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·1. Introduction 

· Perturbation theory is one of the principal approximation tech~iques 

in theoretical and mathematical physics. Unfortunately, perturbation 

se~ies expansions diverge strongly for any nonzero coupling constant in 

the majority of interesting cases. The anharmonic oscillator is, probably, 
' , • • ; C 

· _the mos~ illustptive example of this sort (1] .. 

_ To make perturbation theQry a useful computational tool, one has 

to resort to summation techniques, like the Pade approximation, Borel 

transformation, Levin and Weniger transformations (2-4]. These tech

niques, to provide a reasonable accuracy, need to know tens of first 

terms of perturbation theory. However, in realistic physical problems 

one usually is able to find-only a few first terms therefore the mentioned 

techniques become inapplicable (5]. How one ·then could sum a series 

having at hand a minimal number of perturbation terms? 

An answer to this question has been recently given by one of the au

thors (6] who sugg~sted a new method called the method of self-similar 

approximations. This method is based on· the introduction of a continu

ous iterative procedure (7,8] and on the consideration of transformations 

from one approximate term to another as a renormalization group flow 
. . . 
(7-9]. An important achievement of the method of self-similar approxi-

mations (6] is that the summation of divergent series requires to know 

only two terms of perturbation theory. By calculating the ground state 

energy of the one-diinensional anharmonic oscillator it has been demon-



strated[6,10] that the method [6], even with such a minimal information, 

provides a very good accuracy within an order of 10-3 _ The aim of the 

present paper _is to generalize the latter result in two aspects. First, we 

consider the anhaimonic oscillator in the space of arbitrary dimensional

ity, and second, we calculate the whole spectrum of its energy levels. We 

show that for this· general case and for any value of the anharmoni.city 

constant the accuracy of the method [6] is within the same order as for• 

the· ground state· 'energy of. th~. one-dimensi6nal · oscillator. Corri p~ring 

this with the results of other know'n methods using the sa~e number of 

perturbati'on terms, we ~onclude that. they are less general and accurate 

than the method of self:s1milar approxim'ations'[6]. 

2. · Self-similar approximation 

The method to be used_ is expounded in detail in Ref.[6]. This is why we 

present here only its scheme we shall follow in the subsequent section. 

Let us be interested in the calculation of a function J(n,g) in which n 

is a multiparameter; g, a variable called the coupling constant. Assume " 

that by using perturbati_on theory, or another iterative procedure, we ~an 
;.•, •• ,.; L: 

obtain a sequence of approximations f(n,g), where k = 0, 1, 2, ... is a 

nl1,mber of approximation. To force the sequence to be convergent, we 

introduce the governing functions zk( n, g) so that 

fk(n,g) = fk(n,g, Zk(n,g)). (1) .· 

The governing functions are to be found from a fixed point condition, for 
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instance, from the equation 

a 
azfk(n,g,z) = O; Z = Zk(n,g), 

reminding the principle of minimal sensitivity[ll]. 

Then we define the coupling function g(n, J) by the equation 

fo(n,g,z(n,g)) = f: g =g(n,J), 

in which 

z(n,g) = z0 (n,g) = z1(n,g). 

Introduce the distribution of approximations 

(2) 

(3) 

Ysk = {fs(n,g(n, J), Zk(n,g(n, J))) - fk(n,g(n, J); Zk(n,g(n, J)))r1 

(4) 

satisfying the normalization 

J.(n,g) J Ysk(n, J)df = 1. (5) 

fk(n,g) 

The function J,.(n,g) in (5) is just the sought self-similar approximation. 

3. Anharmonic oscillator 

Consider the· spherical symmetric anharmonic oscillator in D - space of · 

vectors 

Rv= {r, {}1, {}2, ••• , {}D-2, cp }. 

The radial part of the Hamiltonian has the form 

1 d2 1 ( D - 3) ( D - 1) mw
2 

2 2 ~ 
H = -2mdr2 +2mr2 l+-2-. l+-2- +-2-r +..\m r' (6) 
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in which m and,\ are positive constants; l = 0, l, 2, ... is the orbital quan

tum number. The energy levels Ent of Hamiltonian (6) can be found by 

the Rayleigh - Schrodinger perturbation theory starting. from the har

monic Hamiltonian 

· 1 d2 1 (. D-3)' ( D~l) mw5 2 Ho=---+-- l+-- 1. +-- +--r, 
2m dr2 2mr2 2 2 2 

containing the trial parameter w0 • The eigenvalues of (7) are 

D 
E~~) = (2n + l + 2 )wo; n, l = 0, l, 2, .... 

It is convenient to introduce the dimensionless operators 

H(!) = H 
w' 

Ho(!)= Ho_ 
w' 

and the dimensionless parameters 

,\ 
9=3, 

w 

Wo z=-. 
w 

Then, Hamiltinians (6) and (7) transform _to 

e = (mw) 1l 2r, 

1 d2 1 ( D-:- 3) ( D -1) 1 2 . 4 
H(!) = -2 d!2 + 2e2 l + -2- l + -2- + 2e + 9! ' 

. 1 d2 1 ( D - 3) ·( D - 1). z
2 

2 Ho(O = --- + - l + -- l + -- + -e . 
2 d!2 2!2 2 2 2 

(7) 

(8) 

(9) 

(10) 

(11) 

L~t us mention that making the formal substitution D --+ 1, 1--+ 0, we 

return to the one - dimensional case provided the variable ! is continued 

from the ray ! ~ 0 to the whole axis (-oo, +oo ). This will give us the 

possibility of returning from the spectrum of a spherical D - dimensional 

oscillator to that of the one - dimensional anharmonic oscillator [12]. 
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The multi parameter n of section 2 becomes now a set of three param

eters {n, 1, D}, the radial quantum number, orbit!",l quantum number and 

dimensionality, respectively. The quantities of interest are, in our case, 

the dimensionless energy levels 

Ent 
e(n,1,D,g) = -

w 

of the anharmonic oscillator. The sequence of approximations in eq.(1) 

consists now of the perturbation terms 

ek(n,l,D,g,z) = E~7) 
w' 

(12) 

starting from 

e0 (n, 1, D,g, z) = (v + ~) z; V = 2n + /. (13) 

These terms are calculated by the Rayleigh - Schrodinger perturbation 

theory with the basis formed by the eigenvalue of Ho(O which we take· 

in the form 

· (o) _ n.z 2 1 v-1 z v . [ 2 , 1+1?. l 1/2 

Xnt (!) - I'(n + l + D /2) e + 2 exp(-2e2)L~-t:2-\ze2), (14) 

where L~ ( ·) is an associated Laguerre polynomial. 

The first approximation gives 

. ( D) z
2 
-1 

e1(n,l,D,g,z)=e0(n,l,D,g,z)- v+- --+ 
. 2 2z 

( D) 3g + v + 2 2z2~1n1(D), ( 15) 
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where 

-( D) [ (l-2+¥)(1+¥)] 
'Yn1(D)= v+ 2 1- 3(v+¥)2 . (16) 

For the ground state level eq.(16) yields 

lim 'Yn1(D) = !(D + 2). 
n,l-+O 3 

Asymptotic properties of (16) corresponding to high energy levels are 

'Yn1(D) ~ 2n; 

2 
1n1(D) ~ -l; 

3 

n--+ oo 

l--+ oo 

(l<oo), 

(n < oo). 

For the high dimensionality limit one has 

'Yn1(D) ~ D_ 
3' 

The second approximation reads 

D--+oo (n,l < oo) 

( D) (z2 -1)2 

e2(n, l, D,g, z) = e1(n, l, D,g, z) - ~ + 2 · Sz3 + 

( b) 3g(z2 
- 1) + v + 2 2z4 'Ynl ( D) -

( D) 5g
2 

[ 27 ( D) ( D) 
2

] - V + - - 1 + - V + - I 1(D) - V + -2 2z5 10 · 2 n 2 · (17) 

Let us emphasize that after the formal substitution D --+ 1, v--+ n, l--+ 0 

expressions (15)and (17) become identical with the corresponding ex

pressions for the one-dimensional anharmonic oscillator [12]. With this 

substitution in mind, all father results will he valid for an arbitrary space 

dimensionality D = 1, 2, .... 
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As a fixed point condition (2) we get 

a 
f}ze1(n,l,D,g,z) = O; z = z(n,l,D,g), 

which yields the equation 

z3 
- z - 6g1n1(D) = 0, 

(18) 

(19) 

for the governing function. Eq;(3), taking account of (1), gives the equa

tion 

e0(n, l, D,g) = J; g = g(n, l, D,J), (20) 

defining the coupling function g( .. . ). The latter equation, together with 

(13), leads to 

(v + ~) z(n,l,D,g) = J. (21) 

For the distribution of approximations (4) we obtain · 

4~/3/ (v + q)4 
Y21(n,l,D,f) = - an1(D) [J2/(v + ¥)2-=._ 1)2' 

(22) 

where 

a.,(D) = (v + ~) 'I} D) + a-rt.~ D) [ I - (v + ~ )'] .,- 6. . (23) 

Expression (23) for the ground state becomes 

lim an1(D) = -D
3

. 
n,l-+0 + 2 

Highly excited levels are related to the limiting properties 

1 
Jim llnl = -3, 

n-+oo 

7 
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The high dimensionality limit is 

lim an1(D) = 0. 
D-+oo 

Taking integral (5) with the distribution of approximations (22), we 

come to the equation 

e~(n, 1, D,g)/(v + l})2 -1 
ei(n,l,D,g)f(v+ l})2-1 = 

. { 1 . 1 
=exp e~(n,l,D,g)/(v+l})2-l - ei(n,l,D,g)/(v+1f)2-l 

an1(D)} , (24) 
- 24 

for the self-similar approximation e*( .. . ) ot the spectrum of the D -

dimensional anharmonic oscillator. In (24) the notation e1 ( •• • ) implies 

expresston 

· ( D) 3z
2 + 1 e1(n, l, D,g) = v + - --- , 

2 4z 
(25) 

obtained from (15) with the governing function given by (19). 

Using (24), one can easily derive the asymptotic properties of the 

self-similar spectrum. Thus, for the weak anharmonicity limit we get 

e.(n, l, D,g) ~ (v + ~) [ 1 + ¾9,ni(D)] ; g-.O. (26) 

· In the strong anharmonicity limit one has 

3 ( D) [ an1(D)] t/3 ) )t/3 e.(n,l,D,g) ~ 4 v,+ 2 exp 
48 

, 111 (D (6g (27) 
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where g -. oo. Highly excited levels in the strong anharmonicity case 

are either 

or 

e.(n, 1, D,g) ~ ~~1!144(2n)413(6g) 113 = 3.458074 n413g113; 
4 

g,n-. oo, 

' 9 (2/) 4/3 . 
e.(n,l,D,g) ~ 8 3 (6g)1/3 = 1.190551 [4f3gtf3; 

(28) 

· g, l -. oo. (29) 

For a strongly anharmonic oscillator of high dimensionality we find 

9 (D)4/3 . 
e.(n, l, D,g) ~ 8 3 (6g)t/3 = 0.472470 D4f3gtf3; 

g,D-. oo. (30) 

The self-similar approximation for the spectrum given by (24) can be 

compared with direct numerical calculations made for one - , two - and 

three - dimensional anharmonic oscillators [13-16]. When estimating the 

accuracy of a method, it is natural to do this by defining the maximal 

error 

(D) . I e.(n; l, D,g) 11 
t:. = sup sup l D -

gE(O,oo) n,l,=0,1,2,... e( n, , , g) 

for the whole range of the anharmonici~y constant and of energy levels. 

The maximal error found in this way is about 0.3% for all D = 0, l, 2, 3. 

The accuracy of our method can be compared with that of other 

analytical approaches. For example, the quasidassical approximation, as 

applied to the anharmonic oscillator [12- 1-1] with D = l, 2, 3, gives quite 
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good results for highly excited levels in the strong anharmonicity limit. 

However, its accuracy drastically worsens for low-lying levels, especially, 

for the ground state energy, the maximal error f.(D) being about 20%. 

In addition, the Bohr - Sommerfeld condition defining the quasiclassical 

energy levels leads to a complicated set of transcendental equations [12-

14]. 

The shifted large - dimensional expansion, which is much better than 

simple 1/ D expansion, can be applied only to spherically simmetric po

tentials [17]. For the three - dimensional anharmonic oscillator we have 

used the shifted 1/ D expansion and found the maximal accuracy f.(3) 

to be about 10% when the, second order of the Rayleigh - Schrodinger 

perturbation theory is used, and about 0.6% ifthe fourth order of the 

Rayleigh - Schrodinger perturbation theory is invoked. This approach 

cannot be used for"the one - dimensional anharmonic oscillator. 

The renormalized perturbation theory [18,19] applied to the anhar

monic oscillator [11,12] yields the maximal error of about 2% in the first 

order and about 1 % in the second order. 

Thus, the method of self - similar approximations[6] for the anhar~ 

monic oscillators of arbitrary dimensionality is more general, simple and 

accurate than other known analytical methods using about the same , 

number· of perturbation terms. Moreover, the method can be extended 

for solving time - dependent nonlinear Schrodinger ~quations, starting 

from a variational approximation ( see e.g.(20] ) and then following the 

scheme of section 2. 
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IOKanoBa E.II., lOK_anoB B.H. E5-92-J09 
ABTOMO,qenbHOe npu6m-Di<eHH'e 'MH aHrapMOHHttecKoro 
ocn;ttnnHTopa npOH3BOnhHOH pasMepHOCTH 

MeToA ?BToMo,qenhHbIX npH6m-DKeHHH npHMeHeH ~ attrapMo
HHqecKoMy ocn;ttnnHTopy B npocTpattcTBe npoH3BOnhHOH pas
MepHocTH. IloKasaHC>, qTo 3TOT Me TOA, npH Hcnonb30BaHHH. 

. . -. 
',T_OnhKC ABYX cnaraeMbIX TeOpHH B03Myll(eHHH, o6ecnequBaeT 

3 ' , , 
xopornyw ToqHOCTh, nopn,qKa 10- ,qnn Bcex 3HepreTuqecKHX 
ypOBHeH H Bcex KOHC:TaHT aHrapMOHHqHOCTH. CpaBHeHHe C ', 
,qpyrHMH H3BeCTHblMH aHanHTHqeCKHMH MeTOAaMH, ucnonh3y-

' ' ' e 

WII(HMH TaKoe ~e qucno cnaraeMb~ TeopHH B03Myll(eHHii, noKa~ 
3bIBaeT, qTo MeTOA aBTOMO,qenbHblX IIPH6n~eHHH, no Kpaft- , 
Hell M_epe, Ha , nopHAOK_ TOqHee. 

f 

_p a6oTa ~ BbmonHeHa B lla6opa'TopHH _ TeopeTuqecKoH q>H3HKH_ 
OIDIH. 

Ilpenp11Hr O&ben~rneHHOro HHCT~ryra 11nepttbIX Hccne;ioaaH»H. }:ly6Ha 1992 
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The anharmonic oscillator in the space-of arbitrary 
dime'nsionality is considered by the method of self-si
milar approximations. This metho_d invoking only two 
terms of perturbation theory, is shown to be capable 
of providing quite a good a~curacy, within an order of 

-3 ' , , , , , , ' 
10 , for all energy levels-arid all anharmonicity con-
stants. The comparison with.other known analytical 
methods .using the same number of perttirbative terms 

·- proves that the s~tf-similar approximation is at least 
by an, or_der more accurate.· ' 

The_ investigation has been performed at the Labora::- · 
tory of ~heoretical Phy~ics, JINR. . . ' , . . 
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