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1.The purpose of this paper is to obtain asymptotic estimates
of the number of peribdic paths {cycles} in countable directed ‘
graphs,.This problems is deeply connected with the theory of dynamlcaa
gystems and statistical phyles Here the Bowen- Rue]le Sinai ther-:
mudynamlcal formalism (BRS) serves as a connecting chain.

BRS theoryldeals with the so- called hyperbelie dynamical systems.The
latter include one dimensional maps ( on the interval or circle ), the
hyperbollt torus automorphisms, Anosov diffeomcrphisms, Axiom A
Smale’s systems the hyperbolic attractors which are very popular to-
day. and ﬁlnally, the hyperboiic billiards. The latter include
clasnlcal ‘model of -hard balls,the Lorentz gas, the Rayleighfgas and
others. A universal method for investigatlng all of these systems is
the’ symbolic representation. one may construct the so-called Markov
partition of the phase space.Thls partition allows one to code all ‘(er
almost all w1th respect to Liouvllle measure} trajectories by infini-

‘te sequences of letters from some.formal alphabet. The motion 1n the

phqsé space correspcnds ta the shift of each - Bymbolic sequence In
this way we get a symbollc dynamical system of ,special kind called a

* topelogical Markov chain ( or subsh1ft of finite type ). It has quite

universal structure 1ndependently from specific features of initial
model . ‘Howaver all eseentlal and interesting dynamical propert1es are
1nherited ln this symbolic representation.

2. Now e glve exact definxtlons. Let {={a., } be & finite __

3o

'ﬂr countabfe set cf letters { alphabet }. Let R be a set of all

doubly infinite sequencea {..., By peeny @ slgen 4oa@ ,...) With
-n ) ‘o' Pl |1

) 1 2 . :
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entries from 0.Let also A be a matrix of zerces and ones.The number
of rows and columns in A equals the number of lef:ters in the alpha-
ket Q.

We consider a subset ZACQZ of admissible sequences which are
constructed by the rule a(ai 20 )=1 ¥n, -« < n < o. Here a(a,B)

n n+l
denotes an element of the matrix A corresponding to the pair o,geQ.

In other words the matrix A gives admissible transitions from one
letter to another. All transitions between neighbouring letters in
the seguences U={ai —

n
In the space Z we intreduce the shift transformation G:XAAZA defined

belonging to the set ZA must be admissible.

by 80= B{an}_m —{Bn} where Bin=ain+1.The pair (ZA,S) is called a topo-
logical Markov chain (TMC).

Any TMC has a simple graphic representation., Let us take a di-
rected graph whose vertices correspeond to the letters of alphabet Q
and directed arrows give admissible transitions.Then an adnmissible
sequence o<k, defines an infinite path with one marked vertex on it
(whish corresponds to zero element of o).

At present BRS thermodynamical formalism has given very imp~
pressive results in the case of finite TMC {i.e. when the alphabet @
has a finite number of letters). The notions of topological entropy
and topological pressure have been defined; the Gibbs measures
(equilibrium states ) have been constructed; the variational
principle, the exponential correlation decay,the cemtral and local

limit theorems have been proved /1/’/2/’/3/'/4/Finally, the guestion

about pericdic seguences GEZAin TMC ( or cycles in the related
directed graphs ) has been considered. The first result is that the
number P of periodic sequences of perlod n in TMC (Z ,8) (i.e. the
humber of solutions ef the eguation 6"r=o ) grows exponentlally fast

1In P
n

1lim
N>

= = h(e,£,) (1)

Here h{o, E ) is the topological entfopy of TMC.More subtle results are
connected w1th the distribution of periodic sequences in the space E,
/3/ and various limit theorems for the distribution. The interest to



these questions is also due to the fact that periodic points are used
to describe the structure and the properties of Gibbs measures.

On the contrary there are very few results in the case of
countable alphabet. The topolegical entropy /6/’/?/and the topological

pressure/B/have been defined; the variatienal principle has been
also proved /9{ But Gibbs measures have not been constructed in

dgeneral case ( moreover, sometimes they do not exist). Nothing is
known about the asymptotics of periodic Sequences GEZA ( even the law
(1} fails in general case). At the same time a number of models which
are interesting from the physical point of view are reduced Jjust to
the countable TMC.Such are certain hyperholic attractors and all bil-
liards 710/ For example, the following relations for billiards have

been obtained in /11/./10/

n n

K <Pn<L (2)
wherel<K<L<w It would be very desirable to prove the law (1) at least
for this case. But, apparently one needs some additional properties of

the countable TMC serving as a symbolic representation of billiard.

No such suitable properties have been known so far.

Here we make the first step in studying asymptotics of periodic
Sequences in general countable TMC, We present a simple clear and easy
to check condition under 'which the limit (1) exists and eguals the
topological entropy of TMC. It is remarkable that in a way our
condition turns to be necessary as will be shown in theorem 2.

3. Now let (ZA,S) be a countable TMC, ¢ and A are related direc~
ted graph and transition matrix. We consider connected irreducible
graphs. The first means that any two vertices can be connected by a
path, and the second that one can find a cycle containing both of
them. According to Gurevié/5/the topological entropy h(e,ZA) can be

defined as

h(8,%,)=sup h(G )=sup log A(G).
A A
G G

where the sup is taken over all connected finite subgraphs ¢ of G,

h(&) being the usual topological entropy of finite TMC determined




by G ; the logarithm of maximal eigenvalue of the transition matrix.
It is known 712/ that
= (n)_ n
P (A)=tr a'™= 7 Ag

where Ai are all eigenvalues of A including multiplicities. Then

log Pn(A)

lim = = h(e,x,) - (3)

>,

Hence the limit (1) may exist only if h(e,ZA)< w. But as the follo-
wing example shaws (fig.1) it isn’t sufficient to provide the
existence of the limit (1)

The topelogical entropy of this graph equals leg2z, but there

is an infinite number of periodic points of periods 2,4,6,... Thus
the seccnd necessary condition for fulfilment of law (1) is that the
number of periodic Sequences of period n must be finite for any n.
We may try the condition (2) which does appear in symbelic represen-
tation of billiards /10/ However, as was shown in 713/ there was a
connected countable irreducible graph with finite entropy satisfying
(2), for which

leg Pn log P

lim — * 1im n_ (%)
- —— N-w
N->o

The idea of construction of this graph is that one takes a fi-
nite sequence of simple cycles (i.e. cycles whose vertices are dis—
tinct J, of the same period , say n,;, then a sequence of simple
cycles of sufficiently large period n, and so on. We may note that
in this example infinitely large simple cycles are used. If we
restrict the lenghs of simple cycles keeping (2) then as is easy

to see, we come to the following situation.



Preposition 1. Let G be a ¢onnected graph,h(G)<e Let the

lengths li(G) of all! simple cycles are uniformly bounded.

li(G)< N -
Let the cendition (2) be true. Then 6 is a graph with finite number
of vertices, '

4. Now we suggest another conditicn forbidding large number of
cycles with the same period. We mark one vertex, say W, Then we de-—
fine a distance Pl(s) between vertex s and the initial vertex W as
the number of arrows of the shortest path from W to s, Then a dis-~

*
tance p (n) between some cycle p of period n and W can be defined as
*
P (n)= min p(s)
sep
Let for any cycle of pericd n the following condition be true

*®
p (n)<F(n) » (4)

where F(n) is some increasing function ( the above example shows that
F{(n) is to be slower than exponent) Roughly speaking (4) forbids

appearance of small cycles at large distance from W.
Theorem 1. Let G be an aperiodic irreducible countable graph,
and h{G)<w. Let the number of arrows going out of any vertex of G be

F{n)
uniformly bounded. Let (4) be true ¥ n=l where lim o =0 -
. IN->w
Then
log Pn
lim o — = h(G} - (5)
N->w

Proof. First,from (3) we have

. log P
lim n_ ., h(G)
-_— n
nN-o
log Pn
Now we want to estimate the upper limit lim n Let the number

of arrows going out of any vertex be less than say k(such chains are




called iniformly bounded (forward)). Let {Yn} be a set of thase
points 8 for which

v ose{¥ } P(s)=F(n)
{(i.e. these are points, where cycles of period n may start) Then

#(v,} = xF(M),

Let A be the related transition matrix of infinite size.Then

According to s1a/ in the case of countable irreducible apericdic
graphs we have

n 1/n n n
{34;,} - R, A = {I/R)\\,
n n
where R is the radius of convergence of the sum ¥ Aij t { in fact

it is independent of vertex i, j) Gurevié/S/showed that if G is a
connected graph with h{g)<w, then h{g}=-logR.Hence

n
log P log((1/R) } kF(®))  1ogn  F(n)leg k

= + - .
n n = n n log R

log Pn

lim n = -log R = h(G}

T
from which the assertion is obvious.

Thus we can provide the law (1) if the function F(n) grows
slower than n. What happens if this condition fails, i.e. if there

is a sequence n1<n2<n3 ..... » Dy and a constant C such that

F(ni) = Cn. v oi. (6}



The following theorem shows that +then one can construct a
counterexample, where the limit (5) does not exist.

Theorem 2. There is a graph with all above pbroperties, F(n)
satisfying (6) for which (*) is true.

Proof. We construct the required graph. First, we make a loop
at the initial vertex (in this way the constructed graph becomes
aperiodic}. Let our graph T be such that for each vertex there k
are arrows going out of it., Then

h(T) = log k . ) {(7)

Let {ni} be a sequence, defined by (6). Further we shall give
additional properties of {ni}. We consider the set 5, of those
points, for which

pi(s) = ny Y sesnl -
Each of these points will be a "starting peint" ot cycles of period

n, (i.e. for any seSn there is a path of length n,-1 and the last
1

arrow returns to the initial point.) Thus the whole number of cycles
of period n, will be

1n1 nl-l
P =k k '
ny
Then we stop making cycles, so that the cycles of periods
n1+1,n1+2,... are formed due to the loop at the beginning. Thus
log Pn decreases. Let n,, be such that
n
log P
By = log k + ¢
Ny

for some small c£.We begin te construct all possible cycles of period
n, according to the same scenario. All ponts for which
p(s)= n,
will be starting points of cycles of peried n,. Then
n2 n2—1
P_ > (k-1)  (k-1)
s}
2
and so on, Thus
log P
n

log P
> 2 log (k-1), while lim

lim n_ . log k

N0

If k is sufficiently large then we are done.




Apparently, the assertion of theorems are independent of the

choice of the initial vertex W.

Remark. It is interesting to compare our ceondition {4) with
other known properties of countable graphs. The only classification
for such graphs has been elaborated by Vere-Jones /12/( see also
Salama /15/) It distinguishes three types of graphs: transient,null-
recurrent and positive-recurrent. The latter ones are the most
suitable for thermodynamical formalism, because only these graphs

possess the measure of maximal entropy /16/.But it seems that the
existence of the limit {*) does not relate to this classification.
Really, the example in /13/( in which the limit (1) does not exist)
is a positive-recurrent. On the other hand, it is easy to construct
transient and null-recurrent graphs where our condition (4} holds
and even F(n)=0 (i.e. all loops in the graph have a common vertex).
Example. Take a vertex W and k arrows going out of W.From
each of their ends take another k arrows doing out and sc on. Then
we add to this graph some arrows returning from far located vertices
to the initial vertex w {ho more than one returning arrow per vertex).
Finally, we can remove some number of vertices( and arrows) to obtain
an irreducible graph. It is clear that cur graph is uniformly
bounded (forward) and all the loops have a common vertex W. The
number fn of the simple loops of length n can be made arbitrary bet-

n-1 n-1

ween 0 and k . Taking fn~n-2k for all n=n, and anD for n<n

0
we obtain a transient or null-recurrent graph,depending on no(see
definitions in /15/)

The authors thank Gurevié¢ for helpful discussions.
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