


'“:« 'f 1. : Introduetion;'

‘Lie algebras and groups play an 1mportant role in ma.ny areas ‘of modern applled
. ,:mathematlcs and theoretical physics. Among’ ‘thern there are: sollton mathematxcs, :
* quantum'mechanics, nuclear: and elementary particle phys1cs nonllnear optics, accel- o
© . erator physics'and others One of the most exiting application of Lie algebra methods :
_’is symmetry analysis of differential equations, especially of nonlinear ones [1]-[10].-The -
-~ “construction of explicit form of infinitesimal symmetry generators and knowledge of
" their Lie algebra structure allows to get valuable information‘on the given ordinary or.:
Shie partlal differential equations and often to simplify or even to 1ntegrate them by the
- method of symmetry reduction (5]. e : G
" At each stage of constructlon of 1nﬁmte51mal symmetry generators and 1nvest1gatlon
. of their algebraic structure one has often to carry out tedious algebralc manipulations
~with symbolic mathematlcal obj ]ects Intensive development of computer algebra algo-
- rithms’and softwa.re over last years allows to provide a number of modern computer -
e algebra systems such-as REDUCE, AXIOM, MACSYMA with efficient software pack- .-
- ages [6, 7, 8] for ﬁndmg the exp11c1t form of the classmal or point Lie symmetry gener-
"+ ators and their commutation relations. In addltlon to these packages a special-purpose
“-"computer algebra system DELIA [9] has been developed just for symmetry analysis of -
- differential equations on an IBM PC. Computer algebra packages are also available (see

i

‘ [10] and refs thereln) for the constructlon of generallzed or Lle-Backlund symmetrles

i The 1nﬁn1tes1mal symmetry generators bemg lmear dlfferentlal operators form aLie”
: algebra The procedure of finding an explicit form of generators is very complicated one,.
~~and may lead to different mathematical expressions for generators of a given differential
equatlon or a system of such equations. Therefore, it is .very important-to have an
. constructive approach to verlfylng whether two sets of generators determine essentlally
the same, i.e. isomorphic Lie algebras, or different ones. Furthermore, in paper- (12
- algorithm was developed for computation of the structure constants of symmetry Lie .
. algebra without integrating determining systems of partial differential equatlons for.. ,
. generators. It underlines our 1dea to start with grven structure constants. If a symmetry 5

- Lie algebra of differential equations can be identified as a member of available tables or.

- data bases, one is able to use known properties for further investigations, reduction of

- the order of ODEs, similarity reduction of PDEs or even their explicit mtegratxon In-

“ the case of isomorphism it may be useful to ﬁnd an expllcxt form of basis transformatlon
‘ between ‘both algebras. ey : - 5 -

. Efficient computer-aided approach to that 1somorphxsm verlﬁcatlon for ﬁmte-dlmen-

- sional Lie algebras and to computation of underlylng basis transformation as well as"

- knowledge of their complete automorphism group is important [11] in connection with
. recent achievements on construction of efficient algorlthms and software packages for
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k ,' 1nbases {X}and {Y} (z-l 2,.

I

k solvmg the fundamental problem of 1dent1ﬁcat10n and class1ﬁcat1on of Lle algebras and

its subalgebras (see, for example, review [5] and also [13]).

In the present paper we present a straightforward approach (i) to decide whether'

two finite-dimensional Lie algebras are isomorphic or not, (ii) to identify given Lie
algebra as a member of known complete tables or data bases of Lie algebras and (iif) to

construct a transformation matrix for two isomoprhic Lie algebras. These problems are
transformed into commutative algebra as question on the existence and the construction -

of the solution of a related system of quadratlc equatlons ‘This allows to use modern

. constructive techniques in the theory of polynomlal 1deals based on. construction of.
Grébner bases [14] and 1mplemented in: the form of approprlate computer algebra :

packages

r’2 Basrc System of Algebrarc Equatrons

“Let F be the ﬁeld of real (R) or complex (C) numbers and L and L be L1e algebras =

- over F of d1mensron N deﬁned by thelr structure constants c" and c"

I :

[X.,X]— Xk, 5: I

and below we use a convention on summatlon over the repeated 1nd1ces -
Assume the exlstence of an lsomorphlsm o S o

g L-——»L

‘We denote the 1mage of the bas1s elements by
basis of L with theis‘tructure constants { 5}

MMLcnalfﬁﬁfﬁfffTM;

So there ex1sts a basrs tra.nsformatlon represented by a Nx N matr1x A ( f) with o |
a EF : i o L S S
S -—-a’XJ, det(A);eo R - .6)

If we replace the Y’s in (2) accordlng to (3), we get for the l h.s. of ( ) g

A [YHYJ] =a; aJ[Xk,XIl = a ckIX ! v' ) (4)
andfortherhs of( ) - L DS | .
i 1 [nm—cY—%%X l.__ﬁmzfxm;

Comparlson of (4) and (5) shows tha.t the elements of the transformatron matrix must

a Sa-tlsfy the relatlons S N R = o SR
e e e ak ICH—C gm0,

N ) of the Lie algebras L and L, respectlvely Here‘ Lo

- .,._._r,.._,,,__ PSSR
e v . 1

(Y) The set {Y} forms a v

i ﬁ,, U

-in unknowns {a?,d}, (1,] =1,.

L

,For_'gi‘venst'ructure constants {c§} of L ‘and { } of I (6) is a system of at most

N( N ) NZ(N -~ 1)/2 quadratic equations in N2 unknowns a’ It follows from the. :

2
anti-symmetry of the structure constants c"J = ——cf,-. : L e e
To use the Grobner basis technique [14] we add one more variable d a.nd one more. -

. equation d — det(al) = 0 to system (6). So we have shown that the answer to the . :
"isomorphism problem is given by the following theorem. - - ’

" Theorem 1. Two N-dimensional algebras L and I over F given by the structure 5

constants {c -} and {c .} are 1somorph1c if and only if the system of equatlons :

lclcl tJ ay = 0 . i -
d det(a’) =0 o R () B
N)hasasolut1on1an1thd7é0 - FPRE

But let us stress the followmg consequence of Theorem 1. If the. Lie algebras L and L; ; ;
-are not 1somorph1c then we must get d = 0 from 7). r
- Because of linearity of (7) in d a Grébner basis G [14] of the ideal generated by the'

polynomla.l in the Lh.s. of (7) in the complex case F = C shows this fact-very explicitly,

ie.-d € G. To be more precise, this fact follows from the linearity of (7) in d and the,‘ s
- possibility to choose an orderlng with d havxng the highest precedence. ..~ EhE
‘Tt is clear that (7) has always the trivial solutlon al =0, d 0 Moreover the followxng S

- theorem takes’ place 2 v ST SR B

" Theorem 20 If the system (7) ha.s a non trivial solut1on, then 1t has mﬁnltely many i
o solutions. ‘ » S ]
‘ Proof. Let matrix A= (a’ ) be a non-tr1v1al solutlon of (7) For grven two Lxe;‘
- algebras the system of equatlons (7) is completely determmed by their structure con- -
‘Vsta.nts Hence, the solution space is invariant under transformat1ons Wthl’l will not .-
i change the structure constants {c} and {2 } So, lookmg at the derivation of our. =
- system of equatlons (6) one lmmedxately sees that one can act first with an automor-
phism of L represented in the basis Y; by a matrix T and the structure constants {5} L

remain unchanged. In the same way one can after-the transformation A‘in (3) apply .

an. automorphlsm ‘of L :represented in the bas1s X; by a matr1x T and the structure L
constants {cf;} remain unchanged. - : B Al =

- Therefore, for a.ny solut1onA ' e L L s
e . B= T"AT R I |

S s also a solutron where T a.nd T a.re automorphlsm ma.trlces of L a.nd L respect1vely R
Now, let T be an mner automorphxsm of the L1e algebra L It has the followmg general-. EERR
o form

T'—erp(aadz), _ad:y [r,y] z; yGL (9)viv

: where a: 1s a parameter with values in F. I Li s not an abehan Lie. algebra, then : k
~_there exists at least a one-parametric set of automorphlsms and hence mﬁmtely many o

solutions of (7). The case-of a.behan L can be neglected here as tr1v1al one. D




W1th respect to the proposed computer algebra. approach to the 1somorph1sm plob-
’,klem it seems of. mterest to mentlon the followmg corollary

7 Corollary Let L be a N- d1mens1ona.l Lie algebra over F g1ven by the structure
. constants {ck } in an ba31s {X} The automorphlsms of L are g1ven by the system e

: ak 'ck, - c:’;a',:1 = 0,
d- det(a]) =

~ in unknowns {af,d}, (i,j = 1,...,N) as solution in F with d # 0.

o 3. Grﬁbner Basis TeChnique and ASYS‘ Package

To 1nvest1gate a.nd solve eqs. (7) we need a method which could be applled to non- .

;l1near algebraic equations with' infinitely many solutions. For N > 3 the system under

~ consideration is probably too large to be solved by hand.  Effective computer alge:
: bra methods, algor1thms and software packages are necessary attributes of practical - :

“computations. : -

~ For our purposes we select the Grobner bas1s techmque as an umversal constructive"
: and computer-aided tool of commutative polynomlal algebra [14] which allows to deal -
with polynomlal ideals of e1ther zero or_positive dimension. ‘All the- modern general-

: fpurpose computer algebra systems have special built-in modules for a Grobner basis

* . computation. However, most of them were designed mainly for zero dimensional ideals -
" and have no “special fac1llt1es for 1nvest1gat1on and solvmg algebralc equations w1th,‘~ Tk
" 1nﬁn1tely many solutions. .
~ -In the present paper we use the ASYS package [15] written. in REDUCE [19],‘

"based on the Grébner basis technique {14] and especially developed to investigate and

B :solve polynomial algebra1c equatlons with infinitely many solutions. ‘The package was -
‘already successfully used in 1ntegra.b111ty analysis of polynomlal-nonlmear evolution
" equations with arbitrary parameters [10]. ASYS has a number of spec1al fac111t1es to,' -

" attack comphcated algebralc systems generatmg p051t1ve d1mens1onal 1deals

‘o Reductron mto subsystems by maximal sets of mdependent varlables v

- In practice, in order to deal with positive dimensional polynomial ideals one needs

1nformat1on on its dimension and on independent sets of polynomial variables [16] -
. which could be treated as.free parameters If any of the max1mal independent *

. sets is considered as a parametrlc set, then the lexicographical Grobner basis with'

respect to the remaining variables’ has a triangular form. Therefore, the problem -
is reduced to un1var1ate polynom1als over rational coefﬁaent fields Q(al, Syak) .
.,ax} is one of the maximal sets of independent variables (param# ,
eters) accordmg to [16]. . ASYS allows: to_compute all possible maximal sets of
1ndependent variables for a given ordermg and to execute the correspondmg re- -
- duction to'an equ1valent set of trrangular subsystems over a ratlonal functlon R

~ where {ay, ..

: coefﬁc1ent ﬁeld

e

. Homogenerty reductlon : : X : :
. 'If under an appropriate scale transformatlon of unknowns each monomial of each
‘given polynomlal of the initial algebraic system has the same scale factor, the
_ system could be transformed into an equivalent set of subsystems with smaller -
-numbers of variables [15]. Because of double exponent1al complexity of Buch-
berger algorlthm in"the number of variables such'a reduction allows a drastlcally
speed up in the computing time of investigating and solving algebralc equatlons
by the Grobner basis technique. The ASYS package has built-in fac111t1es for
homogeneity analys1s and the reduct1on of polynomlal equations systems | 1nto
subsystems : '

The user of ASYS may combine homogenelty reduction - with the reductlon by max- -
imal independent sets to reduce a g1ven system into smaller subsystems w1th ﬁnltely ’
many solutions. - :

It should be noted that the structure constants in (7) may 1nclude parameters  which

‘can be treated as additional unknowns in'order to determine their values for providing

an isomorphism. This problem arises, first, in symmetry analysis when free parameters

are present in differential equations. Second, in known tables [18] different classes of -
" isomorphic Lie algebras are sometimes summarized -and represented: by -parametrized: -

families of classes. The parameters occur in the structure constants and are real in
the case of real Lie algebras and sometimes restricted to certain intervals of R. In
Sect.5 a relevant example of a one-parametric family of four-dimensional Lie algebras R
is cons1dered ‘which 1llustrates our method in the presence of parameters

4. COmputatio.nal Strategy.. .

A general case, heuristically optimal computational, strategy for verlfymg an 1so- .

morphlsm for glven two Lie algebras cons1sts of the following successive steps: = "
, . )

1. Generatlon of the system of nonlmear algebralc equatlons (7). e

2. Analysis of homogeneity properties of the system and, in the case of their exis-
- tence, reduction of the system into subsystems with reduced number of va.rla.bles ,
treatlng the remaining (homogeneous) variables as free parameters.

) >3.'_Construct10n of the Grabner basis for the ideals generated by the subsystems of =
 step 2. At this step the lex1cograplncal ordering with d in (7), being of ”hlgh—

‘est” variable such that the other variables are arranged in heuristically optimal * '
ordering [17], is preferable. If one obtains d as an element of the Grobner basis

this means that the corresponding subsystem does not contribute to an isomor-:
phism. Such subsystems are to be omitted. - If there are no.other subsystems
in the output this means that the Lie algebras are not isomorphic as’ complex
ones. Otherwise, if at least one subsystem does not contain ”d” in the list of the
Grobner basis elements, then the complex Lie algebras are 1somorphlc In the -



P

5 case of real Lie algebras and absence of d in the Globner ba51s of a subsystem o ~We try to 1dent1fy this Lie algebra as one of the table [18] of all real four—dlmen51onalu
~ .. one has to go to the next step. .. S S S = Lie algebras up to isomorphism. : The explicit form of the algebraic equations (7) for
’ the isomorphism problem of this symmetry Lie algebra and one of the class L1e algebra o

;4. Because of zero-d1mens1onallty of the ideals for the subsystems obtalned at, step 3 5 T At taken from that table in the classification of paper [18]
; 4,9

_one has to 1nvest1gate successwely each subsystem starting from their univariate ‘ . .
- polynomial in. the ”lowest”. variable with respect to the chosen ordering. Gen- .~ [62,63] = 61, {es, e4l =(1 + b)el, le2,€4] = 82, [esy eq] = bea, (- 1 < b < 1) :
L 'erally, these polynomlals have ratlonal functlon coefﬁc1ents w1th respect to the

= w1th all other commutators belng zero, is generated by the separate REDUCE program
o parametr1c set

ISOLIE and consists of 23 equatlons in 18 unknowns 1nclud1ng b

Z1 := 3*(A11*A24 - Al4*A21);
|72 := ALI¥A23 + A12%A24 - A13*A21 - A14*A22
737= - 2%(A13¥A24-A14%A23);

B Werobserved that in numerous concrete cases of isomorphism problem‘the‘fo‘llow‘-
-ing interesting fact. If the Lie algebras are not isomorphic, then in each subsystem
_the univariate polynomial in the "lowest” variable is a quadratlc one with a negative

: d1scr1mmant for d #0. Consequently, if that heurlstlc criterion is- v1olated in at least: g4 = 3¥(A11*A34 - A14*A31);’
one subsystem then the Lie algebras are isomorphic as real ones. : s T 75 = A11*A33 4+ A12%A34.- A13*A31 : A14*A32
~ This interesting observation that the nonexistence of real solutions, of a subsystem SR 76 = - 2*(A13*A34 A14*A33); '
‘ is already expressed by, that property of the ‘last equatlon could be understood in. o 77 := - (B*All + AlT - 3*A11*Ad4 + 3*A14*A41)
relation to the paper [201 S eb e e Lt e R R © 78:=- (B*A12 + A12- A11¥A43 - A12¥A44 + A13*Adl + A14*A42)
: 3 ' el M R B Z9 := - (B*AL3 + A3 + 2*A13*A44 - 2*A14*A43) o .
5 Demonstratxon of the Method Four-dxmensxonal Lle Al- R N Z10:=- Al4*(B+1); - . - R N U T
gebras S R e e e T e B e B e Z11 := - (All - 3*A21*A34+3*A24*A31) - R
‘ B bt g e s i el ek LD 0 E Ry e s Y ety T Z12 :=- (A12 - A21*A33 - A22*A34 + A23*A31 + A24*A32)
'In"'»this‘sec‘ti'o'n‘w‘ef‘tonsidertwo" examples of four-dimensional Lie algebras, Initial: e o - Z13:=- (A3 + 2*A23*A34 2*A24*A33) :
- algebraic systems as well as résults of the computations in accordarice with the"s’trate’gy e 214 := - Al4; - R S 5
of Sect.4 are given just in the form of the REDUCE 1nput for the ASYS package and L 215 :=- (A21 3*A21*A44 + 3*A24*A41)
of its.output.. . ; et T R RIS LI DI R 716 := - (A22 - A21*A43 - A22*A44 + A"3*A41 + A24*A42)
" o : . S i Z1T:=-(A23 + 9*A23*Ad4 - 2*A24*A43)
Example 1: : GRS I 718 = - A24; A 7
S ;dgnt;ﬁc?tzﬁn ofltl;{e Lie* 1}\{lgetbra g_fz;mr;/ﬁed by czass1cal‘ (Lle) symmetry analys1s o ( : 719 1 - (B*A31 SFASI*ALL. + 3*A34*A41) , .
[ J of the well-known Korteweg-de Vries equation o 0 720:=-(B*A32- A31%A43 - A32*A44 + AS3FA4L + A34*A42)
SRS " o uz+um+u:u~0 Lot 10) 721 :=- (B*A33 + 2¥A33*Ad4 - 2¥ABM*A43);
o 722 := - B*A34; -

B The symmetry L1e algebra of (10) is generated by dlfferentlal operators i : ; : 723 := DET MAT ((A11,A12,A13,A14),(A21,A22,A23 ;A24)
e e S i ne e s | | :  (A31,A32,A33,A34),(A41,A42,A43 A44)) D;

LU =f,a::‘ S T R g"i. FRRANT S R B RN S S T L LU S S L : :
v o= & ‘ R -+ Then the ASYS package is apphed w1th the sw1tches setord setdlm, setgb scale‘ '
v3= ta +0 BN TR AEET S I S O o : on, where S
jhm =‘ Ia + 3t3¢ = 2u8 TR L T R N setord generates heurlstlcally optlmal orderlng [17] for (7)
With'a_bommutator table” Shee s abin B v SN W i scale reallzes homogenelty reductlon System (7) 1s splltted 1nto subsystems svuch that
e RS R T E S IR any ‘solution of the subsystem is a solutlon of the whole system. ..

ooy S l vi F Uy U3 ’v'4
To (000 v

‘Ug ‘;-’;', 0 'Ul 3‘1)2" :

setdlm computes all the max1mal 1ndependent sets of varla.bles (parameters)

R v N = ‘ . setgb makes the further reductlon to the subsystems over ratlona.l functlon ﬁeld and '
N U T . computes their Grobner bases. S ¢




_The combination of scale and setgb is the powerful instrument which- leads to the

followrng result of the considered example. The output consists of various subsystems o

“ They are, exphc1tly characterized first by those variables of the original system which .
* has to be zero, second, by those variables of the original system which can be considered
as free parameters, and third, by a small number of var1ables occurrlng in the Grobner

basrs of the subsystem. -
.As mentioned in Sect.3, there are two types. of parameters in the final’ subsystems
(15]. Parameters. coming from homogeneity cannot take the value zero. Parameters
* resulting from an independent set could take any value in F. o

" The first output line gives the heurlstlcally optimal ordermg
: Order—(D A22 A32 A42 A12 A21 A23 A31 A33 A41 A43 A11 A13 B A44 A24 A34 A14)

If one therefore neglects all output subsystems w1th d 0 one is focussed Jmmedlately
. to the followrng output of subsystem

Varlables = (D Al12B A44)
Parameters = (A21 A33) % nonzero, from homogeneity :
Zeros = (All Al3 A34 Al4 A4l A43 A24 A22 A32 A42 A23 A3l)

GROEBNER BASIS
‘G(l) D+—*A212*A332 .
G(2)= A12- A21*A33 ' , -
. 6@®)= B+— T
~ cw= A44—% | |

- We emphaslze the followrng facts

I

. Subsystem (11) determines the parameter b to the value - 2/3

.b e It shows 1mmed1ately tha.t the transformatlon isa real one and so it 1dent1ﬁes the

‘KdV symmetry algebra as A,,"; .

e One immediately obtains the real 1somorph1sm matrlx The last equatlon is linear :
in the single variable A44. Already this observatlon in one subsystem W1th d 7é 0.

. ensures the ex1stence ‘of real 1somorph1sm ‘

" Each variable occurs linearly as leading term in one of the equation. This reﬂects 7
a general observatxon on the structure of our subsystems and i isin agreement w1th -

- ‘results of paper {20]. -

'Varlables =(D A1l A21 A31 A42 A43 A44 A12 A22 A"3)

For zero- d1mensronal 1deal generated by (11) there is not necessity to make reductlon o

by max1mal lndependent sets.

‘Example 2

Isomorphlsm analysis of two four-dlmensmnal Lie algebras A48 and A4 10 tal\en

t ’from (18] with the following non-zero commutators

Asg [62,631 = 61, [52, 64] = €2,. les, 64] = —63, B

A4 10 [62, 63] = 61, lez, e4l = —€s, [53,54l =€z (12)>

- If one consider (12) as real Lie algebra they belong to different 1somorph1c classes . -

{18] and therefore are not isomorphic ones. Let us consider them as complex algebras

~and verify whether they are still isomorphic or not. In this case the ISOLIE module o
generates the system of 22 equations in 16 unknowns - ‘

Z1:= AI2¥A23 - A13*A22; .
©Z2 := A12%A24 - A14%A22;
73 :=- (A13*A24 - A14*A23);
74 := A12*A33 - A13*A32;
©Z5:= A12*A34 - A14*A32;
|26 = - (A13¥A34 - A14*A33),
Z7 := A12*A43 - A13*A42;
Z8:= A12%Ad4 - A14*A42;
79 := - (A13*Ad4 - A14*A43);

710 = - (A11 - A22¥A33 + A23*A32)f S I S0
S Z11 = (A12- A22FA34 4 A24*A32); L oo
712 1= - (A13 4 A23*A34 - A24*A33);

Z13 :=- Al4;
D714 1= A31 + A22%Ad43 - A23*A42
L Z15:= A32 -+ A22*A44 - Asz*A42
Z16 := A33 - A23*A44 + A24*A43;
Z17 := A34;
718 :=- (A21 - A32*A43 + A33*A42),
- 219 := - (A22 - A32*A44 + A34¥A42);
S 720 :=- (A23 + A33*Ad4 - A34*A43) S
721 := - A24;
222 := det mat((All A12,A13,A14),(A21,A22,A23/A24),
: (a3, A32 A33 A34) (A41 A42,A43,A44)) - D;

Usmg the ASYS pacl\age ]ust in the same way as in prev10us example, we obtam among %
output subsystems the followmg one . SR

e

Parameters :(A32 A33) % non-zero AP B AT IS NI S
Zeros = (A34 A24 Al4 Adl A13) o e s AT T



S

. ;‘SUBBASIS FOR SET (A42 A43) % ma.x1mal 1ndependent set (a.rbltrary parameters) ‘

3 ;GROEBNER BASIS |
: y=D- 4*A23*A332*A32

ST G
Ce L G(2) = All 42+ A23 % A32 |
L G(3) = A21+ A33 % A42 — A32 % Ad3
- A31 % A33 — A23*A33*A42 A23 x A32 + A43
G(4) =
A33
 Ad4 % A33 + A23
=T
S G(6) = A12
A22*A33+A23*A32
»G(7) 133
G(8) = A23* + A33’

s One can 1mmed1ately see that

Te Because dis not an element of the Grobner bas1s the two above Lie algebras are. ..

1somorph,c as complex ones. -

e The fact that they are not 1somorph1c as real Lie algebras leads to absence of real L

“ solutions of the last (univariate) polynomial in A23. However, in order to check

' that real Lie algebras are not 1somorph1c one has to look at the last polynomial v

S ‘.'of each subsystem.

e Exp11c1t form of complex transformatlon matrix can be easy constructed
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