2o and use the

notatlon > g
ex(9) = ekv(y‘,?(y))-' . |

Equations' (51) and (52),‘taking‘aecount of ('53) and (57), becomie ‘
ealgN=£, o

542 ~1)"

3843 (58)

L eag(f) = f—

13



For distribution (34) weget . ..

-4 EOEO HER e LE oL ERNE A E 1
RTINS EE LTI R ;

0 384f3

Coyn(f).= EAE (59)

,Substltutlng (59) into normahza.tlon (25) we obtam the equa.tlon L

— 25 60
EORE ?XP 4e2(g) =T 4e1(g) -1 12 ( )

for the self - 51m11ar approx1matlon e..(g), where o

el(y) = —z(y), » : (61) .

. and the governlng functlon z(g) is deﬁned by (57)

“From (60), usmg the expansrons -

el(y) = l~l~ gé - f—;g R b_j

alg)x -(39)‘/3+ (357)“‘/3 N °° . (62

‘ /‘we ﬁnd for the self 51m11ar approx1matlon the weak couphng llmlt She
e.(9) ~ - + gg - —(9 + 551)g , 9 0o (63‘):

“and the strong couplmg limit l‘ A

Y e.(9) 2/1(39)_;13/34 B30/ g o, o (64)

Where _ ;y . 1 g 3—8A2 C

A= —2-exp( 51), ; B =—oa (65)

Now compare two ways, (54) a.nd (55), of choosmg the fixed - pomt R

 distance (23). -
- .1) Consider condition (54) which implies

'51=1, A 0405968 "B .= 0.345166. (66)

.14

“ we ﬁnd

§

- The weak coupling limit (63),becornes‘ '

3 21
(9)~~+—g—§y2, gm0, (67)
and the strong couplmg limit (64) is _
eu(9) = 0585507g‘/3+0239325g-1/3 g—oo. ' (68)

As is seen, the self similar approx1mat10n glven by. (60) with condltlon

\(66) is very good at small coupling constants but worsens at- hlgh g " Thé’

‘maximal error (38) is e. = 12%; which corresponds to g — co. In this

way, the accuracy of the method in. this case:is not so good.i. gl
A n) Define the ﬁxed ponnt distance from condition (55), then'»;

8 '='0‘367416**“ A= 0463156 "“f'B"=’o.231‘005f - (69).

For the weak. couplmg llmlt (63) we get -

-
b ardy

o

Veldmiadge 031,‘9.539;;,;,'fQ?:':—_! O
“and for the strong couplmg hmlt A ff':‘
e,..(g) 0. 667986g1/3 +o. 160170g~1/3 g — oo, (11)

The max1mal error is e, = 0.87% at g Y 1 As compared w1th the case‘

;’(66) the gccuracy. of the method is improved by an order.. ;: .

.-Check now the stablhty conditions., For, the -mapping, mu,ltlphers (31) .

: Ml(g) = 1 : R
J— 5 20 2
Ma(g) =1~ 5o (g ) [deX (y) = 1] [46 (9)+3]. (7:2)
Although for M,(g) condltlon (32) is vahd il oy
5<M2(9)<1; 0<g<oo - (713)



i

but M, (g) does not satisfy (32). SUbstitotiﬁ g

Balf) = aalot) - elot) = - 2L
into (35), we’obtain the Lyapunov expo}lent S
e _
Azl(g) v' '38—4:;(—) [462(9) - 1] [432(9) + 3], o (74)
- 5 <A21(g)<0 0<g<oo « (75)

s
As far as M, (g) = 1, we have here the margmal case, and to prove

whether the method is stable or not, we can calculate the errors (39), for

whlch we get €, = 8% and ¢; = 15%. These values contradict condition 1

(40) Hence the conclusxon follows

The principle of mmlmal dlﬂ'erence does not provide the stability of E
the method. Although the accuracy of the latter can be sufficiently im- .+~

proved by a special choice of the fixed - point distancé’," the best accuracy

is of the same order as that of the simple renormalized 'perrturbation,’f

theory with the principle of minimal Sensitivity6.

k 6 Minimal Sensitivity

. Turn now to the analysis of the method of self - similar approx1mat10nsq

with the governmg function given by the principle of minimal sensitivity

(43) For the considered example of the anharmomc osc1llator from the

condltlon 3 .
< a0
we have

'za—z—6g=0;

16

~ in'‘which

‘» 2 = 2(g). o (77) |

Eqs(51) and (52), in agreemeof ‘with'.(53')‘and(77‘);"§ield,

| 241
exlo(r) = 2,

S - 122+1 142_12
o) = 27 - U

The distribution of approx1mat10ns (24) is

__ 768f
y21(f)f— ———-‘A (4f2 )

- From the normalization‘\(25) we find the gqua.tion

del(g) =1 _

) el(g) (g)+8 ( )

'and the governing function is given by (77).

Using the expansions of (81)

13 9 ‘
alg)>z+79- Zyz; 90,

Cl(g) "(69)1/3 + (Gg) 1/3 g ___. 00y i Iy

we obtain from (80) the- weafk:,coup‘llgg»llxrn,;t,-;‘,, T

1 3 3(24+6), .

- ealg) = —.+:Zg - Tg, fi:’-Q'H'O e

2

and the strong couplmg llmlt

eu(g) 0(69)‘/3 +D(6g)“/3 g

for the self - 31mlla.r approxxmatlon e.(g), in whlch

3 - 19 — 40C?

¢ '§e"p(“ﬁ)’ D= 36C
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(79);‘

(30)

- (81)
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: Consxder two poss1bll1t1es, (54) and (55), of settlng the ﬁxed pomt' -

distance (23).
i) Take condition (54) accordlng to which

=1, C=0367268, D = 0.272625. (86)

Then the weak coupling limit (83) transforms to
3 15,

eu(9) ~ = + PR 970 (87)

32
: and the strong couplmg limit (84) reads

e.(g) ~ 0.667371g/% 4 0. 1500325;-‘/3 g 5 oo. (88) '

For the maximal error. (38) by a numencal solution of (80) we ﬁnd € =
0.28% whlch is reached at g = 1. k
- 1i) Accept condition (55) resulting in

§ =0955774,  C=0.367607, D =0271622.  (89)

The weak couplingrlimit (83) becomes

13 ’~ o
eg) ~ = + —g — 2.3396044%; g—0, (90)

4
‘and the strong coupling llmlt (84)is

~eu(g) 0. 667986g‘/3 +0. 1494809—1/3 g T (91)

. By a numerical calculation’ the ma.xunal error is found.to be ¢, = 0 32%

~ at g 1. As we see, the accuracy does not change practlcally when
- passing from (54) to (55). This, possibly, is conriected with the stablllty

R rrof the method based on the principle of minimal sensitivity.

Really, the mapplng multlpllers (31) i in th1s case are

12¢2(g) — )
, Ml(g) W

18

(g = 12200 =1 _ [16g) = 1ael(g) +3)

S (92)

‘ 16e3(g) . . T68el(g) .
from where X g - g5 L :
5<Ml(g)< —<M2(g) <'—— L (93)

‘Thus the stability condition (32) is fulﬁlled For the Lyapunov exponent

'(35) we get

| _ laeXg) - 1][463(9) +3] 3
- R

which gives . ' . S S
-5 < An(‘ ) < 0; " “0<g< oo (95) .

The stablllty condition (36) is also true. The errors (39) are ¢ = 2%

“and €; = 0. 8%, Wthh together with e, = 0.3%, isin complete agreement - |
‘with inequality (40). This analysis ylelds the following conclusion:

* The method of self - similar approxirnations"with the governing func- -

~tions deﬁned by the principle of minimal sensitivity is stable. It does
"'not need addltlonal ﬁttmg parameters like the ﬁxed point d1stance Its

accuracy is an order hlgher than elther the accuracy of the renormahzed

perturbatlon theory or the best posslble accuracy of the meéthod based

' 'on the prmc1ple of minimal difference.”

7. ..Optimal Scheme

'The results obtained above make it possihle to formulate the general »

: optunal scheme which oné’ should" follow applymg ‘the tnethod of:self ="

similaf approximations. ‘For the practical use’it is convement to d1V1de

:the whole procedure mto several main steps:

1) Construct a sequence of- functlons e

|: o

Fe(9) = fulgrz)s ko= 0,12 i (gg)

fi
PIC T ’ . ot P A
SRR R R A AP L
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»_containing a trial paramet'ef z'. The sequence can be obtained by an-

.. iterative procedure or perturbatlon theory. : :
2) Change the trial parameter by the governing functlons given by the .

fixed - point condition in the form of the principle of m;nnrnal sensitivity

) a_sz(g"z) =0,

* When (97) has no solution for 2 but has”for Zg-1, one can put z = zp_q. g

3) Define the coupling function g(f) by the equation

fO(gvé(g)) =f1 - g:g(f)a (98) i

in whichz=20= 2, .
: 4)5Introduce the distribution‘of apprOximations

yak(f). 5 Aak(f)

where

“and the parameter 5k is called the ﬁxed - point distance.

- 5)Calculate the normalization integral -

oo Jol9)

Ik(g) .

e yleldmg the equatlon for the self - snmllar appmmmatlon f (g)

- 6) Check the stablllty of the method by finding the mapping multl-, ’

: " pllers ‘

Milo) =, lim, )’ dffk(y(f))l ey
= and,ithe Lyapunov exponents
.k(g)"_——l lim )3 -k(f), - (103)
~20

§

CG=ko—k, (99 .

,k(f> f,(g(n,zk(g(f)))—fk(g(n,zk(g(f))) | ‘(1'9‘1’)":4

[uwg=r o am

 which have to satisfy the stability condition

Mig) <1, Aux(g)<0. (104)

As'is evident, the method can be stable for some values of the coupling

~variable g but unstable for others. When (104) is true for all g ER,it
" can be called the condition of uniform stability. '

7) Put the fixed - point distance

bo=s—k . (105)

*when the method is stable, or treat & as a ﬁttmg pa.ra.meter when the
method is unstable. In the latter case 51: can’ be obtalned for instance,

,’ from the strong couplxng limit, if ava.lla.ble ,
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