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In pre¢édidg}péﬁér§{557(éweyhaVéTdéhoﬁétfatedfthatjthé‘SdQ;_
called "nd4go”fthgdremsf350utfﬁiddén VériabléSfiﬁEquanﬁﬁﬁ{ﬁe-_“
‘ chanicsfof.singlet1systemsi(Bell;inequélitieé{y(,fﬂraunstéiﬁfli

and Qayes iﬁequa1itié$'?ﬁ)’ekpféﬁsfmetrié,ﬁénditiOné*{fqi cer-
“tain vector spaces and/or rest updnVégiStédcé[of:éfCShﬁinuous51f;'

group of transformations. in space of hidden variables (R.P.Feyn-
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ré;'Whiéh{pérmitsﬁbnéffqgrestdré@ﬁhéfQuadtum:méchqﬁiéalfrésulfs
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In'this work: we demonstrate that the relative measure of .
rprobabiiitytéaﬁvbe{qﬁdéfstoca“ag‘a%ﬁaﬁiféstatioq”of”ﬁhé”nqn-, ,
‘metricjp:opérties'bffthéyépéée!bf“hiddeh_bariables‘byxitself;ﬁ ’3
Actually, in such a Case‘there‘afiSéshé'neceSSify of introdu-
cing a definite,reference frame and geometrical or physical
~terms become frame-dependent. In statistical theories ‘it means -
that the concept of absolute, independent measure of probabili-
tmeStb? fabandoned' ! ,‘»} *‘!;“« S G e - i‘::{f; ooty E e o
l,'IhtféﬁuctidﬁQOffthéﬁ‘élafiyeﬂmeasdféhdf,ppobébilityg(gene-~V
rally it must be céhheéﬁedfwitH dfiéntétidns'Of”appafétuses);iﬁ
breaks down symmetry of the quaﬁtum'SystemS'and'may'exﬁress'id
~such a way a peculiarityxof_thewquantum‘measuremgnts**{x,‘ T,
. In this connection there arises a problem of relation bet-
ween different~reféfence\frames used - 'which is in fact the’
problem of covariance and also{thefppoblem~of‘lqcality-in re= ..’
lation to thé‘specia;'thébry'df!rélativify.‘WeihaVe treated

“these questions in our first two papers/5‘6/;'hérepwe restfict :
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e understand metric conditions or metricity in'the usual sense: ‘ina gi="
.ven space‘it is:possible'to define’a distance;’ which: fulfils triangular “ine-

. quality. - T mmeen Son o St gay ey mobtelel e
#**A similar idea was recently expressed by Y.J.Ng’™ during ‘the discussion
of the physical content of e.deformed quantum groups.... . . . Cy
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elves to the statement that the transformatlon proceduges |
i ting the different reference frames can be formulated in
O s ag that all frames are equlvalent (covariant descr1p~
such EeZomes poss1ble) and also that each concrete event is
‘tion (i it does not depend on the reference frame .
11nvarlant o cha d t permit s1gnallzat10n with
rused) These characteristics do not p lgnallzeation with |
superluminal speeds, “they make the concept of sup dltlon
nections redundant and, hence, fulfil the Einstein con

of locality. Because of their’ local character there is also no:,

need for the concept . of contextual;ty@/' They allow onz to f

use the concept of counterfactual def1n1teness " -but do no_

allow exploltlng it for’ der1v1ng relatlons between exper1men
measured mean values.,

téléz shall demonstrate some aspects of the proposed theo;y11

analyzing a model of linear polarlzatlon of: photons. We: sha

show that the uSe of the. Euclldean geometry in. space of h1dden}_n

variables leads naturally to the cla551ca1 1nequal1t1es forof
tence ‘of ‘'métrics in .space

correlation: functions ((i. e ex1s

hidden variables 1nduces a’ metr1c character of 1nequa11t1es)

On the contrary,’1t w1ll be seen ‘that the" use ‘of ‘Minkowski geo—'

metry leads naturally to’ the concept of - relat1ve probab111ty
measure and to the correct quantum mechan1ca1 correlatlons‘H

which fulfil generallzed inequalities (i. e.,'absence of’ metr1- e

city in space of hidden variables 1nduces correspond1ng non—-
metric character of 1nequa11t1es) :

2. DEFINITIONS" EEARRE N e

We shall cons1der correlatlons of linear’ polarlzed p:otons
in the singlet systems, wh1ch are descr1bed'quantum-mec an1"
cally as‘1~ﬂ g :

¢ (1 2) “’~~f_1(1> (2) i u> (2) !

»

(1 2) =‘-——l(1) (2)
Ve

—(l)y(g)x}. r; s, ot
Here the indlces denote the projections of the polarlzat1§ns
along the correspond1ng axis, (+) and‘( ) correspond to the
states with even and odd parity. . RS

For the description of the ‘correlations in the Bell schemep;

of h1dden var1ab1es we use the usual notat1on’ig g

P(a b)

Coamy

. fAGR, A)B(b A) p()t)d)\ (2)

3. GEOMETRICAL CONSIDERATIONS

"and x2 4 y®

i,w1th the scalar product (4)

LA -

where p(h) is norma11zed probab111ty measure of h1dden variab-

-'les A -and’ results of measurements A(a A) and B(b A) take va-
Jues 1,

For the further process we nee

. geometr1ca1 terms. We must define
the expressions for p(A)aa . A,
mine the connection between both pa

quantum states (la lb) :

d to express (2) in 1nvar1ant

more or less 1ndependent1y
and B(b A) ‘and also deter—

rticles ‘in- accord with the

P A T

We shall start with the analogy with the class1ca1 concept
of linear polar1zat1on, namely;: with its: vector descr1pt10n 5
in the polarization: plane. We shall suppose’ that ‘the’ same pie= .
ture can be: used for' the space’ of:hidden var1ables. As trans-
lations. do not change relations between vectors: we shall be-
interested in the rotations :

.exist only two realizations of geometry in a plane w1th inva-
‘r1ant quadratic b1l1near forms: Euc11dean geometry and geomet-
ry of M1nkowsk1, wh1ch are not mutually 1somorph1c. e ‘

3a Euclldean Geometry ;7

The rotatlon of the plane as a whole (we wr1te down a: trans--
lformatlon of coord1nates) has a form : : :

it

XCOSO + yslng. ‘ s g

’,

-~y

H

;(B)f;l

-xsm0.+ycosﬂr

is to be invariant under such transformatlons. Con-

sequently, the scalar product of two vectors has the usual
form Ll ; St o \f" e )
(a"b)vfs-gg g yby '»,ﬂ4)f¥;

In this: geometry, d1stances and angles between vectors are con-

served under - ‘rotations and it is’ possible to 1ntroduce a met- |

rics, which sat1sf1es the triangular 1nequa11ty. For the .inva-

riant - descrlptlon in- terms of’ ‘Euclidean- geometry expre551ons :
can ‘be- used ‘




3b: M1nkowsk1 Geometry ?g;/}f;f:"il;‘alg % o

Instead of (3) we now have'

x’ , xcoshﬁ - ysth

The invariant under hyperbolic rotatlon is x2-5y2>andiaj§caa:
lar product takes a form L g)ﬂ;‘ p‘! . ”rp‘ e

In thlS geometry a: metr1c does not ex1st because the d1stancesuj

generally. do: not fulf11 the tr1angu1ar 1nequa11ty.:The only:

1nvar1ant wh1ch 1s at our dlsposal is: a. hyperbollc norm hfff c}w

whose value is. f1xed under rotatlons (5).z

Be51des, the M1nkowsk1 ‘geometry is suitable for! the descr1p—

tion of propert1es of cla551cal polarlzatlons. Let us con51der

a passage of 11nearly polarlzed light (p- d1rect10n of polar1— L

zation, I- 1nten51ty) through an analyser or1ented along the.
direction 3. We’ denote as I-L:and Iﬂl :
wh1ch passes with polarlzatlon parallel and perpend1cular to
3. The nontrivial linear invariant form conta1n1ng both- Iﬂlu
and’ I is. equal to e

For expre551ng 1t!1n terms of the M1nkowsk1 geometry we musty:“

take into account ! that the value of Minkowski invariant
HaHh .. depends on the*ch01ce of orientation .of the. coordrpate
system in respect to &: for any vector a the values of Hahh
can lie. between. -a2 to. +a.. :When the: value:of the ‘norm-(7) ris

flxed only then 1t is an: 1nvar1ant under hyperbollc rotatlons:-

(5). . - o P T . L A R

Let us suppose that the polarlzatlon vector p has a un1t
Euclidean norm and put coord1nate ax1s X parallel to a.. Then
(8) becomes : '

Inv(1 , 1
A a‘.l.

npn,,.j AT @

lf(S)rff

' the 1nten51ty of 11ght;pw

ip(gign*w

: (11) when one channel measurement 1s reallzed

',w111 be done later.

‘_an. Def1n1t1on of p(K)dA

Fig.1. Illustratmn of the use of
"~ Minkowski geometry for the classi-
: ,cal polar:.zatlon. Here the curve
_'is equal to- SL :'x2 -'y2 = const.

For vector p it holds . "0

oM = |!p*i!

e— (p p ) (see text)

‘ In the Euclldean geometry we: must 1ntroduce a f1ct1t10us

~ vector p conJugated with p through & (see F1g l) in’ order to
obtaln ;“fif i ;,‘,“” UE P v L :
Inv(, }."a D = (p P ) (11)
S SR

We rem1nd here that both expressions (9) and (ll) can be under-
stood as a generallzed Malus law (M 1 follows from (9) and

»1 e., for I,

By ¥
=0). ThlS example explalns in wh1ch way the frame dependence .

,appears when a pseudo- Euclldean geometry is used Nevertheless,
- the expression (9)" gives a true p1cture of the phy51ca1 situa-
“tion con51dered both vectors p and a; have a 51ngu1ar role here.

. - o

’4 GEOMETRIZATION OF p(A)dA A(a A) AND B(b A)

0ur 1mm1nent task is to express the mentloned functlons in-

| invariant geometrlc terms. ‘For s1mp11c1ty we shall use terms .

of ‘the Euclidean* geometry and the .more- concrete spec1f1cat10n

We suppose that A is.a vector 1y1ng in the polarlzatlon pla—;
ne with the. beg1nn1ng at the centre of - coordinate’ -system. .The
funct1on of -p(A)dA is determlned ‘as a- d1str1but1on of ~the. ends

~of A on the curve f lying- also in the polarlzatlon plane.



L Fig;z.‘deometrical‘definition'of <
~‘gA)dA . The t:and n are unit tan-

lar vector to A respectlvely

S \ - ) For the evaluat1on of
T ' p(A)dA we - postulate

oL} 'va“””V“w.w7w”f”.“i~“~ d1cular to X (both !|t]le i =
« R T 'f““"lz;r)(aL—,"nl[rJ— 1) the direc-
2. tion‘ofinis -chosen so that
(t,n),
(see F1g 2). CEE aa Y Pueadn 4 o e

The functlon p(A) is supposed to be normallzed accordlng toﬁf.

PR

rp(A)dA —6(t ) daédi,:ff

two reasons

,t1on in an Eucl1dean space and it is''also su1ted for' normall—”
zation: of:. p(A) 1n pseudo Eucl1dean spaces when 1nf1n1te curves
(z) appear : : T R

4b.: Def1n1t10ns of A(a A) and B(b A)

ko

We postulate for these funct1ons the follow1ng relat1ons

AG, 0

ﬂ

s1gn {cos2¢ AT s1n2¢ /\i

BB

ll

(14b)

4 sign {Cos,zgs;)}t»‘-:«sinzqs" 'k*l S

where (+) s1gn holds in 'the case of system w1th (+) par1ty
(1a) and (-) ,sign is used for the system with!(-):parity (1b).

The vectors 32 and b correspond’to the orientation of apparatu—

ses. Let:us" not1ce ‘here -that because of: propert1es ‘of :linedr

polar1zat1ons ‘and - s1nglet photon systems and: due ‘to’ the formu-
lation ‘of problem the” expreSS1ons (14a) and (14b) are the only :

ones which " can ‘be usedut it i

-gent vector to . (E) and perpendlcu-’,,

(12)‘;

B ,p(A)dA.<(t n) da,vﬁ

, (U ' o

' ,where E stands;for.tangent ,
‘to- €, is a_ vector perpen-

=0 and a is:a central -angle;: f1x1ng the. d1rectlon ofA o

p(13) ~,,ii>'

B 1n)a smpl}t‘. L “',,A(a /\)

(14a)k’

S 4c. Rotatlonal Invar1ance of the System

L Rotat1onal symmetry of (1la). and (1b)’ (here we mean an - ordi-
I nary rotat1on in Euclldean space) leads to the cond1tlon f';

o

; ;because no other d1rect1on is preferred in our treatment.

P(a b) = P(¢ab)

"'5 THE DESCRIPTION OF SINGLET SYSTEM OF PHOTONS
‘ IN EUCLIDEAN SPACE OF HIDDEN VARIABLES

i It :is an ord1nary circle which descrlbes the rotatlonally .
‘x' fsymmetrlc dlstr1but10n in the Euclldean plane. In thlS case
- (13) reduces to

(15)“7

because in the Euclldean geometry ex1st llnear relatlons bet-
ween the central angle and ‘the elements of circular’ per1meter
ii'»The relatlons (14a) and . (14b) can ‘be rewr1ttenvas S

iy p()\)d/\ ;—2—da '

T

mgnKA ), ;°f§fj'""‘z “(17;)

—b-"

:;_,f;"j’+51gh a, ,\7 Dol

B(b A)

(17b)“(

{where we have used the notatlon of conJugated vectors as in

~‘i - Fig.1. Here the Vectors A and . A.may not be .the unit ones. .

U31ng (16) (17) ‘we can evaluate the correlatlon functlon
P e abv’ SR N R e :
.(a )ﬂ 2, ”‘f”.' S ﬂﬂfajﬂ f*“ r‘ﬁ’ :_;,3 (18) :

1i,""?'whlch is a 11near functlon of ¢‘,, (0 < ¢ .S ﬂ/2 )
P +'The: correlatlon function received: fulflls all cla551cal ine-

£
] V%,‘; qua11t1es which are presented in-the precedlng letter/12/

“-metric Bell 1nequa11t1es, metric 1nequa11t1es of Braunsteln
‘7and Caves and Feynman 1nequal1ty. In'the case of Bell inequa- - °
’ 11t1es 1t 1s not. a surprise because: of ‘the linear: dependence
_of P(a b) on' ¢ab’ ‘This. is also the reason,: why the metr1c_

‘ Braunsteln -and Caves -inequalities are satisfied’! E

, Moreover, as in this model there rare fulfiled. the cond1-
(t1ons of extremallty due to the prescr1ptlon (14a) and (14b)



A

used (for deta1ls see preced1ng letter/12/), all C1ted 1nequa—‘

‘lities become equal1t1es in a corresponding 1nterval of . ¢,p.

It is not difficult to. indicate a classical physical s1tua— -

‘tion which is described by the correlat1on funct1on (18).° It
corresponds to. measurement of 1ntens1t1es L, I, and Iﬂl’lyl

of polarized source of l1ght onto two d1rect10ns a and B accor- .

d1ng to formulas

A(a',” - e “”ﬂ -,',,Iﬂ h

B(b A) —+81gn {1, - Ib" b,
' 1

Rl

when the or1entat1on of source 1s equally d1str1buted on the
cirecle,: 7 , » < : 3 . -

6. THE DESCRIPTION OF SINGLET SYSTEMS -
OF PHOTONS_IN MINKOWSKI SPACE IN HIDDEN
 VARIABLES |

Let us: suppose, “in analogue to the preced1ng con51derat1on,‘
that a distribution curve f-is a circle but in a ‘Minkowski

plane Here the 1nvarlant x2 - y? =tconst descr1bes four bran-’,

ches of hyperbolas as ‘it is indicated in’ F1g 3 and log1cally
‘a’question ar1ses of or1entat1on of Minkowski: coord1nates in:
~ , ‘ relation to 3 and b. We

put: coord1nate axis X .pa-

L'}rallel to a. Then (12) be—
ocomesigﬁw, E .

fP(A)dA = pZ (A)dA ?VT‘,'

. (20)
Lo |

e F1g 3. Descr1pt1on of h1dden .
-+'¢ variables with the use of- Min-
'kowsk:. circle. The orientation

of ‘% ax:Ls is" chosen to be pa~

rallel to a. For vectox b 1t
holds” “b Hh = oM.” '

L

f“;gd(ig)d

o l1t1es wh1ch have “a nonmetr1c form
- rive the ‘relation’ for four" Vectors (see express1on (ll) of

.’-(n?—i)COS(
: o +1

in: accordance w1th quantum mechan1cal values.~

i where 1ndex ‘a 1nd1cates wh1ch reference vector was used The
‘ frelat1on (14) can-be rewr1tten accord1ngly

AGLN), —'SIe1HlA‘dh I ;;}721;,,; Mﬁ,fw_‘A,V;_fi{, (21a)

- B(b, A)—**&gniWAbH hyérzlS)
VAfter performlng correspondlné 1nteérat1on we‘obtafn i «,f
;PQJ (a b) . +!lb . 'f‘7{*h‘fl’”if ﬁ"iM‘f ifk‘wf”"ﬂt(ézé)

‘1lor after 1nterchang1ng ;JL b n:j;u?iyéfzhnyal | ;

G - il - I ws2g,, . ey

hIn th1s last two express1ons a and b are- supposed to be norma-

11zed to un1t i
- We see, that the use of M1nkowsk

“space for the descr1pt1on ,

c0f 'local’ h1dden variables led naturally to:the concept of re-

lative. probab111ty measure (20). This additional freedom of -
cho1ce ‘of ‘an ‘orientation for ' no- equally d1str1buted measure al—

: lows a max1mal strengthen1ng ‘of the" correlat1ons

“As-we: have ‘shown in the® preced1ng letter ‘the’ usevof relat1—
ve measure of the probab111ty leads to the general1zed 1nequa—
“It s poss1ble to. deff

the c1ted paper)

'.D(ao,a )+ D(al.a ) D(ag.”*)— - D(a, ;.§0>‘_>'+ 2-2ve. r:v,y(z3>;~,

wh1ch, generally, for X vectors takes a, form ; e
D(ao,a ) + D(al. o)+ ...D(a _1,a )- D(a ,ao) > n-—1 R

These results could be expected, _because’ (l&a) and (14b)

“in the M1nkowsk1 space also fulfil the extremal1ty conditions

which" lead to'the equa11ty of (24) 1n an 1nterva1 when the m1—
n1mum is evaluated.'- N : ’
“We' have also checked that for three and four vectors the ge4

‘>‘nera11zed Braunstein’ and Caves 1nequal1t1es are fulf11ed but

’



L we cannot prove it generally because of complex1ty of the prob-;‘

lem (d1scuss1on about relat1on between Bell: 1nequal1t1es and'’
V these/of Braunsteln and Caves 1is conta1ned in the preced1ng

paper’ 7). g .

-+ The results of the preced1ng sect1ons can be summarlzed as

it is done in “the Table. : e
Table.: Compar1son of descr1pt1on of local h1dden var1ab1es for

s1ng1et photon states 1n d1fferent geometr1es .1., L

ot

~_ comMoN AﬁPECTS
P(2,b) = [A(a, A)B(b A)p(A)dA

,:p()\)d)\ = (?,ﬁ)}da" e A(a )\)- sxgn(cos2¢ A —sm qS )\)

. ,Tp(X)dxg irr"o(?,'?xv)',da;,l .‘xB(b,)\):isign(cos;,,qsb)\ﬂ_ sin .,¢M)-

: MINKOWSKI GEOMETRY

The 1nvar1ance under ord1nary The 1nvar1ance under hyperbo—

EUCLIDEAN GEOMETRY

rotat1ons x + y = const al-. 511c rotatlons x 2 - y2 = const
lows us to 1ntroduce a metr1cs,_do not perm1t one to 1ntroduce
d1stances and angles are.con-..’.a, metr1cs. The dlstances and

served therefore a scalar pro-‘angles are not conserved ‘the

duct of two vectors can berused only 1nvar1ant is'a hyperbollc';

for invariant descr1pt1on

norm which is: frame dependent.f
L: ‘Euclidean: c1rcle »

f: Minkowski, c1rcle

‘x2 + y? =-const “9u{f*?s*”?gb’u,ﬂ-_y const L?g;:{hf7
. . da R ARC B AR TT FEUR RN TS U H h
p()\)d)\ = .5— i N .: o P():)d)\: fld l________’

JA‘(;_'.AX) 'sikgn_l(*)_\,'x?)';iy}_

A(;_, A) = ‘skignHl X?llﬁi

BCo.A) = = sign L (L30) 1
v( g)l fsmnKA,A)e} B(b A) +S¥UH|A1|

i'POSSIBILITY -

to 1ntroduce general p(A) wh1ch to 1ntroduce a relat1ve measu-
- guarantees the rotat1onal inva-.re p3 (A) only. The ord1narz ro-=
riance of P(a B).. s 'gtat1onal invariance .of. P(a b)

or & = b.’

,_‘Metr1c 1nequa11t1es
‘and H(a; b) R

,‘,‘Metr1c equa11t1es 1n certa1n
““interval‘ of" angles between
‘vectors For Feynman s value

of W(¢ = n/n i, AB,- = "+1) ‘for
,symmetrlc system of photons

= v1ally a cont1nuous group.(

~is guaranteed only for n =3 . -

i
(

© Table (continued) -

CORRELATION FUNCTION :

0

‘;ﬂ ’4"5359’ T (a b) = +cos2¢

the relatlon between da, dl

S There is a l1near relat1on bet P(a b) .and_ D(a b) are non11-
,;ween da, dl P(a b) and D(a b) .near. :

INEQUALITIES SATISFIED PARE i |

“for D(a b) General1zed 1nequal1t1es for“
R D(a b) and’ H(a |b) which-do = -

'"not have a metr1c form.cj“;

S DUE TO THE EXTREMAL 'PROPERTTES
, ‘,‘ of evaluatlng A(a, A) and B(b A) for coplanar
.- vectors ‘placed accord1ng to. the1r 1ncreas1ng

= ; 1ndex, there‘are sat1sf1ed'V:*

”General1zed equa11t1es in cer-
" ‘tain interval of angles bet- -
5*ﬂ?ween vectors. For ‘symmetric-
* ' 'system of photons it ‘holds
j"W(¢) LR T

it holds ‘
: g g
R =
_ TRANSFORMATION OF p(f\) }"_:Q STITERE LS \'
‘p'Relatlon p(A) %'const guaran-'ﬁbThe 1nvar1ance of events and
‘tees a. covar1ancy of descr1p-»"covar1ancy of the" descr1pt10n
.tion and ‘the invariance of con-ﬂmust be 1ndependently postula-
. cret. events, successive trans-?f ted. Then the'transformations
i;format1ons ‘of p(M) form tri-  of p(A) form a’'cyclic group..

The number of independent ele-
-ments is equal to the. number
of commuting quantum operators.

T




‘ 7 CONCLUSIONS

, The proposed scheme of relat1ve probab111ty measure taken
‘as ‘a measure on pseudo- Eiclidean. space .can be used for the des-
_cription of other systems where discrete values with different
signs are used It is not: restrlcted to bivalued variables. It
is possible to’ show, that it also suites for descr1pt10n of:

' »sp1ns with s> 1/2 '
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