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l.The purpose of this paper is to' obta.·~n asymptotic estimates 
of the number of peri6dic paths (cycles) in countable directed 

' graphs.This probl~m is deeply connected with the theory of dyn~micaJ 
sy.stems ~nd stat'istl.cal phy.sics. Here the· Bowen-Ruelle-s.inai ther­
mOdynamical forma~ ism _{BRS) serves as a connecting chain. 

BRS theo'ry
1 
deals with the so-called hyperbolic dynamical systems. Th~: 

latt!!!r include one dimensional maps ( on the interval or circle .) , the 
hype;rbolib t.prus automorphisms, Anosov diffeomorptl'isms, Axiom A 
Smal,e 's syst~ms, the hyilerbol ic attractors Which are v_ery popular t.o­
da1y, and :e.inally, the, hyperbolic bi:l.liard1s. The, ).at.ter include ' ' . classical .. model 'of 'hard baUs, the Lorentz gas, the Rayleigh' gas and 

'c;>thers. A universal method for investigat.ing·,all of these systems Js 
the' symbolic .represe~tation. One may construct the so-called Markov 
partitiOn,of the phase space.This partition allows-one to code all 1(or 
almost _,all 'with respect to ~iouville m~asute) t~aject.Ories by inf~n·i-. 
te se~ence·~ of letters fro.;, some formal alphabet. The motion in· the 
,ph~se space corres~onds to the shift of e<l!ch symbolic sequence. In 
this way we get a symbolic dynamical system of •Special kind called a 
topological Markov chain ( or sUbshift of finite type ) . It has quite 

' universal structure inde'pendently from specific features of initial 
model. 'How~ver all e~sential and interestin9_ dynamical prO:perties are 
l.nheritecl in th1s symboll.c tePresentatl.on. 

2. ,No~,.· •e give eJ{act. definitions. Let O={a~,o:2 , .•. J be· a _.finite 
\<:l:t" ¢ountable set of letters ( alphabet'). Let Q be a set of au 
doubly infinite sequence!"{ ... , ai ~ ... , ai ,a1 ._, .... a:1 , ... }with -n •l o · n 
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entries from O.Let also A be a matrix of zeroes and ones.The number 
of rows and columns in A equals the number of let.ters in the alpha­
bet 0 .. 

We consider a subset LAcQz of admissible sequences which are 

constructed by the 

denotes an element 

rule a(a. ,a. )=1 vn, -oo < n < oo. Here a(a:,/3) 1n 1n+l 
of the matrix A corresponding to the pair a:,{3e0. 

In other words the matrix A gives admissible transitions from one 
letter to another. All transitions between neighbouring letters in 

the sequences ~={a:. } 
00 

belonging to the set LA must be admissible. 
1 -· n 

In the space LA we introduce the shift transformation B:LA-)LA defined 

by e~=B{a: } 
00 

={/3 } where {3. =a:. .The pair (LA,B) is called a topo-n -oo n 1n 1n+l 
logical Markov chain (TMC) . 

Any TMC has a simple graphic representation. Let us take a di­
rected graph whose vertices correspond to the let.ters of alphabet Q 

and directed arrows give admissible transitions .. 'I'hen an admissible 
sequence ~eLA defines an infinite path with one marked vertex on it 
(whish corresponds to zero element of~). 

At present BRS thermodynamical formalism ha::> given very imp­
pressive results in the case of finite TMC (i.e. when the alphabet n 
has a finite number of letters). The notions of topological entropy 
and topological pressure have been defined; t:he Gibbs measures 
(equilibrium states have been constructed; the variational 
principle,the exponential correlation decay,the central and local 

limit theorems have been proved /l/,/ 2/,/J/,/ 4/Finally, the question 

about periodic sequences ~eLAin TMC ( or cycles in the related 
directed graphs ) has been considered. The first result is that the 
number Pn of periodic sequences of period n in TMC (LA,e} (i.e. the 
number of solutions of the equation en~=~ ) grows exponentially fast 

Here h(e,LA) is the topological entropy of TMC.Mo:re subtle results are 
connected with the distribution of periodic sequences in the space LA 
/S/ and. various limit theorems for the distribution. The interest to 
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these questions is also due to the fact that periodic points are used 
to describe the structure and the properties of Gibbs measures. 

on the contrary there are very few results in the case of 
countable alphabet. The topological entropy 1 6/,J?/and the topological 

pressure/8 /have been defined; the variational principle has been 
also proved 19~ But Gibbs measures have not been constructed in 
general case ( moreover, sometimes they do not exist). Nothing is 
known about the asymptotics of periodic sequences ue~A ( even the law 
(1) fails in general case). At the same time a number of models which 
are interesting from the physical point of view are reduced just to 
the countable TMC.Such are certain hyperbolic attractors and all bil­
liards 1101. For example, the following relations for billiards have 
been obtained in 1 111,1101 

Kn<P <Ln 
n (2) 

wherel<K<L<ro It would be very desirable to prove the law (1) at least 
for this case. But, apparently one needs some additional properties of 
the countable TMC serving as a symbolic representation of billiard. 

No such suitable properties have been known so far. 
Here we make the first step in studying asyrnptotics of periodic 

sequences in general countable TMC. We present a simple clear and easy 
to check condition under'which the limit (1) exists and equals the 
topological entropy of TMC. It is remarkable that in a way our 
condition turns to be necessary as will be shown in theorem 2. 

3. Now let (~A,e) be a countable TMC, G and A are related direc­
ted graph and transition matrix. We consider connected irreducible 
graphs. The first means that any two vertices can be connected by a 
path, and the second that one can find a cycle containing both of 
them. According to GureviC/5/the topological entropy h(B,~A) can be 
defined as 

h(e,I:A)=sup h(G 
A 

)=sup log i\(G) • 
A 

G G 

where the sup is taken over all connected finite subgraphs G of G, 
h(G) being the usual topological entropy of finite TMC determined 
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by G J the logarithm of maximal eigenvalue of the transition matrix. 
It is known /l 2/ that 

P (A)=tr A(n)= [ >~• n 1 

where i\i are all eigenvalues o.f A including multiplicities. Then 

log Pn~ 
lim n ~ h(BJLA)' (3) 
n_,., 

Hence the limit (1) may exist only if h(BJLA)< oo. But as the follo­
wing example shows (fig.!) it isn't sufficient to provide the 
existence of the limit (1) 

0 0 

fig.l 

The topological entropy of this graph equals log2, but there 
is an infinite number of periodic points of periods 2,4,6, ... Thus 
the second nece'ssary condition for fulfilment of law (1) is that the 
number of periodic sequences of period n must be finite for any n. 
We may try the condition (2) which does appear in symbolic represen­
tation of billiards 1 101 However, as was shown in 1 13

/ there was a 
connected countable irreducible graph with finite entropy satisfying 
(2), for which 

log Pn 
lim 

n 

__ log P
11

_ 
~ lim 

n (.) 

The idea of construction of this graph is tha·t one takes a fi­
nite sequence of simple cycles (i.e. cycles whose vertices are dis­
tinct ) , of the same period , say n

1
, then a sequence of simple 

cycles of sufficiently large period n2 and so on. We may note that 
in this example infinitely large simple cycles are used. If we 
restrict the lenghs of simple cycles keeping (2) then as is easy 
to see, we come to the following situation. 
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Preposition 1. Let G be a 9onnected graph,h(G)<oo Let the 
lengths li(G} of all simple cycles are uniformly bounded. 

li(G)<N-
Let the condition (2) be true. Then G is a graph with finite number of vertices. 

4. Now we suggest another condition forbidding large number of cycles with the same period. We mark one vertex, say w. Then we de­
fine a distance p(s) between vertex s and the initial vertex W as 
the number of arrows of the shortest path from w to s. Then a dis-

* tance p (n) between some cycle p of period n and W can be defined as 
* p (n)= min p(s) · 

sep 

Let for any cycle of period n the following condition be true 

* p (n)<F(n) ( 4) 

where F(n) is some increasing function ( the above example shows that 
F{n) is to be slower than exponent) Roughly speaking {4) forbids 
pppearance of small cycles at large distance from W. 

Theorem 1. Let G be an aperiodic irreducible countable graph, 
and h(G)<oo. Let the number of arrows going out of any vertex of G be 

F(n) uniformly bounded. Let (4) be true V n~1 where lim 
n 

= 0 • 
Then 

log P
0

_ 
lim 

0 = h(G) · ( 5) 
n-;• 

Proof. First,from (3) we have 

lim log Pn_ ~ 
h(G) · n 

Now we want to estimate the upper 
of arrows going out of any vertex 

log P
0 limit lim ---n- Let the number 

be less than say k(such chains are 
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called iniformly bounded (forward)). Let {Yn} b•= a set of those 
points S for which 

p(s)~F(n) 

(i.e. these are points, where cycles of period n may start) Then 

Let A be the related transition matrix of infinite size.Then 

According to /l 4/ in the case of countable irreducible aperiodic 
graphs we have 

n 1/n 
{Aii} ~ R~ 

n n 
A.·' (1/R}_' 
~~ '"' 

n n where R is the radius of convergence of the sum L Aij t in fact 

it is independent of vertex i,j) GureviC/5/showed that if G is a 
connected graph with h(g)<co, then h(g)=-logR.Henc:e 

Thus 

log P
0 

n 

n 

n 
~ loq( ( 1/R) 

n 

-loq R = h(G) 

log n F(n)log k 
~ ------ + ----------n n 

from which the assertion is obvious. 

- log R . 

Thus we can provide the law (1) if the func·tion F(n) grows 
slower than n. What happens if this condition faLLs, i.e. if there 
is a sequence n 1<n

2
<n3..... ,n

1
-+co and a constant C. such that 

v i ( 6) 
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The following theorem shows that then one can construct a counterexample, where the limit (5) does not exist. 
Theorem 2. There is a graph with all above properties, F(n) satisfying (6) for which (*) is true. 
Proof. we construct the required graph. First, we make a loop at the initial vertex (in this way the constructed graph becomes aperiodic). Let our graph T be such that for each vertex there k are arrows going out of it. Then 
h(T) ' log k . {7) 

Let {ni} be a sequence, defined by (6). Further 
additional properties of {ni}. we consid9r the 
points, for which 

'rJ seS 
n1 

we shall give 
set S of those n 

Each of these points will be a 11 starting point" of cycles of period n
1 

(i.e. for any seS there is a path of length n
1

-1 and the last n1 
arrow returns to the initial point.) Thus the whole number of cycles of period n

1 
will be 

n
1 

n
1

-1 
p = k k 

n1 
Then we stop making cycles, so that the cycles of periods n

1
+t,n

1
+2, ... are formed due to the loop at the beginning. Thus 

log Pn decreases. Let n
2 be such that 

n 
log P 
_____ n2 s log k + e 

n2 

for some small e.We begin to construct all possible cycles of period n
2 according to the same scenario. All pants for which 

p(s)!> n
2 

will be starting points of cycles of period n2 . Then n n -1 
p > (k-1) 2 (k-1) 2 

n2 

and so on. Thus 

log P
0

_ log P
0

_ Tim n > 2 log (k-1), while lim n slog k n~• 

If k is sufficiently large then we are done. 
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Apparently, the assertion of theorems are independent of the 
choice of the initial vertex W. 

Remark. It is interesting to compare our condition {4) with 
other known properties of countable graphs. The only classification 
for such graphs has been elaborated by vere-Jones ll 21 ( see also 
Salama / 1S/) It distinguishes three types of graphs: transient,null­
recurrent and positive-recurrent. The latter ones are the most 
suitable for thermodynamical formalism, because only these graphs 
possess the measure of maximal entropy 116/.But it :seems that the 
existence of the limit (*) does not relate to this classification. 
Really, the example in 1 131( in which the limit (1) does not exist) 
is a positive-recurrent. on the other hand, it is easy to construct 
transient and null-recurrent graphs where our condition {4) holds 
and even F(n)=O {i.e. all loops in the graph have a common vertex). 

Example. Take a vertex w and k arrows going out of W.From 
each of their ends take another k arrows going out and so on. Then 
we add to this graph some arrows returning from far located vertices 
to the initial vertex W (no more than one returning arrow per vertex). 
Finally, we can remove some number of vertices( and arrows) to obtain 
an irreducible graph. It is clear that our graph is uniformly 
bounded {forward) and all the loops have a common vertex W. The 
number fn of the simple loops of length n can be made arbitrary bet-n-1 -2 n-1 ween 0 and k . Taking fn -n k for all n~n0 and 1fn=O for n<n

0 we obtain a transient or null-recurrent graph,depending on n
0

(see 
definitions in /l 5/) 

The authors thank GureviC for helpful discussions. 
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