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L Introduction . 

Lie algebras. and groups play ari important. role in· many. Meas . of modern• applied 
: mathematics and theoretical physics .. Among th~m. there are' soliti:m mathematics, 
qu·antum' mechanics, nuclear and elementary, particle physics; nonlinear optics, accel­
erator• physics arid othe~s. One of the most exiting application of Lie algebra methods 

· is sy~metry analysis of differential equations, especially of nonlinear ones [1]-[10];- The 
··construction of explicit form of infinitesimal symmetry generators and knowledge of 
. their Lie algebra structure allows to get .valuable information'on the giveriordinary or__: 

partial differential equations and often to simplify or even to integrate them by the 
method of symmetry reduction [5]. . . . . . . , . . . 

At each stage of construction of infinitesimal symmetry generat.ors and inyestigation 
of their algebraic 'structure one has oftei;: to carry out tedious algebr~ic manipulatio~s I 

with symbolic mathematical objects. Intensive development of computer algebra algo­
rithms and software o;er last years allows to provide a number of ~odern computer 
algebra systems such ·as REDUCE, AXIOM, MACSYMA with efficient software pack-. 
ages [6, 7, 8] for finding the explicit for~ ofthe ~las.sical or point Lie symmetry gen~r~ 
ators and their commutation relations. In addition to these packages a special-purpose 

· computer algebra system .DELiA [9] has been developed just for symmetry analysis of · 
· · differential equations on an IBM PC. Computer algebra packages are also available (see 

[10] and refs. therein). for the construction of generalized or Lie-Backlund symmetries · 
[2].·· . . . . ' 
.. The infinitesimal symmetry generators being linear differential operators form a Lie 

algebra. The procedure of finding an explicit form of generators is very complicated one, 
and may lead to different mathematical expressions for generators of a given differential. 
equation or a system of such equations. Therefore, it is very important-to .have an. 
constructive approach to ~erifying whether two sets of generators determine essentially 
the same, i.e. isomorphic Lie algebras, or different ones. Furthermore, in paper: [12] 
alg~rithm was developed for computation of th~ stmcture constants of symmetry Lie .· 
algebra without integrating determining systems of partial differential equations for . 
generators. It underlines our idea to start with given structure constants. If a symmetry 
Lie algebra of differential equations ,can be identified as a member of available tables or 
data bases, one is able to use known properties for further investigations, reduction of 

. the order of ODEs, similarity reduction of PDEs or even their explicit integration: In 
the case of isomorphism it may be useful to firid an explicit form of basis transformation 
between. both algebras. . . . . . . . . . . . . . 

Efficient computer-aided approach to that isomorphism verification for finite-dimen­
sional Lie algebras and to computation _of underlying basis transformation as well as· 
knowledge of their complete automorphism group is important [11] in connection with 
recent achievements on construction of efficient algorithms and software packages for 



solving the fundamental problem of identification and classification of Lie algebras and 
its subalgebras (see, for example, review (5) and also (13]). 

In the present paper we present a straightforward approach (i) to decide whether 
two finite-dimensional Lie algebras are isomorphic or not, (ii) to identify given Lie 
algebra as a member of known complete tables or data bases of Lie algebras and ( iii) to 
construct a transformation matrix for two isomoprhic Lie algebras. These problems are 
transformed into commutative algebra as question on the existence and the construction 
of the sohition of a related system of quadratic equ~tions. This allows to use ~odern 
constructive techniques in the theory of polynomial ideals based on, construction of 
Grobner bases [14) and implement~d in' the form of appropriate computer algebra· 
packages. · 

2. Basic System of Algebraic Equations 

'Let F be the field of real (R) or complex (C) numbers and L andiLbe'Lie algebras 
over F ~f dimension N defined by their ~tructure constants c1; and cf; 

. ' ' (',.' , ' •' 

L: [Xi,X;) = cf;Xk, - - -. k-
L : [Y;, Y;] = c;;Y,.; (1) 

in bases {X;}' and {Y;} (i ~ l, 2,.:. ,N) of the Lie algebras Land L, respectively. Here 
and below we· use a convention on summation over the repeated indices. 

Assume the existence of an isomorphism 

<P: L.-,-,-/L: 

We denote the image of the basis elements Y; by Y; :~ cp(Y;) . . Th~ set {Y;} forms' a , 
basis ofL with the s_trudure cop.stants _{~;}: . 

·, ·., .,, . : (;;k . 
[Y;, Y;] = C;;l'k: (2) 

S<? there ~xist~ a, basis. tr~sfoi-~atio~ ~ep~~~en~~d .by a N : N ~matrix.A·= (af) ~ith 
a~ E F. . ·. . · · ' . 

I , ' .- ' . • ~. ' : •. , . , '. ; , . : . . . . ' : 

Y; .= afX;, det(A) # 0. , (3) 

If we replace theY' s in (2) according to (3), we get for the l.h.s. of (2) 
- I 

. [Y;,Yj) = afa~[Xk,X,] = afa~ci1Xn (4) • 

a°:d for ,the r.h.s. of (2). 
,'[Y;; Y;] = c?JY~ ~- c?Ja;:.:Xn.' i (5), 

Comparison of (4) and (5) shows that the elements of the transformation: matrix must· 
satisfy the relations 

'•)!' ' k I n .-m n 0 . a; a;ckl - C;;am = . · (6) 
. : ~-"' 

2, 
I. 

For given structure constants { c};} of L and {cf;} of L (6) · is a system of at most 

( N) . . ·, ., 
N 2 = f! 2(N - 1)/2 quadratic equations in N 2 unknowns a{: It follows from the 

anti-symmetry of the structure constants '1; = -cj;. . . ' 
To use the Grobner basis technique [14) we add one more variable d and one more, 

i . equation d - det(af) = 0 to system (6). So we have shown that the an~wer to the 
f · isomorphism problem is given by the following theorem. 

J Theorem 1. Two N-dimensional algebras L and_ L over F given by the structure. J, consta~ts { c7;} and { c7;} are i~omorphic if and only if the system of equations 

·1 ,., 
\· 
\ 
I 
t 

kin -mn 0 a; a;ckl - c;;am = , 
d - det(a{) = 0 (7) 

in unknowns { a{, d}, ( i, j = 1, ... , N) has a solution in F with d # 0. 

But let us stress the following c~nsequence of .Theorem 1. If the Lie algebras L arid L 
are not isomorphic, then we must g~t d = 0 from ·(7). 
Because of linearity of (7) in d a Grobner basis G [14] of the ideal generated by the 
polynomial in the l.h.s. of (7) iri the complex case F = C shows this fact very explicitly, 
i.e. d E G. To be more precise, this fact follows from the linearity of (7) in d and the_ 
possibility to choose an ordering with d having the highest precedence. . 
It is clear _that (7) has always the _trivial solution a{ = 0, d = 0. Moreover, _the following 
theorem takes place. , _· 

Theorem 2. If the system (7) has· a non-trivial solution, then it has infinitelym~ny · 
solutions. ' · ' .. 

Proof. Let matrix A = ( a{) be a ~on-trivial solution of (7). For given h~o Lie 
· algebras the system of equations (7) is completely d;termined by their_ structure con­
~tants. Hence, the solution space is invariant under transfo~mations. which wjll not 
c~ange the _structure constants_ { ci} and {cf;f S~, looking at the <lerivation. of ot1r 
system of equations (6) one immediately_sees that onecan act'first with an automor- , 
phism of L represented in the basis Y; by a matrix T and the structure constants {c7;} 
remain unchanged. In the same way one can after·the transformation A in (3) apply 
an automorphism of L represented in the basis X; by a matrix•T and the structure 
constants { c1;} remain unchanged; . 

•· Therefore, for any solution A 
B ='i'-1AT, '.(8) 

is also. a solution ~here T .µid t are. a~tomorphism matrices of L arid L respectively. 
Now, let T. be an inner automorphism· of the Lie algebra L: It has the following general 
fo~ni '.. ,' ' . ' '' ' . . . .·· . ' ' ' ' 

T., = eip(aad.,), ·adxy = [x,y], x;y EL, . (9) 

where er: is_. a parameter with. value~ in F. If L )s not -~ abeli~n Lie algeb~a~ then . 
there exists at least a one-parametric set of automorphisms and hence infinitely many 
solutions of (7). The case of abelian L can be neglected here as trivial one; D 
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With respect to the proposed computer algebra approach to the isomorphism prob­
. lem it seems of. interest to mention the following corollary. 

Corollary. Let L be a .N-dimensional Lie algebra over F given by the structure 
constants { cf;} in an ba:sis {Xi}. The automorphisms of L are given by the system 

k ·( n m ·n 0 
a; a;ckl - C;;am = , 
d - det(a{) ~ 0 

in unknowns {a{,d}, (i,j = 1, ... ,N) as solution in F with d f 0. 

3. Grobner Basis Technique and ASYS Package 

To investigate and solve eqs.(7) we need a method which could be applied to non- .. 
linear algebraic equations with infinitely many solutions. For N > 3 the syst~m under 
consideration •is probably too large to be solved by hand. Effective computer alge..' · 
bra methods, algorithms and software packages are necessary attributes of practical 

· computations. · . 
For oU:r purposes we select the Grobner basis technique as an un:iversal, constructive 

and computer-aided tool of commutative polynomial algebra [14] which allows to deal 
with polynomial ideals of either zero or positive dimension. All the modern general: 
purpose computer algebra systems have special built-in modules for a Grobner basis 
computation. However, most of them were designed mainly for zero dimensional ideals · 
and have ·110 special facilities forinvestigation and solvjng algebraic equations with 
infinitely many solutions. 

in: the present paper we use the ASYS package [15] written in REDUCE_ [19], 
based on the Grobner basis technique [14] and especially developed to investigate and 
solve polynomial algebraic equations wi~h infinitely many solutions. The package' was 
11,lready successfully used in integrability analysis of polynomial~nonlinear evolution 
equatimis with arbitrary parameters. [10]. ASYS has a number of special' facilities to 
attack complicated algebraic systems generating positive 1imensional ideals: 

• Reduction into subsystems by maximal sets of independent variables 
· .. In practice, in order to deal with positive dimensional polynomial ideals one needs 

information on its dimension: and on independent sets of polynomial variables [16] ·• 
. "1hich could be treated as free parameters. If any of the maximal independent ·. 
sets is considered as a parametric set, then the lexicographical Grobner basis ~vith' 
resp.ect to the remaining variables has a triangular form. Therefore; the problem 
is reduc~d to univariate polynomials over rational coefficient fields Q(ai, ... , ak)' 
where { ai, ... , ak} is one of the maximal sets of indepe~dent variables (param-

. 'eters) according to [16]. ASYS allows to. compute all possible maximal sets of 
independent variables for a given orderi_ng and to execute the corresponding re­
duction to.· an egiiivaleU:t set of tri~ngular' subsysteuis over a rational function : 
coefficient field. · · · · 

4, 

f' 
I, 
:,1:, 

...... 
. ' 

1', 
I 
,, 

r 

• Homogeneity reduction 
If under an appropriate scale transformation of unknowns each monomial of each 
given polynomial of .the initial .algebraic system has the same scale factor, the 
system could be tran~formed into an equivalent set of subsystem; with smaller 

- numbers of variables [15]. Because of double exponential complexity of Buch­
berger algorithm in•the number of variables such a reduction allows a drastically 
speed up in the computing till}e of investigating and solving algebraic equations 
by the Grobner basis technique. The ASYS package has built-in facilities for 
homogeneity analysis and the reduction of polynomial equations systems _into 
subsystems. 

The user of ASYS may combine homogeneity reduction with the reduction by inax- ·• 
imal independent sets to i.-educe a given system into smaller subsystems with finitely 

, many solutions. ·· 
It should be noted that the structure constants in (7) may include parameters; which 

can be treated as additional unknowns in order to determine their values for providing 
an isomorphism. This problem arises, first, in symmetry analysis when free parameters 
are present in differential equations. Second, in known tables [18] different classes of 
isomorphic Lie algebras .are sometimes·summa_rized and represented· by .parametrized. 
families of· classes. The parameters occur in the structure constants and are real in 
the case of real Lie algebras and sometimes restricted to certain intervals of R. In 
Sect.5 a relevant example of a one-parametric family of four-dimensional Lie algebras 
is considered ·which illustrates our method in the presence of parameters. 

4. Computational Strategy 
, . 

A general case, heuristically optimal computationalstrategy for verifying an iso­
morphism for given two Lie algebras consists of the following successive steps: 

-1. Generation of t_he system of nonlinear algebraic equations (7). 

2. Analysis of homogeneity properties of the system and, in the case of their exis­
tence, reduction of the system into subsystems with reduced number of variables 
treating the remaining (homogeneous) variables as free parameters. 

3. Con:struction of the Grobner basis for the ideals generated by the subsystems of 
step 2. At this step the lexicographical ordering with d in (7), being of "high­
est" variable such that the other variables are arranged in heuristically optimal · 
ordering [17], is preferable. If one obtains d as an elemen:t of the Grobner basis 
this means that the corresponding subsystem does not contribute to an isomor­
phism. Such subsystems are to be omitted. If there are no other subsystems 
in the output this m~ans that the Lie algebras are not isomorphic as complex 
ones. Otherwise, if at least one subsystem does ·not contain "d" in the list of the 
Grobner basis elements, then the complex Lie algebras are isomorphic. In the 
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, 
case of real Lie algebras and absence of d in the Grobner basis of a subsystem 
one has to go to the next step .. 

4. Bec~use of z~ro~dimensionality of the ideals for the subsystems .obtairied at step 3 
one has to investigate successively each subsystem starting from their univariate 
polynomial in. the "lowest" variable with respect to the chosen ordering. Gen­
erally, these polynomials have rationaLfu~ction coefficients with respect to the 
:i>ara~etric seL . ·. . . . . 

We observed that in numerous concrete cases of isomorphism problem the follow­
ing interesting fact. If the Lie algebras are not isomorphic, then in each subsystem 
the univariate polynomial in the "lowest". variable is a quadratic one with .a negative 

· discriminant for d #- 0. , Consequently, if that heuristic crit~rion is violated in at least 
one subsystem then the Lie algebras are i~omorphic ~s real ones. ' ' 

This interesting observation .that the nonexistence of real solutions. of a subsystem 
is already expressed by th~t property of the last equation, could be understood in 
relation to the paper [20]. · · · · 
. ' . 

5. Demonstration of the Method:· Four-dimensional Lie Al.;. 
gebras 

In this section we consider ti.vo examples offour~dimensio~al Lie algebras, Initial 
algebraic systems as well as results of the computations in accordance with the strategy. 
of Sect.4 are given just in the form of the REDUCE input for the ASYS package and 
ofits output. , 1 · · • 

Example 1 
· · · Identification of the Lie' Algebra: generate'd · by classical (Lie)•. syrrimetry analysis 

[1, 2, 3, 4) of the well~known Korteweg-de Vries equation 

' Ut + Ulxx +uxU == 0. 

The ,5ymmetry Lie algebra of(lO) is gener~ted by differenti~l operators 

with.?- ~inn{utato~ table 

·V1 ==·.Ox 

V2 = Ot 
.VJ = _tax+ Ou 
V4 =.· XOx + 3t8t ::-, 2ua,, 

Vi . V2 V3 ·v4 

i>1 0 0 ·• O" V1 
'V2 0' ti1 3v2 
··v3 0 .c..2i,3 

6. 

(10) 

i 
I ., 

:1 
1 

I 

J 

- We try to identify this Lie algebra as one of the table [18] of all real four-dimensional 
Lie algebras up to isomorphism. The explicit· form of the algebraic equations (7) for · 
the isomorphism problem of this symmetry Lie algebra and one of the class Lie algebra 
At9 taken from that table in the classific~tion of paper [18] 

h,e3) = e1, [e1,e4] = (1 + b)ei, [e2,e4] == e2, [e3,e4) = be3, c..:.:.1 < b ~ 1) 

with all other commutators b_eing zero, is generated by the separate REDUCE program 
!SOLIE and consists of 23 equations in 18 unknowns including b. 

Zl := 3*(All*A24 - A14*A21);. , . 
Z2 := All*A23 + A12*A24 - A13*A21 - A14*A22; 
Z3 ::::;, - 2*(A13*A24·- A14*A23); 
Z4 := 3*(All*A34 - A14*A31); 
Z5 := All*A33 + A12*A34·- A13*A31 ~ A14*A32; 
Z6 := - 2*(A13* A34 - Al4* A33); 
Z7 := - (B*All +Alf- 3*All*A44 + 3*Al4*A41); 
ZS:= - (B*Al2 + Al2 - All*A43 - Al2*A44 + A13*A41 + A14*A42); 
Z9 := - (B* A13 + A13 .+, 2* A13*A44 - 2*A14* A43); . - . 
ZlO := -A14*(B+ 1); . , . . . . .. 
Zll := - (All - 3*A21*A34 ·+ 3*A24*.A31); 
Z12 := - (A12 - A21*A33 - A22*A34 + A23*A31 + A24*A32); 
Z13 := - (A13 + 2*A23*A34 - 2*A24*A33); 
Z14 := - A14; · ' . . . 

Z15 := - (A21 - 3*A21'.".A44 :f; ,3*A24f A41); ,_ 
Z16 := - (A22 - A2l*A43 - A22*A44 + A23*A41 + A24*A42); 
Zl7 := - (A23 + 2*A23*A44 - 2~A24*A43)/ 
Z18 := - A24; . _ 
Z19 := - (B*A31 - 3*A31*A44;+ 3*A34*A41)°; 
Z20 := - (B* A32 - A31 * A43 - A32* A44 + A33* A41 + A34 * A42); 
Z21 := - (B*A33 + 2*A33*A44 - 2*A34*A43); -
Z22 := - B* A34; 
~23 := DET MAT ((All,A12,A13,Al4),(A21,A22,A23,A24),: · 

. (A31,A32,A33,A34),(A41,A42,A43,A44)) - D; 
·, • · , .• : • •· ; t _ -: ·,; ••· '· <' , '.' ~, ;· ii • · , , -' .. : ' ' • l • ~ I • ' 

Then the ASYS package is applied with the switches setord, setdim, setgb, scale 
on; where·'·'. . ·> •.-- , ... , ,: ,,: ;,_,· , ,_ .. _., . -- I • ' • ·.;·, --, ' . •, 

setord generates heuristically optimal ordering [17] for (7): . . ' 

seal~ realiz_es h~mog~11ehy _red~Gtion. System (7) is splitted into' subsystems ~u~h that 
. any solution of the s~b~yste~ is a solution of the whole syste~: ''. . , 

.; . .. - • ,·- ,'' t ' 

setdim compll.tes 'all the m~imal independent' sets of variables (parameters) .. 
'. C - • c ' • '. • •• : t ' ; > < •: " ; • ~ • 1, ; -> • : : '. > • • , - , • , : ' •• t .' ~ • ~ •.: • , 

setgb makes the further reduction to the subsystems over rationalfunction field and 
computes their Grobner bases. 
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r"· 

The combination of scale and setgb is the powerful instrument which leads to the 
following result of the considered example. The output consists of various ~ubsystems. 
They are explicitly characterized first by those variables of the original system which 
has to be zero, second, by those variables of the original system ~hich can be considered 
as free parameters, and third, by a small number of variables occurring in the Grobner 
basis of the subsystem. 

As mentioned in Sect.3, there are two types. of parameters in the final·subsystems 
[15]. Parameters. coming from homogeneity cannot take the value zero. Parameters 
resulting from an independent set could take any value in F. 

The first output line gives the heuristically optimal ordering 

- Order=(D A22 A32 A42 A12 A21 A23 A31A33 A41 A43 All A13 B A44 A24 A34 A14) 

If one therefore neglects all output subsyst~ms with d = 0, one is focussed immediately 
-•. to the following out1mt of subsys_tem 

' 

Variables = (D A12 B A44) 
Parameters= (A21 A33) % nonzero, from homogeneity 
Zeros= (All A13 A34 A14 _A41 A43 A24 A22 A32 A42 A23 A31) 

GROEBNER-BASIS 

' 1 - . 
G(l) = D + - * A212 * A332 

3 
G(2) = A12 - A21 * A33 

. . . . 2 : ' 
G(3) = s+3 

1 
G(4) = A44- -

3 

We emphasize the following facts. 

• Subsystem (11) determines the parameter b to the value -2/3. 

(11) 

• It shows immediately that the transformation is a real one and so it identifies the 
2/3 . 

KdV symmetry algebra as A~ 9 • 

• One immediately obtains the real isomorphism matrix. The last equation is linear 
in the single variable A44: Already this observation in one subsystem with d '=/- 0 
ensures the existence of real isomorphism. · · · 

· Each variable occurs linearly as leading term in one of the.equation. This reflects 
a general observation on the structure of our subsystems and is in agreement with 
results of paper (20]. · 

8 

For zero~dimensional ideal generated by (11) there is n~t necessity to make reduction•. 
by maximal· independent sets. · 

Example 2 

· Isomorphism analysis of two four-dime~sio~al Lie algebras A4,8 and · A4 ,10 taken 
from [18] with the following non-zero commutators 

A4,s: [e2, e3] = e1, , [e2, e4] = e2, [e3, e4] = -e3, 

A4,to ·: [~2, e3] = e1, [e2, e4] = -e3, h, e4] = e2. (i2) 

If one consider (12) as real Lie algebra, they belong to different isomorphic classes· 
[18] and therefore are not isomorphic ones. Let us consider them as complex algebras 
and verify whether they are still isomorphic or not. In this case th~ !SOLIE module -
generates the system of 22 equations in 16 unknowns 

Zl := A12*A23 - A13*A22; 
· Z2 := A12*A24 - A14*A22; -

Z3 := - (A13*A24 - A14* A23); 
Z4 := Al2* A33 - A13* A32;. 
Z5 := A12*A34 - A14*A32; 
Z6 := - (A13*A34 - A14*A33); 
Z7 := Al2* A43 - A13* A42· . 

~ ' - ' ·. ' 
ZS:= A12*A44 - A14*A42; 
Z9 := - (A13* A44 ~ A14 * A43); 
ZlO := - (An - A22* A33 + A23* A32); 
Zll := - (A12 -A22*A34 + A24*A32); 
Z12 := - (A13 + A23*A34 - A24*A33); 
Z13 := - A14; 
Z14 := A31 + A22*A43 - A23*A42; 
Zl5 := A32 + A22* A44 - A24* A42; 
Z16 := A33.- A23*A44 + A24*A43; 
Z17 := A34; 
Z18 := - (A21 - A32*A43 + A33*A42); 
Z19 := - (A22 - A32*A44 + A34*A42); 
Z20 := - {A23 + A33*A44 - A34*A43); 
Z21 := - A24; 

, Z22 := det mat((All,A12,A13,A14),(A.21,A22,A23,A24), 
. (A31,A3_2,A33,A34),(A_41,A42,A43,A44)t- D; 

Using the ASYS package just in the same way as in previous example, we obtain among 
output subsystem~ the following one 

Variables_= (D All A21 A31 A42 A43 A44 A12.A22 A23) 
Par~meters = (A32 A33) % non~zero 
Zeros = {A34 A24 Ai4 A41 A13) -

9. .. ; 



SUBBASIS FOR SET (A42 A43) % maximal indep~ndent set (arbitrary parameters) 
' ,·, 

GROEBNER BASIS 

G(l) = D - 4 * A23 * A332 * A32 

G(2) = All+ 2 * A23 *A32 

G(3) = A21+ A33 * A42 - A32 * A43 

G
.( ) = A31 * A33 - A23 * A33 * A42 - A23 * A32 * A43 
4 

A33 
G(5) ~ A44 * A33 + A23. 

· A33 ·· 
G(6) = Al2 
G(7) = A22 * A33 + A23 * A32 

. A33 
G(8) = A232 + A332 

· One can immediately see that 

• Because dis not an element of the Grobner basis, the two above Lie algebras are. 
isomorphic as complex ones. · 

• The fact that they are not isomorphic as real Lie algebras leads to absence of real 
solutions of the last (univariate) polynomial in A23. However, in order to check 
that real Lie algebras are not isomorphic·, one has to look at the last polynomial 
of each subsystem. · 

• Explicit form of complex transformation matrix can be easy constructed. 
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rep,o;T B.IT., nacceep B~- , ES-92-145 
ITpoBepKa H30MOP~H3Ma KOueqHoMePHhlX 
aflre6p Iltt C IlOMOmoIO T·eXHHK~, 68.3IICOB rpe6Hepa 

- . ' 

B uacToame~ pa6oTe npe,o;cTaBneu KOMno10TepHo-anre6pan-
qecKHH n_o,o;xo,o; K p_erneHHIO 3a,o;aqH npoBepKH' H30MopipH3Ma KO;_ 
eeqHoMepHb!X anre6p nn H noCTpoeHHH HBHoro BH)];a MaTpill.J;bl 
npeo6pa3oBauna ,o;na H30Mop~ui,1x anre6p. · ITo,o;xo,z:i; _oc_HoBaH 
Ha HCCnep;oBaU:ffil CHCTeM KBap;paTWlHO-HenHHettHb!X anre6pan-

. qecKHX ypaBHeHHH. p;na MaTpmlHbIX ::meMeHTOB MaTpHIJ;bI npe..:.' · 
. 06pa3oBaHHB C IlOMOmoIO MeTO,I:J;a 6a3HCOB rpe6uepa. . . , 

Pa6oTa BhmonHena B Ila6opaTopHH BbJqncnnTenhHOH Tex­
HHKH H aBTOMaTH3au;~H OHHH. 

Coo.6meeue 06ieAHHemrnro HHCTHTyTa RAepHbIX HCCJ'le.zlOBaHHH. ,ll,y6Ha 1992 

Gerdt V.P., Lassner W. ES-92-1/45 
Verifyiqg Isomorphisms of Finite 
Dimensional Lie Algebras by Grabner Basis Technique 

In this paper'we present a computer-aided approach 
to verify the isomorphism between finite-dimensional 
Lie algebras and to construct: an explicit form of an 
transformation matrix in the case of isomorphism. Our 
approach is based on'the direct investigation of quad­
ratic algebraic equations, for matrix elements of a 
transformation matrix by the Grabner basis method., 

. ) ' ~ - ' 

The investigation,has been performed at the·Labora­
tory of Computing Techniques. and Automation, -JINR. 
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