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1. Introduction · 

Re~ently a new method 1, h.u, be~n suggested for finding out an effedive 

limit of divergent or poorly convergent sequences. This method, called 

the method of self - similar approximations, possesses the follmving .main 

advantages. First, it. is formulated ~ .. a general approach that may be. . , . ' (. .. . . 

applied to arbitrary sequences. Second, it needs to know. only the.first . . ' '' . ' ' ' '·. ,. : . . - ~ ' ' . . .~ ' .. -~· . ~-

few terms of a sequence. The latter advantage is e~pecially irp.. portan~ for 
. : '·.· ' . . . ·' . . ' 

those complicated problems when one is no,t able to calculate many terms, 

and the usuaL rcsummation techniques fail. The. standard difficulties 

is such a c.ase are beautifully described by. Stev~nson2• 3. Third, the 

method of self - similar approximations1 is constn1ct~d so that to force 

.. a sequence to converge as fast as possible, thus provi.ding a maximal 

accuracy extracted from a minimal information. The convergern;:e is to 

be governed by specially introduced governing functions;· .· 

Although the general formulation of the method includes ·.the fast 
., ;. . ' ' ,· 

, convergence, this can be disturbed in· particular realizations, for exam~ 

})le, by an inadequate choice of. the governing functions~ Therefore, it is 

necessary for practical purposes to define the conditions using which one 
' - ~ . . . 

could check the convergencein each concrete case. The conditions of this 

kind ip the mapping theory, dynamical t.heory or renormalization - group 

theory 'are called the contraction .conditions or stability conditions. The 

aim of the present paper is to define such conditions for the method of 

self - similar approximations1 and to illustr.ate \heit: us.e.·: 

Tl~e paper is organized as follows. In Sectio~ 2 a generalized con-. 

struction of •the method is produced:' The details that'are thoroughly 

explained in Ref;! are, of course, omitted,'but t~e poirits geneiali'zin~fthe 

derivation are stressed. As a: result 'of the ·generalization; ~ new parim: 

eter appears showing the number of steps needed t~ rea~h iin effecti~e 

limit of a sequence starting from its k -th term. The sought effective 



·limit of a sequenc~ plays the role of a fixed point for the self - similar 

mapping1; this is why the appearing new parameter showing the distanc~ 

of the fixed point apart an approximate term can be 'called the fixed -

point distance. In Section 3 the stability conditions controlling the cbn

vergence are formulated. The cond~tion for the self - similar mapping 

to.be contracting checks the choice of the governing functions, while the 

Lyapunov stability condition for the differential form of the self - similar · 

relation regulates the option of a distribution function which is_ inversely 

proportional to the Gell ~ Mann - Low function. Section 4 considers 

two main variants of the fixed - point conditions defining the governing 

functions: the principle of minimal difference4• 5 and the principle of 

minimal ~ensitivity6• 7. The former variant is analysed from the poi~t of 

view of stability using as an illustration the anharmoni~ oscillator prob

lem in Section 5. The accuracy of the method based on this choice of. 

the governing function can be essentially improv~d by treating the fixed 

- point distance~ a continuous parameter. The value of the latter may 

be found from the strong ~oupling limit. The fixed - point condition in 

... the form of the principle of minimal sensitivity is examined in Section 

6~ It is demonstrated that this variant is preferable since it makes the 

method stable and accurate and does not need additional parameters, 

like the fixed - poirit distance. Finally, in Section 7, the optimal general 

scheme is described of the stable way which one should follow applying 

the method of self - similar approximations. 

2. Self-Similar Approximation 

Here the main steps of the derivation of the inethod 1 are adduced with 
,, 

an emphasis on the novelties generalizing this approach. Let us be in

te~ested in a function f(g) of t4e variable g E 81. Suppose the function 

J(g) is a solution of a very complicated equation which cannot be solved 
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' ' 
exa?tly._,,Invoking ~<>rr,i~ ite~atixe proced1;1r:e o~ .perturbation• theory:one. 

~4ri _c~nstruct ~ s~ql!,enc~'-of- app_r9ximatioll~. {fk(g)Jk: s' 0., 1,2,,.;. }. \: If 
. .' ·. ~.. . . ' ' - . ' ,.,. . ' ' . . . ' .. 

this ~eguence were ,c;9ny~rgent, J (g) .Wqt!l? J~e it~ limit. , However,· in . . , 

many realistic cases such sequences diverge. To make a sequence con-

~ergent, we h~ve to 'renorriializc it by introducing ·an· additional sequence 

of governing functions { zk(g) lk = 0, 1, 2, ... } . According to t4eir role; 

the governing functions should govern the convergence of a renormalized 

sequence formed by the functions -· 

fk(g) = fk(g; Zk(g)). . (1) .. 
~ "\ "' : 

Generally, it is possible to introduce a set of governing functions 
.· ' . ' ~ ~ 

zk(g) :::d {z,;(g)la = 1,2,3, ... t 
, ! j \_: .J f l-\ ; _i ~ •.. l '. o.._: A ' ' ' f, }'• • _"e ' • '.:! 

. Define the coupling function g(f),by the,equation 
. ~ . .. ' l ~ ~, . . ~ 'i; , ••• 

fo(g,z(g)) =·J; ·· ·g == g(J); .- (2)' 

where the notation 

z(g) = zo(~) = 0

Z1(g), (3) 

is'u~ed. The ~~bstitution of tl1e coupli,ng function into (i) SP,ecifies the,.· 
'.',,' ·,! ' :: ' . .' -. 

function 

f k (/) = fk(g(f), Zk(g(f))), 

for· ~hich (2) take~ \he foriu 
'• , '. ' ' , ' _l. ', , , 

1,., · 'fo Cf)~ f. 

(4) 

(5( 

Function ( 4). i~ i~~~nted in ord~r to be abl~ · to wri te1 the fastest . con~, : 

vcr~encc condition, di~~ctly fqllO\yi~g from th~ Cauchy criterion, as the 

property of the functional self - similarity, .. . . , .... 
- t ! ;., : , ~ '. · - ; _.- • · , . . j i • .. l, • , '. ( J _-, : : ? ·' • ' ~; 1 ·:. 

- - -
~. ·:~ 

f k+v (f) =fk Uv-U)). 
... '';.•I ,. 

(6) 
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• 
It would be convenient to rewrite Eq.(6) with additive indices as a 

self - similar relation with multiplicative indices. To this end, we need to 

have a new variable t,: = t(k) satisfying the property 

tr.+p = t,:tp; 

From (7) it follows that 

to= 1; 

t k. r.=a' 

t,. > 1 (k > 0)., (7) 

a> 1. (8) 

Remind that in Ref.I a particular form of (8) was taken, when tr. = er.. 

Introducing the notation 

z(tr.,g) = zr.(g), 

J(t,:,g,z(tr.,g)) = fr.(g, z,:(g)), 
- -
f (t,:,f) =fr.(!), ' (9) 

/ , we rewrite (6) as the property of functional self- similarity with multi-

plicative indices 
- - -
f (t,.tp,J) =f (tr.,/ (tp,f)). ·(10) 

Then from the discrete variable tr. we pass to the continuous variable 

t by the_ substitution 

t,:-+ t E [l,oo) (11) 

accompanied by the analytical continuation of all functions depending on 

t,. to functions depending on t so that when t crosses t,d, the continued 

functions of t cross the values coinciding with the corresponding initial 

functions of tr.. In this way, th~ analytical continuation of ( 4) is the 

function 

J (t,f) = f(t,g(f),z(t,g(f))); 

and the continuous analog of (5) is th~ equality 

-
/ (1,/) = /. 
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The continuous representation of (10) is the self-similar relation 

- - -
' J(µt,f)=J(t,J(µ,f)) (14) 

withµ> 1. 
' -
The functional eqtiation (14) can also be written in the differential 

form 

in which 

a J (t,J) = /3(! (t,f)), 
Blnt 

f3(f) = [a j (t, n] 
alnt 

t=l 

is the Gell - Mann - Low function. 

(1_5) > 

{16) 

, , The sought effective limit of sequence (1) is the self - similar approx

i~atipn J.(g) playing the role ofa fixed point of relafom (14), _which is 

reached at t = t. called the .saturation point1. Integrating {14) over t 
' : , . . ' 

from tr. up to t., when function (12) changes fro~ the approximation 

fr.(g) to the self - similar approximation J.(g), we have 

J.(g) 

J df, t. 
. /3(!)'= ln t,.·. 

''fk(g)' 

', (17) 

' ' ·.· Returning to the discrete representation we;have to replace the d~riva~' 

tives in (15) or {16) · by the corresponding finite differences with resp'ect. 

to the variation· of the· discrete vari~bl~ 

T,: = ln,t,. = k ln_a .. (18) 

Then for the Gell - Mann - Low function (16) we can write the finite -

~- difference representation · 
' ' . 

/J.1:(f) = A.1:(f)/(;. - Tk),. (19) 
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in which 

. . a 
flsk(f) = f,.(g, Zk) - fk(9, Zk) + (z,. - Zk)-

0 
fk(9, Zk), 

Zk 

where 

g = g(f), Zk = Zk(g(j))i k < s. 

(20) 

(21) 

As is seen, if the left - hand side of (15) is written in the discrete represen

tation and function (19) is used for the right - hand side, then equation 

(15) becomes an identity. 

For what follows it is useful to introduce the function 

Ysk(f) = {,B,.k(f}ln( t,,Jtk) }-1 (22) 

and the distance 

sk = k. -k; -k. = ln t. (23) 

indicating the nun'iber ~f iterative steps needed for reaching the fixed 

point J.(g) starting from the•· k - th' approximate term. I shall call (23) 

the fixed - point distance. With (19) ·_ (21) and (23) function (22) reads 

Ysk(f) = (s - k)/Skfls,k(f). (24) · 

Nofo·that if in (23) we replace.the S!3-tU:ration number k. bys and, con

sequently, the fixed - point distance Sk by s ·- k, then we return to the 

cas<! oLRef.L Ill general, the1fixed - point distance.can.be treated as.an 
-'- I - '• '. ' , ' , • • I ' 

additionaJjitting par;,tm'tter,.,not nec;essarily being. an. integer .. · 

Thus, frorr,i equation (17) we obtai~ the normalization _condition 

f.(g) 

Ysk(f)df = 1 J
!.j \··- ,,.: :· " 

(25) 

-.. '.,:,; -,·;, _ :'· ,, :,,,. · ·•; }.k(Y) ;:,,:•·.er; .'•\• .. .'t: 

for function (24). The latter function can be called' the ais'fribtiti6n: bf · 
approximations since it shows the, ~ii:itri~utio[l of approximate functions 

, )-:~;"j •\-.,Y ..... ·.~':')\~ t,l<, .. ;..,:~ ·· ... •-.,,:·\~. \ , 
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between fk(g) and f.(g). Normalization (25) is the main equation defin-

-ing the self - similar approximation f.(g ). 
Strictly speaking, as is clear from (25), each distribution of apP.rox

imations Yak(!) defines the corresponding self - similar approximation 

J:k(g). When we consider a sole fixed distribution Yak(!), we may write . -

the self - similar approximation simply as J.(g), witho~t indices. How-

ever, if we take a set of distributions Ysk(f) wit~ different indices, we shall 

obtain a sequence of self - similar approximations. For example, we can 

get the sequence J;1(g), J;1(g), J;1(g), ... or J;l(g), J;2(g),'J;3(g), ... , 
or f;1(g), f; 2(g), J!3(g), ... or other sequences. It seems that the sir_p-: 

plest way is to construct the sequence u!~>(g)} with J!k)(g) = 1:+lk(g), 

though a thorough inve,stigation of these possibilities is a separate prob

lem to be considered in another paper. 

3. Stability Conditions 

. By construction of the method it is assumed that one can find the gov

erning functions such that the sequence of functions ( 1) would fastly 

converge to an effective limit called the self - similar appro,ximation,be

. cause it is a fixed - point, of the self - similar mapping (6). This means . 

that the fixed point is to be stable. 
- -

However, in each concrete case we always deal with a particular choke 

of the governing functions. An inadequate choice of these functions can 

disturb the assumption of stability. ··Therefore, it is necessary to know 

the general stability.conditions providing the convergence of the sequence ... 
{Jk(9, Zk(g)} and making it possible to check the adequacy of a particular 

option of the governing fu~ctions for each concrete problem. 

The self - similar approximation J.(g) in terms of notation (4) reads 

J.(g(f)) =!. (!), (26) 
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, ,. 

where the coupling function g(f) is ·given by equation (2). The nomina~ 

tion of (26) as a fixed point of mapping (6) implies 

- - -
fk (f* (f)) =f * (!). (27) 

Considering a variation n~~r the fixed point, 

- - -
fv (f) =J. (f) + 8 fv (!), (~8) 

_we have from (6) 

6 f ,., (!) = [ d ft)] - 6 .f, Ul-
. e=J .u> . 

(29) 

The self - similar mapping (6) defines a convergent ~equence when this 

'mapping is contracting8, which needs 

'' . 

lim 
e...c.J.U> 

d f (0 I< 1. 
dl . 

For the mapping multipliers 

Mk(g):= lim I ddlfjk(g(f), zk(g(J))), . J-J.(g) ' 

condition (30) reads 
', ,. . .. .. . . ' . ' , 

Mk(g) < 1. 
_).. • 1 

,(30) 

. (31) 

. (3,2) 

') :W~- could .equally consider the cont~nuous representation (12) for 

V{hi~h the fixed point'is defined by the equation , · 

··- -- -
f (tJ. (J)) -=:=f. (f). 

. ~hen, substituting the variatio_n ' 

f (t,J) =!. (f) + 8 f (t,f) 

8 

1fi~ 

}, 

1 l 
'Y 

I 
I 
ti ,, 
i 

r., 
r , 
:J 

intc>''tlie continuous self-similar mapping (14), we ha.;e'' '. 

[ - ' ] - · a1 (t,t) · · - · 
s J (µt,f) = , •iae· . ·_· Sf(µ,!) .. 

e=J .u> 

' ~,' .' 

i 

Returning to the discrete representation we _again obtain the contraction 

condition (32) for the mapping multipliers (31 ). 

.. A~ additional condition follows from the; analysis of the contiinious. 

representation if we treat the differential equation (15) as· _the law 'of 

motion for the function f (t~f) with respect to the variable T = Int. 

Th~n we can use the Lyapunov theory of stability9: Li~earizing {15) we 
• • ; ' . '. f • . • ,, ' ' . ' • ~ 

get 

( ,. 
a - [dP(e)] · --

8 
sf (t,f) = ~de.· _· _ _sf (t,f). 

T '- , e=J.(J) 
(33) 

' The motion to be stable requires 

l• df3(e) -< O 
~m de . 

e-1.u> 
(34) 

This condition, after returning t~ the discrete.r~p;e~~ntation '(19), intr~ 

ducing the Lyapunov exponent 

Aak(g) = lim ddlf~ak(/) 
J-+J.(g) . 

.. (35) 

and' taking into ac~ount. that r~> Tk ~ yields 

A • .1:(g) <-0; (36) 

Inequalities (32) and (36) are sufficient conditions for the self - similar ap

pr~ximation /. (g) to be a stable fixed p~int _of the self - similar mapping. 

In this case f.(g) is the sought effective limit of sequence (1). 1£.condi-
' . . , ' . ', . . ,: . ', 

tions (32) and (36) are valid, we shall say for breavity that the method is 

stable. It is unstable when either {32) or (36) is not valid. When one of 

9 



' ' the equalities, Mk(g) = 1 or Aak(g) = 0, ,is true, then we have a marginal 

situation and can say nothing about stability and conyergence. 

The accuracy of the self - similar approximation f.(g), as compared 

to the exact valuef(g), is defined by the error 

( ) -·l1·(g) 11 : t. g = f(g) - .. -·(37)· 
' . ,, 

!tis reasonable t_o define the accura~y of the method as a whole by the 
. :-·''- ,.1 ' ' ' ' •' ' . 
maximal ei:ror I> 

\ ,, '1 
t. = sup t.(g). , . 

-'.'' ,-_·'~~-,,'\,~. 
, 1, , ; ,.(38)' 

Arial~gcfosly tb; (37) ~ricl .- (38); one cait check -the ~cc'rir.acy of 'tli~ k-th' 

approximation 

'IA(g) i- ii~. ' '.'' <. t\,= -~~?! f(g) 

When the method is stable, then ,._~-, \ ; : 

. ' _.::. ' 
~ .. ., 
' (, ' ft>, f.~ >. '; : . >-'f.;,. • 

For an unstable method Eq.(40) does not hold. 
1 •: }(7 \ ') ; ,,.--., 1 : { . :, .' ."-·'"·i\ ,"f ,-". :• ... •-.": •,,: .:-, ) 1 

J, 

4. Fixed - Point Conditions 

. ,_ 
(39) 

(40) 

·, :r. . ,·, ,' 

, u;';;-; ',;, '( 

J\s'.i~ evident, it is very iJpJtta~i tcj '4~fi.ne; the g~verning functions so as 

to provide the stability of th~ _rn~tJ:iod. fo ac~ord,anc~,:"'.it~Jhr. g~n,ft:f~ ,, 
approach 1, the governing functions a~e ta"' be defin~d by ~ fixed - point 

c9n~ition. In the continuous representation, as follows from (15), the 
-.. ,.· ' . . -~ 

fixed point is given by zero of _the Gell - Mann -Low function, 
:;··-!=:·;~~--~~/: j\-~_# ·:~---~ ) -i,~~: .. ft:;:_··•~;~ .. (/~-: 't,;~~-~ \ .',<• :.-~t:,_,;_\•~ 11;1 

f,":;'l-••f'J r, ii<'~,, ;t,.,. ,,,:, :'/3(:j:(t;/))'± O~'i,, . ,. ; ,< •:.·•,-,_ ,,,1,J'.,~(,{fj-11 

I~\h; di!cr~i~ ~~;i:~~;~t~ti;~,1)i~h1 

~ri;~d\~',ffg) ap~L (i~)'. ~p;,fu:~i; 1

1 \.-' ---;,/1,'f":';~~•~•,t 'll,•,.t~ ·~.,--l.;:t:• /'i'l',r'f\~~•xt! •;..__~s: ·/.Jt•! ~ .. :,/!,-'"- •/t,-4 ,•,~~$·\ '},i.\ i~-•. _; •,; • '.• l.,J _·o\">;-J' 

point conditt,qn (41) ·can be,.~~it_t~nj~ ~'.V,9 simp~e,.fopps,.,ejt~er, 1as_ the,,, 
"\.~,s ,•.-~~;{1 _q~ ;-! ! '/ J > i .:.f). •~ !1 ,.-"f: "~/ \'~>~ .' ,!_: 1. -.i•·'°.r J ..c· ,'.· f ,.!, { • -. · 7 'I -~: • .,..,.,-...~ .-.~- •·• - l · J · '" •·• · 
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principle of minimal difference4• 5 

- .:.,,:, · fv(g;z,.)'-1i.(g,'zk)=O·••:·. - '"' (42) 

_ or as the principle of mi!limal s~nsitivity6, 7 
; {) '•, -

_f)zk {k,(g, Zk) ~.?• . ,.,, 
(1m 

Both these conditions have been _used in constructing the renormalized 

perturbation theory4- 7. When ( 42) o-r ( 43) has no solution fo~ Zk =: 
zk(g), one can determine the latter by' seeking fbr the _minima of the 
correspo'nding left-~ hind sides-.. ··- .·- .. - - . . : . ,,_ , -

: Having° two possibilities, (42) ~nd '(43), for'd~fini'ng go~~r~i~g-f~n~

tions, we should understand from the general point of view which of this 

'po~sibilities is preferable. Fir~t 'of all we immediately see that in the ca,;e · 

of several govei:ningfunc:tions Zk :== {zf(g)la = 1,2,. -'-} condition (43) 

yields the same nmnb~r. o_f equations, while·( 42) does not .. We, of course, 

are able t~ finda ~ay ~ut of this tr?ubl~4• .5 by considering s~veral-se~ 

quences {f.f(g)la = 1,2, ... }, bu_t this would complicate the situation. 

Consequently, in the case of a set of gover~ing functions it is easier to 

use the principle of minimal sensitivity ( 43). 

What is more important, the principl~'of m-inimai'difference'( 42),j~st 

because of its form, leads for some of_ ~he mapping multipliers (31) to the 
0

eq~ality Mk(g) = i. The~efore, condition (42), generally speaking,does 

not p~ovide the stability. ofthemethod:'.Thus, the,accuracy of the_self 

- similar approximation with the governing functions obtained from ( 42) 

should be worse than that with the governing functions given by ( 43). 

To make the above conclusions apparent and, in addition, to show 
. :·, • ,,. _t, 

how one could improve the accuracy of the method even working near an 
, • 'r • I •, 

unstable fixed point, we will consider the anharmonic -oscillator problem 

with the Hamiltonian 
1 d?. mw2 

H = -2m dx2 + -2-x2 + ,r\m2x4,,. {44) 

11 



in which m, w, ). > 0, and x E ( -oo, +oo ). · 

Take as a zero approximation the harmon_ic :. oscillator Hamiltonian 

, , 1 . <P. . mwJ 2 Ho=---·+-· -x . 
2mdx2 .. 2 

. (45), 

· Define the dimensionless co~pli~g constant 9 and the trial parameter z, 

" ). 

9,=·w3' 
·wo 

Z::-. • 
w 

, (46) 

Let us calculate with the Rayleigh - Schroding~r pe~turbation theor~ the 

· dimensionless approximations ek(9) to the ground - state energy e(9), 

E(k) ', 

'ek(9) = -;-, , 
l • ' • 

E 
·e(9) = w. (47) 

Applying·the method of self- similar approximations to this problem, we 

can compare the obtained results with numerical calculations10 f~r e(9) 

and with exact asymptotic'expansions in the weak coupling limit 

, 1' 3 21 2 
e(9) ~ - + -9 - -9 . 

· 2 4 8 ' 9-0 (48) 

and in the_ strong coupling limit 

e(9) ~ 0.66798691l 3 + 0.143679-1l 3
; · 9-+ oo. ' (49) 

As representatives for the sequence of functions (1 ), we have now the 

zero approximation 

the first term 

and the second one 

eo(9,z) = !z 
2 ' 

e1(9,z) ~ eo(9, z) + 3g + z - z3 
4z2 

e2(9, z) = e
1

(
9

, z) _:_ 69
2 + (69 + z - z3)2 

· 16z5 

12 

(50) 

. (51) 

(52) 

', ,:~}
' I\ I 

--~· ,'\ I 

I 

I 
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·I 

' 
ii 
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; 
·'1 
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l 

.~\ 
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\ The coupling function, defined in (2), i~ given by the ~qua.tion 

eo(9, z(g)) ~ J: i 9 =9(1). (53) 

TheJx~d; -~, P?iPt ~li~tan_~~ (~3) ,e.nt~rin,g, into the ,d_istribution: of air 
proximations (24) will be dete~mined in two ways: first, by putting, as 

' . . 

in Ref.I, 

· 61 = 1; , k~ = 2, 
', . •,, 

(54) 

and, second, by extracting· it~ ;alue· from the c~ndition 

l
,. , , e.(9) . 1 
lm -· - = 

a-oo e(9) ' 
(55) 

that is from the coincidence of the asymptoti~ 'ror,i_ns f~r the se~f ;-, s·i~il~r 

approximation e.(9) and for the exact expansion (49). 

5. Minimal Difference 

Let us find the governing function from the p~inciple ~f'minimal difference 

( 42) written as 
e1(9,z(9))- eo(9,z(9)) = O, 

' ' . 

which, together with (50) and (51), gives 

z3 -z -39 = O; z = z(9). 

(56) 

(57) 

In what follows we shall assume for simplicity that z1 = z2 and use the 

notation 

ek(9) = ek(9, z(9)). · · 

Equatioris'(51) and (52),takirig'account of {53) and {57), become 

_.e1(9(J)) =.f,. 

' 5(4/2 -1)2 

e2(9(f)) = f-, 384/3 . 

13 
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. , , 

For distri~.utl?.1.1 .(24) .w~ .. g~t _ .. 
. . . . . . 

. I ~ '; , , ; f •• ; ; 

' -~' 

384/3 

. 'Y21(/) .. = 1 .56
1
(4/2'-1)20 . (59) 

Suhstituiin{{59) 'into normalization (25) we obtairi the equation : · 
~; -..,•:;i.,.~r:;,,t,

1
:: .• -_, ,·_,.·· -,~·~i-_.•,: :·, •., ; ~.··,; ·_; .:"•• 1:· 

V , 4e!(9) - 1 .{ · 1 1 . 5 } , I • 

4eHg) -1 =exp. 4e~(9) -1 - 4eH9) -1 - 12 61 ·· ··(60) 

fo~ the self - similar approximatio~ e.(9), where 
'! _f • ' •.• ·' ~ ' •• , ; • -, • ' • • ~ •• ,_ i ~ ~ ,, -. , • 

1 
,~1(9) ;:=.2z(9), 

and the governing function z(9) is defined by (57). 
i;·From'{60); usi~g the'expansions·· . '' . 

. , 1 ·· . 3 27 2 

e1(9) ~ 2 + 49 -
16

9 ; 9--+ 0, 
~ ' ' • .- ., ,: ' ' ' l 

(61) 

1 · 1 
e1(9) ~ -(39)1/3 + :...(39rl/3j 9--+ 00, (62) 

._, ._., _. ,. , . ( .- .. 2 .. , : P .. - :.- - , . . , · ... .. · 
we find for the self - similar approximation the weak coupling limit 

1 _:_ 3 · · 3 - .· - · -
e.(9) ~ 2 + 4g _:. 

16 
(9 + 561)92

; · 9--+ 0 (63) 

and the strong coupling limit 

e.(9 ) ~ A(39)1/:i+ B(i9 ):...113; 9--+ oo, (64) . 

where 
1 5 3-8A2 

A = -exp(--61) B = -- (65) 
2 . 24 . ' 12A 

Now ~omP,ar~ two ways, (54) an? (55), of choosing;the.fixed ~ P?int 
. . 

distance (23). · 

. i) Consider condition (54) which implies 

61 = 1, . A= 0.405968, __ B-= 0.345166. (66) 

. 14 

The weak coupling limit (63) becomes 

1 3 21 2 
e·(9-)-~ -+-9--9. 
* 2. ·4 ·, 8 ' 

and the strong coupling limit (64) is 

9 ;--t 0, 

e.(9) ~ 0.58550791l 3 + 0.2393259-1l 3; 9--+ 00. 

. ' 

(67) 

(68) 

As is seen, the self - similar approximation'given by.(60) with condition 

'(66) is very good at small coupling constants but worsens at high;,.· The 

maximal error (38) is e. = 12%; which corresponds to 9 --+ oo. In this 

way, the __ accuracy _of th.e :tpethod in. thi~ case: is_ pot so good.\, 

, iif J?efi~_~, t~efixed - P?Int_ ~ist~ce frorp. sondition (55), then••. 

I ; :' .,.:, 01 ~ 0.367416~ -. . A'~ 0.463156, 1) ~ 0.231005.· . ' (691

)' 

For-the weak coupling limit (63) ,we get - : . · 

-,-,_.J;,· ; ,,. ,r·:•3 · ·: :.- .-.,·;• · ·-·· · 
" ., ... e_.(9), ~,2 +, 4,9 :-:,2.031_9~3{7\, . . fl-"':? ,O; .. - , (70)_. 

arid for th'e strong· dmplirig' liI'nit,, 
' : " 

e.(9) ~ 0.66798691l 3 + 0.1601709-1l 3 ; 9--+ 00. (71) . 

:-:':r.;,, .: ,.;., -··•"· 
The maximal error is e. = 0.87% at 9 ~ 1. As compared with. the case 

(6~))he 'i1-cc~racy,qf_ t~,e met.hod i_s, improved by an order. , •- , - ,_ .. _. :, , 

. , g~~c~ :no~ -~h~ stabil~ty c~q,ditiops., i F,or, t~e mapP,ing mu,ltipJiers (31) ,; 

-we,-fin~ .. , _,. .: ,-.-: ._. . ,. , ._ ·" 

M1(g) = 1, _ ,!_ ! i. 

M2(9) = 1 ~ 384:!(g) (4e;(g) 2:n [4e;(9) + 3] . (72) 

Although for M 2(9) condition (32) is ,valid: 
19 r,._, ', -,, . -..,,- -~. 

24 < M2 (9) < 1; 0 < 9 < oo, 

-; •; 1,;;:- ~,·;•;' 

(73) 

11! , 



. ' 
but M 1(g) does not satisfy (32). Substitt_1ting' 

. 5(4/2
.- 1)2 

l!.21 (f) = e2(g(J)) - ei (g(f)) = - 384/3 

'\· '· 

into (35), we'obtain the Lyapunov exponent 

A21(g) = 
5 .. . . 

384e!(g) [4e;(g) - 1] [4e;(g)+ 3], (74) 

for which ·" 5 . . . . ' ' 
- 24 . < A21(g)<.O; .- O < g < oo. · (75) 

As far as M1 (g) = l, we have here the marginal case, an'd to' ·prove 

whethe~ the method is stable or not, we can calculate the errors (39), for 

which we get .ft = 8% and t 2 = .15%. These values contradict condition 

(40)°. Hence the conclusion foll~ws: 

The principle of minimal difference does not provide the stability of 

the method. Although the accuracy of the latter can ·be sufficiently im

proved by a special choice of _the fixed - point distance, the best accuracy 

is of the same order as that of the simple renormalized perturbation 
theory with the principle of minimal sensitivity6... ' . . . . 

6. Minimal Sensitivity 

· Turn now to the analysis of the method of self - similar approximations· 

with the governing function_given by the principle of minimal sensitivity 

(43). For the considered example of the anharmonic oscillator from the 
condition 

a 
8z e1(9, z) := 0 (76) 

we have 

z3 -z-6g = O; z = z(g). (77) 

16 

, Eqs.(51) and (52), in agreement with (53) and(77), yield 
. ' . 

, . 12/2 + 1 
ei(g(f)) = 16/ ' 

( (/)) = 12/2 + 1 _ (4/2-1)
2 

e2 
g . 16/ .· . 768/3 · 

The distribution of approximations (24) is 

768/3 

Y21U) = - 61(4/2 - 1)2" 
\ ' ' ', . 

From the normalization (25) we find the ~quation 

4e;(g)-;1 "{ 1 · . 1 61}. 
4ei(g) -1 =. exp • 4ez(g) -1 - 4ei(g) - 1 - 24 ' 

in which 

() 3() .. L 
e1 g = Sz g + 8z(g,)' 

and the governing function is given by (77). 

Using the expansions of (81) 

1 3 9 2 
e1(g) ~ 2+4~ :-- 4g ; __ · . g-+ 0, 

3 1 . 
e1(g) ~ 8(6g)l/3 + 4(6g):-1/3j:' ,fl-~ 00,: 

:we obtain from (80) the weak coupling-limit. 
. ; . ' . .', . . ./ ~ ' '- ·, 

~..(g) -~ ! +~g ,- 3(24 + 61) 2 ,, 2 4 . .. 32 ,.g ; . .g 7+ 0 

and the str~~g ~o~pli~g limit . 
• '. ¾'' . - ...... ·, ,-,, '. ;• 

· e~(g) ~ C(6g)t/3 +D(69Vt/3; , 'g-+oo-· 

for the self - simil~ approximation:e.(;)·, i~·whi~
0 

,. 

3 ..• Ji.· 
C = sexp(-48), 

17 

D-~·9-40C2 
36G · 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 



' . 
Consider two possibilities, (54) and (55), of setting the fixed - · point 

distance (23). 

i) Take condition (54) according to which 

81 = 1, . C = 0.367268, D = 0.272625. (86) 

Then the weak coupling limit (83) transforms to 

1 3 75 2 
e.(9) ~ 2 + 49 - 32 9 ; 9 --+ 0, (87) 

and the strong coupling limit (84) reads 

e.(9) ~ 0.667371g113 + 0.1500329-1!3
; 9--+ oo. (88) 

F~r the maximal error. (38) by a numerical solution of (80) we find E* = 
0.28% which is reached at 9 ~ 1 . 

ii) Accept condition (?5) resulting in 

81 = 0.955774, C = 0.367607, 

,The weak coupling limit (83) becomes · 

· 1 3 
e.(9) ~ 2 + 4g - 2.33960492

; 

. and the strong coupling limit (84) is 

D = 0.271622. 

9--+0, 

e.(9) ~ 0.66798691
/

3 + 0.1494809-l/3
;· 9--+ oo; 

(89) 

(90) 

(91) 

, By a numerical calculatioll'the maximal error is found to be E* = 0'.32% 

at 9. ~ 1. As we see, the accuracy does not change practically when 
. . ·, . . I; • ·. ,• 

passing from (54) to (55). This, possibly, is conriected with the stability 

· of the methoc\ based.on the principle of minimal sensitivity. 

Really, the mapping multipliers (31) in this case are 

M ( ) _ 12e:(9) - 1 
l 9 - 16e~(g). ' 

18 

from where 

M2(9) = 12e:(9) -J - [4e:(9) - rn4e:(9) + 3] 
l6e;(9) _ 768e!(9) . ' 

3 ! < M1(9) < 4' 2 

35 ! < M2(9) < 48•' 2 

(92) 

(93) 

_'.fhus, the stability condition (32) is fulfilled. For the Lyapunov exponent 

(35) we get 

which gives 

A21(9) = [4e;(9) - 1][4e;(9) + 3] 

768e!(9) 

1 
-

48 
< A21 (9) < O; . 0 < 9 < oo. 

(94), 

(95) 

The stability condition (36) is also true. The errors (39) are E1 • = 2% 

and E2 = 0.8%, which, together with E. = 0.3%, is,in complete agreement 

with inequality ( 40). This analysis yields _the following conclusion: 

The method of self --similar approximatiot?-s ·with the governing func-

tions defined by the principle of minimal sensitivity is stable. It does 

not need additional fitting parameters, like the fixed - point distance. Its 

. accur'acy i_s an ord~r h.igher than either the accuracy of the renormalized 

perturbation theory or the b"est possible accuracy of the method based 

on the principle of minimal difference:-

7. . Optimal Scheme 

The results obtained above make it possible to formulate the general 

optimal scheme which one· should follow'applying the rriethod:bf;;s~lf'.. 

sirriilar approxirriatioris. 'For the prac'tical use it is conv~nient't'ldi~ide 

the whole procedure into several main steps: 

.. 1) ,Construct a sequenc~ of fu~ctions . ; ·. 

(\ 1 ~ i ,1 

. l ~ • '. ' 

fk(9) = fk(9, z); 
;, 

-~ '» 

19 
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k = 0, 1)2;'.'::;\' .,, 

·.:_ i-J·~.\t~. /· 

.•·•:.::, 

'(96f: 
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. containing a trial parameter z . The sequence can be obtained by an 

iterative procedu~e or perturbation theory. 

2) Change the trial parameter by the governing functions giv~n by the 

fixed - point condition in the form of the principle of minimal sensitivity . 
a •. 

8zfk(g,z) = 0, Z = Zk(g). (97) 

When (97) has no solution for Zk but has for Zk-1, one can put Zk = Zk-I• 
3) Define the coupling function g(f) by the equation 

fo(g, z(g)) = f; g = g(f), 

in which z = zo = z1 • 

4) Introduce the distribution of approximations 

where 

s-k 
Yak(/) = Dk~sk(/); 6k = k .. -k, 

. ~sk(/) = Ja(g(f),zk(g(f)))- fk(g(f),zk(g(f))), 

and the parameter 6k is called the fixed - point distance . 

5)Calculate the normalization integral 

J.(g) J Ysk(f)df = 1 
fk(9) ,. 

yi~lding the equation for the self - similar a~P"faximatiori f.,.(g). 

(98) 

{99) 

(100) 

(101) 

6) Check the stability of the method by finding the mappi~g multi-

pliers 

M,.(g) = lim lddlff,.(g(f))I 
J-J.(g) 

(102) 

and the Lyapunov exponents 

A.,.(g) = .lim ddlf~.,.(f), 
J-J.(g) . 

(103) 

·20 

which have to satisfy the stability condition 

M1,(g) < 1, A.,.(g) < O. (104) 

As is evident, the method can be stable for some values of the coupling 

variable g but unstable for others. When (104) is true for all g E /R, it 

can be called the condition of uniform stability. 

7) Put the fixed - point distance 

6k = s - k (105) 

. when the method is stable,. or treat 6k as a fitting parameter when the 

method is unstable. In the latter case 6k can· be obtained, for instance, 

. from the strong coupling limit, if avail(lble. 
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