


1. Introduction

: ?ertnrbatton theory is one of the principal approxtmation teehniques ’
%tf»m theoretlcal and mathematlcal phys1cs Unfortunately, perturbation
: ‘serles expans1ons dlverge strongly for any nonzero couphng constant m;
the majorlty of 1nterestmg cases. The anha.rmonlc oscillator is, probably,
‘b"‘the most lllustratlve exa.mple of this sort [1]. |
~ To make perturbation theory a useful computatlona.l tool, one has
: ~~'to resort to summation techniques, like the Padé approximation, Borel
transformation Levin and .‘Weniger transformations [2-4]. These tech-
nlques, to prov1de a reasonable accuracy, need to know tens of ﬁrst
S terms of perturbatlon theory. However, in realistic physwal problems
" ;one,usually is able to find only a few first terms therefore the mentioned
techniques become inapplicable [5]. How one then could sum a ser}ieé
having at hand a minimal number of perturbation terms? ‘
. An answer to this question has beén recently given by one of the au-
- ,thors [6] who suggested a new method called the method of self-similar
approximatione. This method is based on the introduction of a continu-
ous iterative procedure [7,8] and on the consideration of transformations
from one approximate term to another as a renormahzatlon group flow
' /7[7 9]. An important achievement of the method of self-snmlla.r approx1-
kmatlons [6] is that the summation of dlvergent series requ1res to kndw
- only two terms of perturbation theory. By calculating the ground state
“energy of the one—dimenstonal anharmonic oscillator it has been demon-
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strated[6,10] that the method [6], even w1th such a minimal information,
provides a very good accuracy within an order of 10~3. The aim of the
present paper_is to generalize the latter" result in two aspects. First, we
 consider the anharmonic oscillator in the space of arhitrary dimensional-
ity, and second, we calculate the whole spectrum of its energy levels. We

show that for th1s general case and for any value of the anharmon1c1ty

constant the accuracy of the method [6] is within the same order as for’

the ground state ‘énergy of the one-dimensional’ osclllator

this with the results of other known methods using the same number of B

; _perturbation terrns, we conclude that'they' are less éeneral and accurate

than the method of self-similar approximations [6].

2. Self-similar approximation - + . -

The rnethod to be used is eApounded in detail in Ref [6] Tl’llS is why we

present here only its scheme we shall follow in the subsequent sect1on

Let us be 1nterested in the calculatlon of a funct1on f (n g)in wh1ch no o
is a multlparameter, g, a var1able called the couplmg constant. Assume;i'

~ that by us1ng perturbatlon theory, or another 1terat1ve procedure we can‘ :

obtain a sequence of approx1mat10ns f (n g) where k= O, 1,2 s a

'number of approx1mat1on To force the sequence to be convergent vsefﬁ >

1ntroduce the governlng functlons zk(n, g) 50 that

fk(nag) :

- The governmg functlons are to be found from a ﬁxed pomt condrtlon for,j s

Comparmg.

g atng). M)

- “‘1“ :

instance, from the equation

a_az'fk(nag’z) = 0; z= Zk("'aé)) | " v (2)

B reminding the principle of minimal sensitivity[11].

Then we define the coupling function g(n, f) by the equation

fo(mgrzmg))=F:  9=g(mf) ®)

" in which

z(n,g) = zo(n,9) = z1(n, 9)-

Introduce the distribution of approximations

yor = {fuln, g(n, £), 26(n, 9(n, £))) = (s g(n, £), 24(m, 9, 1))}
‘ ' (4)
satisfying the normalization .
' Jolmg) . . o
| vanar=1. (5)
fr(n.g) | ,
The function f.(n,g) in (5) is just the sought self-similar approximation.

|

3. - Anharmonic oscillator

Consider the spherical symmetric anharmonic oscillator in D - space of -

vectors

ﬁb‘: {7',191,192, <o ,19D-27‘P}-

The radial part of the Hamiltonian has the form | -

1L &£ 1 D-3 D—1) muw? 24
= I+ —— +Am r, (6
H ’2mdr2+2mr2 (l+ 2 ) ( + 2 T 7 (6)




in which m and X are positiVe constants; [ = 0,1,2,...is the orbital quan- - =

tum number. The energy levels K, of Hamiltonian (6) can be found by

the Rayleigh - Schrédinger perturbatlon theory startlng from the har-
monic Hamiltonian e

. 1 42 , ~'1 o D—-3“; ~D_»1 2 .
Hom 1 & mwy
o= g (14 550) (14 P5) 5 )

containing the trial parameter wy. The eivgenvalues of (7) are
E® = (2n+l+—)w0, n,l=0,1,2,.... (8)

It is convenient to introduce the dimensionless operators

_H _Hy
and the dimensionless parameters
. A _Wwo .
gv__ z=— (\10?

»Then, Hamiltinians (6) and (7) transform to’

1 & D ‘D=1 ,
HO)=—3ga+ -2-2—2 (1+ —QE) <1+ 9—2—1) + 584 g6

Ho(o ;j; t o (1+ 22—3) (z+ 95—1) +2e 1
Let us mention that makmg the formal substltutlon D — 1 l— 0 we
return to the one - dimensional case prowded the variable ¢ is contmued
from the ray £ > 0 to the whole axis (-oo,+oo). This will give us the
Possibility of returning‘from the sp.ectfilm of ba'splvlerical D - dimensionei'

oscillator to that of the one - dimensional anharmonic oscillator [12].-

The multiparameter n of section 2 becomes now a set of three param-

eters {n,1, D}, the radial quentum number, orbital quantum number and

dimensionality, respectively. The quantities of interest are, in our case,

the dimensionless energy levels

. E,
e(nal’D’g) = :—l_

- of the anharmonic oscillator. The sequence of approximations in eq.(1)

consists now of the perturbation terms

) (%)
(n [,D,g,z)= Ly (12)
starting from
DY\ :
eo(n,l,D,g,2) = (u+§—> z; v=2n+l (13)

These terms are calculated by the Rayleigh - Schrédinger perturbation

- ‘theory with the basis formed by the eigenvalue of Ho(¢) which we take -

in the form

D
2n!zl+'2‘

(0)

1/2 '
j| §’+’Dz_—lexp(——%ﬁ)Li{'—'g_l(z{z), (14)

where L! () is an associated Laguerre polynomial.

. The first approximation gives

‘ ) “ D 22—1-
el(n’l’D’g’z) = eo(n?l,D,g,z) - (V+ ?2‘) 9% +

"+(u+D);2~/nz(D), S (15)



where

(16)

(o D\[ =24D)tD)
(D) = (” + ’2_) [1 - 3(v + 9)2 } ’

For the ground state level eq.(16) yields |
) 1
nl’llr_f’lo'ynl(.D) = §(D +2).
. Asymptotic properties of (16) corresponding to high energy levels are

n— o0

Tut(D) 2~ 2n; | (1< 00),
2 ;
7nI(D) jod 51, l 5200 - (n < OO)
For the high dimensionality limit one has
D
Yat(D) ~ 3 D — (n,l < c0)
The second approximation reads:
‘ D\ (22 -1)?
e'l(ns laD$gs Z) = el(na lz D*)g')z) - <f/ + ~2—) —é;;;_ +
D\ 3g(2*—1)
¥ ( ¥ 5) T (D)=

D)L (Y- (+2)].

_(,,

Let us emphasize that after the formal substitution D — 1,v — n,l—0

expressions (15)and (17) become identical with the corresponding ex-
pressions for the one-dimensional anharmonic oscillator [12]. With this
substitution in mind, all father results will be valid for an arbitrary space

dimensionality D = 1,2,... .

:
H
§
|
s
{
&
¢

As a fixed point condition (2) we get

agz-el(n, ,D,g,2)=0;  z=2z(n,l,D,g), (18)
which yields the equation
2> — 2 —6g7u(D) =0,

(19)

for the governing function. Eq.(3), taking account of (1), gives the equa-

 tion

60(n7l’D1g) =f7 g=g(’n,l,‘D,f), (20)

defining the coupling function g(...). The latter equation, together with
(13), leads to ‘ .
' (1/ + -li)—) 2(n,l,D,g) = f. (21)

For the distribution of approximations (4) we obtain

183/ (v+ 2)°

b D)= D) (P + 2y 1
where
_ (. . D\ 9 0 [ _(,+2Y]6 o
an(D) = <v+5) (D) + 392 (D) [1 ( + 2) :l - 6. - (23)

Expression (23) for the ground state becomes

. 3
iy P =
Highly excited levels are related to the limiting properties

1
lim ay = —=,
n—o0 3

Ilim an’I(D) = 0.

()




The high dimensionality limit is

i = 0.
525 (D)

Taking integral (5) with the distribution of approximations (22), we

- come to the equation

ez(nalaDag)/(V + %)2 -1 —
eX(n,1,D,9)/(v + 3)* — 1

0 ) l - l - ’
= { e(n,1,D,9)[(v + §)? =1 €i(n,l,D,g)/(v + 3)* — 1 |

D} oy

24

for the self-similar approximation e,(...) ot the spectrum of the D, -
" dimensional anharmonic oscillator. In (24) the notation e,(...) implies

N D\ 322 +1 .
. el(nal’D’g) = (V+ E-) 4z ) (25)

expression

obtained from (155 with the governing function given by (19).

| Using (24), one can easily derive the asymptotic properties of the . -

self-similar spectrum. Thus, for the weak anharmonicity ’lir‘nivt we get
D 3 S
e.(n,1,D,g) ~ (V + 5) [1 + 59%:(1?)] ;  g—0.  (26)
~ In the strong anharmonicity limit one has

et(n I D)g) 48

3 (u + 2 ) exp [—"’"'(D )] ‘/S(D)(ag)lfﬂ | (2}) |

where ¢ — oo. Highly excited levels in the strong anharmonicity case

are either
ex(n,1, D, g) = ge‘/ 144(2n)*2(69)° = 3.458074 n*/%g1/3,

g,n — 00, o (28)

or

; 9 (2" :
e-(n,,D,g) = 2 (g) (69)'/® = 1.190551 14/3g1/3;
g1 oo 29
For a strongly anharmonic oscillator of high dimensionality we find

4/3 .
ex(n,1, D, g) ~ % (g) (69)'/° = 0.472470 D*2g'/3;

- g,D — 0. e e (30)

The self-similar approximation for the spectrum gi;len by (24) can be’
compared with direct numerical calculations made for one - , two - and
three - dimensional anharmonic oscillators [13-16]. When estimating the
accuracy of a method, it is natural to do this by defining the maximal

error ‘
6..(77,.1 Dag)
e(n ,D,g)

for the whole range of the anharm0n1c1ty constant and of energy levels

(D)= sup  sup 1

9€(0,00) n,1,=0,1,2,.

The ma.xunal error found in th]s way is about 0.3% for a.ll D=0, 1 2,3.
The accuracy of our method can be compared with that of other
analytical approaches. For example, the quasiclassical approx1mat10n as

applied to the anharmonic oscillator [12-14] with D = 1,2, 3, gives quite




good results for highly excited levels in the strong lanharmonicity limit.
However, its accuracy drastically worsens for low-lying levels, especially,
for the ground state energy, the maximal error ¢(D) being about 20%.
In addition, t'he Bohr - Sommérfefd condition defining the quasiclassical
energy levels leads to a complicated set of transcendental equations [12-

14].

The shifted large - dimensional expansion, which is much better than

simple 1/D expansion, can be applied only to spherically simmetric po-

tentials [17]. For the three - dimensional anharmonic oscillator we have

used the shifted 1 /D expansion and found the maximal accuracy €(3) -

to be about 10% when the second order of the Rayleigh - Schfﬁdingelj
perturbation theory is ‘used, and about 0.6% if the fourth order of the
‘Rayleigh - Schré')di\nger perturbation theory is invoked. This approach
cannot be uséd for the one - dimensional anharmonic oscillator.

The renormalized perturbétion theory [18,19] applied to the anhar—

monic oscfllato; (11,12] yields the maximal error of about 2% in the first

order and about 1% in the second order.

~ Thus, the method of self - similar approximations[6] for the anhar-
monic oscillators of arbitrary dimensionality is more general, simple and

accurate than other known analytical methods using about the same -

number of perturbation terms. Moreovér, the method can be eXtended
for solving time - dependent nonlinear Schr6dinger equations, starting
from a variational approximation ( see e.g.[20] ) and then following the

scheme of section 2.
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: mKaHOBa E H., mKaHOB B n.

 Heir Mepe, Ha nopﬂnox Tquee. P

E5-~ ~-92- 109:,.
,ABTOMoneanoe NpHBIIKEe HHE nnﬂ aHrapMOHqucxoro L :
ocuunnaTopa npoKSBoanOH pasMepHOCTu‘

MeTon aBTOMOHeanHX npvﬁnnxeﬂuu npnmeHeH K aHrapMo—
Huqecxomy OCHMIINATOPY B HDOCTpaHCTBe NpoOU3IBONBLHOM- pas-‘

MEpPHOCTH. llokasaHo, - 4TO 3TOT MeTon, NpPH HCNOJIb30BaHUH
V”TOanC ABYX craraeMsl¥ TEOPHH BosMymeHHn,,oﬁecneanaeT

xopomym TOYHOCTb, mopaaka 1077 gns Bcex 3HEpPreTHYECKHX

' ypoBHel H BceX KOHCTaHT aﬂrapmonanOCTu CpaBHeHHe 'C'J
. OPYTHMMH HaBeCTHMMH aHaTUTHYECK MU MeTonaMH,~ucnonbsy—" S
. JomuMH Takoe Ke UHCIIO cnaraemmx TEOpHH BO3MYNEHHI , noxa—‘”‘

 3BIBaET, qTo MeTOx aBTomoneanMx anGHHmeHHH, mo: Kpan- E

r\‘f’»k:. .
PaﬁoTa BHHOHHeHa B HaﬁopaTopuu Teopeanecxon ¢H3HKH

;owi’n.’»
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