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1. INTRODUCTION r ~ 

. ,i:_ .. .; .. 
There•exists a set of -inequalities-for quantumcorrelations 

of singlet systems which must be satisfied by_:. local· hidden va­
riables theories 11 ' 31 • It can be shown 14 '

71 that they rest . 
upon .existence.of a global metrics in a certain space and, con:­
sequently upon existence of _.a continuous group of ·transforma-
tions, of. the probability: measure.. , ;:: ,. ., 

An essential feature of these approaches is an assumption· 
of existence of absolute, independent measure of probability 
which,determ;ines a future behaviour of systems through a hidden 
parameter .>... · . :' 

'our aim is to· generali.ze the existing inequalities .for cor-
relations·with :variables .in. such a way, .that. they· could also 
be .used for 'realization of the hidden variables theory :in non-, 
Eucliden. spaces, where:;only a relative probability measure 
can be defined . (we mean here special cases . of·. non-Euclidean : 
spaces in which the distance does not fulfill metric condi-
t . . . 1 •' l"t )· ·'' 1ons, .1.e., tr1angu ar 1nequa 1 y . :: ·· .· .. · · . · 

Our immediate goal will. be a generalization of Bell inequa­
lities 1 1 1 , · tha:t of Braunstein and Caves 1 2 1

, and of Feynffi~n 13 1 
• 

. . ,The main results were obtained in our preceding works 15
-

71*, 
her\~ 'we restrict ours-elves to a brief sunima'ry and commentary .. :' 

2. 'DEFINITIONS · 

w~·~;cons'fder' .;,s 'usti~L' ; :the' corre
1

lations;. ~f I 'pol~rizations 
of photons or of particles with spin s = 1/2 also in singlet 
systems 

1{1 (+)(L2~·,~()z' •{lfli (i)lflx(Z) + lfly(l).l{l y (2)}, 

';': ' ; . ' . . ' i : ::,_ ~ ': -_; . ~ ... " / ' ! t 

(la) 

' ' 

,.,Metric Bell inequaliti~s were' inlepe~dently i~tr~d~~ed br E.S~tos 141 
and. 

similar considerations are contained in a paper of Five1 1 9 
which has appea­

red recently. Metric inequalities for conditional information entroj{ in a 
slightly different version were commented by Braunstein and.Caves

1 
...... in con-: 

uection wi~ paper;o.f Zurek18
,
1

• _1 , 1;; 
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1jJ (-)(1,2) = 1 

12. 
{ljJ X (1}1jJY(2) ljJY(1)1jJX (2)}' 

11'(1,2) = )z {lp+z(l)ljJ -z (2) - ljJ_z(1)1jJ +z (2)}. 

(lb) 

(lc) 

Here the indices denote the projections ofthe polarizations 
along the corresponding axis. Results of measuring of the· po.:. 

·. larizations onto different ~-and ,b. are denoted' as' A,B· = ±1. 
In· the scheme: of' hidden''variables. the correlations are·• equal 

to 
P(~, b) =JA(~,>.) B(b,>.)p(>.)d>., (2) 

here p(>.) is a normalized.measure of prohability of>hidden va-
riabl~~·>.. · ~ 

'·~ ··; i 

'3. METRIC FORM OF INEQUALITIES : • .. ~'l- ••• c 

;,_; 

Metric ·form of the; mentioned ·inequalities. can be demonstra-.· 
ted under consideration of a-set of correlation1functions'on 
a closedpolygon;•whereone common measure of probability is 
used (see' -the Figurer 

J} 

'3a. Bell Inequalities in Metric Form 151 

·w~_'put* 
,:, ' 

+ + . :· cl . ·<c -+ + ' :. -+ + 
D(a, b)= (• .) {P(a,a) - P(a,b)}, 

· P a,a 
(3~ 

Then.the function D(~,b) 
· ~ ~. D(~,b) = D(b,~) and 

a ·distance: 

has the following properties D(~, b) -~ 
D(~.~) = 0, i.e., it can be taken as 

' :·. 

Mori:£over, it holds 

(
+ + + -+ + + + + 

Da 0 ,a 1 ) + D(a 1 ,a2 )+ .... D(an-L' an) - D(an, -~ 0 ) ·~ g. 1 ~: .(4) 

The last inequality can be easily ~roven. It is.~~fficient to 
consider all possible values of A(ai, >.) and B(a:c; ·>.:) and to, 
take into account that.'p(>.) > a~' .. ''! "' . : 

ftWe omit here a constant K, which we have used in preceding work·,' it ·fixes· 
the scale which is not important in these considerations. 
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3b. Braunstein and'Caves 
in Metric F~rin 

Ineq~ali ~ies . ,·; 

Braunstein and Caves have derived inequalities for·conditio­
nal information entropy of the considered correlations'~ l ~ ~:· 
Using. relation 

H(~lb) 
1 • • 1 • • . .1 . • •.. 

- 2 {P(a, b) + 1} log 2 {P(a, b) + 1}- 2 {1 - P(a,b)} 

1 • • 
log 2 {1 - P(a, b)} 

\.~---

;, .. 
which holds due to the symmetry of singlet systems, it is pos­
si'ble · tci generalize~ inequalities of Braunstein and Caves· as 161 

,. ' ' ' ~ . ' ' , ~ 

H(~o~~l) + H(~l~~2) + ··· H(~n-1~~~)- H(~n~~~) ~ 0 ''(5) 

I. 

and. also to show~ that H(~ I b) obeys the properties' of distance:• 
.1~ .1~ .1. .1. .,. H(a b) ~ 0, H(a b) = H(b a) and H(a a) = 0. Here H(a b) deno-

tes the conditional information entropy of the treated corre-:• 
lations 

H(~l b)= . ..:l: p(a.·, f3) logp(a.l13), 
a. 13 ' 

··,t" 

: ;· ~ .. 

.. 
' t 

and p(a.,l3) is the joint probabilityr·i>Ca.l13>.: the, conditional 
probability for A(a, >.) = a. and B(b, >.) = 13 (a., 13 = ±1), and 
the base 2 was used for logarithm. For details. see the cited'; 
papers 12

'
61

• , ··-r • .. · .. ·. 

i ,~~ ( i 

4. FEYNMAN 1 S INEQUALITX 

' 
.. -..•.. , 

R.P.Feynman in his lecture 131 has introduced an. inequality_. 
which must. be: satisffed ·by. the probability. of getting' the .·same 
values· of A(~, >.) and B(b, ·>-) (i.e. both+ 1 or-both ,:-.1) for::; 
certain choice of the angle between vectors ~ and b (the sys­
tems of photons with (+) parity are considered. hereH ·;, {] z • 

His result for such a system can be generalized in the fol-
lowing way 1 61 •. · ' · , ,· · '· . · .. 

.. 1T + . . -> ' ( J '"':~.I 'i :~ - ·2· •· 
W(cj>ab =;;-:·A(~, >.).•.B(b,.;\) =+1).~ ~ 

\ 0 ~ 
{~. ':: ! 

• ~ • •. ' ! ~. { '"t. -~ 

,(6f'' 

n ,= 4 ,;_ 6·,~· 8, . • . :;,rh 
,, 

: ~-: ·; :'- •./ _-, ·, < .. 
; ~' ' ::· ;~ ~; '. 'f>' 

':-:; ~. ,;;,· ·;· 
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In our preceding work we have shown, that the. derivation of 
inequality (6) rests upon the, assumption of e~istence of a 
continuous group of transformation of p(A) (the'details can be 
found in the ~ited paper~ 61 ). · 

, Concluding this summary part let us remind that it is:well· 
known that quantum correlations do not satisfy introduced ine~ 
qualities (4), (5) and (6). 

5. GENERALIZED INEQUALITIES 
..J 

Sa. Destroyed Independence of p(A) 

'we. can generalize the.considered inequalities when' we. sh~il 
suppose that general'independence of p(A) of.coordinate syst~m 
is destroyed in such a way that . 

' :.. ' i' ~ 

p(A) ~_p.(A), 
.. n 

(7) 

''+ ~- ,.-

where n.' is certain vector. , . 
We shall not especially discuss the physical meaning· of. 

this procedure here, 'but ~s it follows from the subsequent 
contribution 1101 the need for a relative:measure of the proba­
bility is essential for description of local hidden variables 
in a Pseudo-Euclidean space. 

We:shall.;use the notation. i 

. -
~ ._, + .. f +'' + 

P.(~i ·b) = A(a, A). B(b, A) p.(A)dA 
n.. n 

(8) 

and a similar meaning will have symbols of D.(i,b) and H.(;,b). 
n n 

' +' + 
5b. Restored Rotational Invariance of P(a, b) 

... ~ _'! i 

The. rotational invariance;of the•co;nsideredsystems leads. 
to the condition ~j; ~J-

-·· 

p{f, b)= P(ljlab), '' (9) 

which must be fulfilled by the. quantum correlations (a similar 
relation ,holds .for ·D(i, b) and H(;lb)). 

It is evident that, generally, the condition of rotational-
. . . . . 

invariance will be satisfied, if we put n = a or n = b. 
Hence,.we shall consider as "quantum-mechanical correlation 

with hidden variables" only such functions and we shall use 
the index "QM" for them 

4 

\l 
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1.' . 

! 
'i 

P (i, b) = .fA(ii A) B(b, A) p.(A)dA QM · . . •. · · ·. · ·· · n (lp>: 

We shall.:. u~e· the same notation for othe~ functions as· D QM(i, b) · 
and R·M(albh,. ·· . · • 

NoS. we are prepared:to.derive .the. generalized inequalities. 
Again, ·we shall consider a closed. polygon, when different p .. 

• . 1 
must be used as a consequence of (10). · 

Thus the inequalities for four vectors (i0 ~- ·i1 ; i 2, .i3) can 
be described with P• and P• or with P• and,p. as it is 

the Figure~0A~ the aJtetric ineq~litiesa C4) hold for shown in 
anr p(A) 

D. (;
0

, 

_al 

D. (i
0

, 

a3 

> 0, they hold also' for p • and p~ : · 
•;: u. a{::· ·a3•· 

i 1 ) + D. (i 1 , 
al 

i 2) +D. (;~, i 3) - D. (;3, 
a·l . . al 

;o> ;;: o· 

i
1

) +D. (i
1

, i 2) +D. (i 2, 
a3 a3 

;3) ·~ n. c;~, io> ;;: 0. 
a3 

After summation and separation of terms according to (10) we 
get generalized Bell inequalities (GBI).for four vectors 

+ +' ,. ·- ..;.. + .: ' . + .... 

DQM(ao, al) + DQM(al'· a2) +DQM(a2.' a3) D QM(;3·, . i 0 ) .;;: 

(11). 

;;: D. (i3, io) 
al 

D~ (i
2

, i
3

) 

al 
n~ c;o, il> - n.; c;l, _;2). 

3 . . 3 

By'~he same way we can get the generalized Braunstein-Caves 
inequalities_ (~BCI) ! 

HQM(iolil) + HQM.Cilli2) + HQM(;~Ii3) .;.· HQM(i31io) .;;: 

·-03 

;.'· ·-

.-•. -·0\L\) 
' ·' ~ : _, ~} 

....... ., . 
·...;, 

).1.: .-¥.; 

......, 
-Oo 

,,-.,. 
·oz. 

;;: H. (i3 li
0

) -H. _(i2l;3i- (12) 
'. <;. ) ' ~- .. ( ' : ' 

~~~ (i: 1~1) 
• <l.i . ' 

( • 1 .• ''). 
H •. a 1 ai . 

a3 ., :.\ . 

. Let us· briefly comment on re­
ceived .. results.· .On 'the left-hand 
sides of both inequ~iliti~~ (11) 
and(12.) stand.the quantum-mecha­
nical values (due to the defini­
tion (10)) which, generally, 

5 



need ~ot satisfy the condition ofmetridty, because the' right­
hand sides can take negative values. Unfortunately, we cannot 
interpret these right-hand sides as measurable quantities (ge­
nerally it is impossible to express them using quantum-nlecha­
nical formalism, because they are model-dependent)'.. · 

6. GENERALIZED FEYNMAN INEQUALITY (GFE) 

In .our preceding work 161 we have shown that the use of rela­
tive probability measure has as a consequence that its trans-· 
formations do not form a continuous gro~p arid that the inequa~ 
lities of Feynman can be rewritten as 

W(cp arbitrars; A(i, A)•B(b, A) = +1) ~ 1 (13) 

which is fulfilled trivially. 

7. AN EXAMPLE OF MODEL-DEPENDENT INEQUALITIES 

In our preceding works i 5.' 6 1 we have introduced two theorems, 
which can be used for the formulation of model-dependent re­
lations. 
Theorem·1. 

The relation 

+ + + + 
D(a 0 , _a 1 ) + D(a 1 , a 2 ) + 

' I • ' 

D~~ n-i,• in) - D(in' io) = :~ (14) 

holds for each p(A.) > 0. J p(A)d>.. = 1 if and'only if:, for each 
(
~ ~ ~ 

>.., the sequence A a 0 , >..), A(a 1 , A) .• • .. A( an, A) changes .its 
sign no more than once. 

For the symmetric singlet state of protons it holds 
Theorem'·2~.' . .· . . .. 
. The functions P( cp b) and .W( cf> ab; A,B. =· + 1) reach their max~­
ma ·for .arh,itrary p(AJ > 0 .and .tP ab in the interval •0 ~· ¢lab ~ 2 

. . . . ... _. ... + ·. + 1T 
only if the sequence A(a 0 , >..), A(a 1 , A) .• ·• A(an, A.). tPa

0 
an::; 2 · 

changes its sign no more than once for each >... ~ '-..' 
If the func'tio.ns p(A.), A(i,1 ~) and B(b, >..) guarantee the ro­

t'at:·i'onaLinvariance 'of P(i,· b)' 'for any vectors i and b, then·. 
the· prec.eding' co'ndition' is al'so suffici~n:t and the P(i, b) .. is 
e·~~ar to :}•'. ,. : ; . . . ' . ' '. . . ' . 

,,·• 
+ ..... 

P(a, b) 
1,,;•· .4cp ~b'' 

=1- -1T-

... 
;!. 

(15) 

6 

for $ b in the interval · 0 ~ ¢l b ~ a . a 
of mentioned. theorems can be ·found in 

1T/2~ The proofs 
the ·cited·· pa-

pers!s,6t. . 
Let us suppose, that our scheme of h.idden variables fulfils 

the conditions of· both theorems .. Then instead of the Bell met­
ric inequalities (4) w~: get ,equalities' in !:w~e interval ~f tfl.·ab 
and the. Feynman inequality (6) also takes a form of an equa-
lity. .. ' •" ' . . .. ' . . . ' . . 

Using p~(A) permits to exploit the Theorem 1 only. In. such 

a case (11) turns into generalized Bell equalities on some in­
terval of ¢l ·· · • The mentioned theorems do not touch the: ine-;· .. " .... aoan ...... • . . , .. ·"'' . . . . ·. 
qualities of. Braunstein and Cave.s. ,As we have shown~? 1 , the 
bounda~ies given by information entropy are wider than those 
given by any linear functions of P(a; b). ·· 

8. CONCLUSION 

The 'derived! generalized ifl'equalities (!'{), (12) and (13) 
which were obtkined .with relative measure of the:.probability 
are wider than the usual ones, ( 4) ~ ( 5) a~d ( 6) and, therefore, 
they need not be in contradictio~ with q~ant~ mechanics. As 
we demonstrate in,,the''subs~quent contribution, they can _:be un­
derstood as the inequalities for local hidd~n.v.a~iables theory 
in· non-Euclidean spaces. · .; · · 

REFERENCES• 

~ .··c . .,. • ·:. ~ ) ,.t • .:· · L• 1 :~~ • r • •• 

.1. Bell J.S~ - Physics,',1964, .. 1. p.195.. . .. 
2 :Braunstein S~L·.•, Caves' C.M: "-'Ann. Phys., 1990,202., p.22. 
3 l-Feynman·R.P.- Int. J. Theor;.Phys., 1982,.2h_p~467. 
4 ···sa.n.tos' E~ - Found.• Phys., 1991, 21, p.2.'21. , . ···. ' ·. 
s. Tyapkin A.A.~~VindU:§ka Mr:,:. Found. ·.Phys. ,·1991, 21, :p.185. 

. 6. Vinduska ·M. :- JINR, .E5::-91-485, Dubna;: 199Lt, . 
7. Vinduska M. - 11 Information:..The~i-etic. Beil 'Inequalit:les 

and· the··Relative ·Measure 'of Probability11
,··• to: be· published, 

Found. Phys., 1 March 1992. · .. ~ •. · · '!· ' 

8. Zurek .W.H. - Nature, .. 1989, .341, p.119. ··' : 
9. Fivel D. I. - Phys. Rev. Lett.~ 1991, 6.7, p-~285.· 

10. Vinduska M. - JINR E5.:.91.:.5.34·; Dtlbha; 1991. 

'\ • ' r' ,~ 

Received by Publishing Department 
on December ·3-; -1991.· · · 

7 

..-: > ', "' ' ~ 


