


1. INTRODUCTION

The e1genvalue problem is one of the: most frequent problems
of quantum mechanics, statistical mechanics "and .wvarious bran-’
ches of mathematical physics. In the standard realistic situa-
tion the problem cannot be solved exactly. Then, one: resorts
to a certain perturbation theory which usually results in a -
divergent series. When a number of perturbative: terms are. @ =
known, say,*about ten of them,one can restore an‘effective sum
of an.asymptotic series by means of one-of. resummation tech-
niques like the:Borel summation or. Pade approximation.: However,
if .we know.only a few first .terms of perturbation theory, these
resummation techniques are meaningless. A worth: dlscus51on of ~
these difficulties has been done by Stevenson’/1/.

To overcome: this:-trouble,. .an-approach was constructe
to restore the sum of a divergent series.on the basis of.a mi-
- n1ma1 number - of perturbative terms. This approach was called:
the method of self-similar approximations’?’ since its founda-
tion lies on a close connection between the criterion of con-
vergence: and the property of -functional self- similarity writ-
ten for:specially introduced functionals. The method was ap-
plied for:finding out the ground-state. energ1es for 'several..
statistical: and quantum- mechanlcal models’ 274/} .

The aim of the present paper is to show that the: method of"'
~self-similar approx1mat10ns is-applicable not solely for fin-
ding "the lowest energy level of a‘ corresponding '‘Hamiltonian
but for calculating dll its eigenvalues with an accuracy not
worse than that obtained: for. the ground state.: =i .- G,

In Sect1on 2 we formulate the pr1nc1ple of the method whose
foundation with all the details is given.in Refs./2+3/, In Sec-
tion 3 we apply the method. for calculating’the e1genva1ues of
the”:anharmonic-oscillator Hamiltonian' ‘using’ only ‘twoiterms:: -
of perturbat1on theory. We -find the maximal error of.the me-fv
thod. for all eigenvalues and.all anharmonicity parameters to
be. of - the order of 1073. We.show that our method is more simp-
le and.accurate than the qua51clas51cal approx1mat10n (Section
4) and renorma11zed perturbatlon theory (Section 5).
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2.'METHOD;OF SELF-SIMILAR APPROXIMATIONS
: In Ref.‘zf"a general formulation for the mefhoa of'selfféi-

milar ?pprox1mat10ns-was given, being applicable to sequehce

of arbitrary nature. Here, without repeating the formulation.

of the method expounded in Ref.’2/ s
- . we adapt it -
the calculation of eigenvalues. : pt its scheme to sult.:

. Suppose we need to find the eigenvalues of éh'oberétor SRR

- F(x, g{ degénding:on a multiparameter g and a space variable"
x_—i{x.,;x setels X~}}'Where‘d is.a'space'dimenSionality. The -
e;genvalueip;pblem'writtén in the standard form - .- - n

B, 8)%, (0, 8) = £(n, )Yy (x, g)

defines the’sought eigenvalues f(n, .g) andreigehfﬁﬁéfioﬁéi}i'.‘
¥ (x, g) in which n = {n!, n?, ..n%} is a multiindex Bf:tﬁé
order Qf:the space dimensionality. If the problem'does’not‘él-
"low an exact solution, one resorts to one or another kind of "
~-perturbation theory obtaining a sequence bf.approximate terméw

{f, (n, g)},'where the index k = 0,.1, 2,... enumerates the -

approximations. =

s

~To makethe sequence convergent, we'renormalize it ihtrodu~:

~cing into the initial approximation f,(n, g, z) a trial multi-.
Paramgte: z, as a'result of which all farther approximations o

fin, g) ‘=‘ f‘_/k‘(h"" 8, z); k= 0,15 2.,

.Zi tzejiequen?e {fy (q, g,:zk(nfsg))}.:The“governing,functions
e to be deflned by a fixed point condition whose different .
variants have‘been analyzed in Refs./2"*/, First fixed point -
.:con?:tésnsmfor defining :the’ governing functions were prgpo-
".sed +°0 in thg form of ‘the principle of minimal: difference -

B Fobe

. fi(n,;:g,f Z)';':— f:].‘(n,\ g, é) =0_ o

er Stevenson’/’/ .argued that the principle of minimal sensi-

tivity...;. NS
. A‘ | N st Lrohprn e RO .
oz Bl g0 2) =03 2 =2, (0, g) @

: N . (D)
Ee'comi dependent-on this parameter itoo. The. latter is to.be
ran i ! - DSt
| tion: or?ed into the sequence {zy(n, g)} of the:governing func- .
zy(n, g) whose role is to govern the .fastest convergence.

suits-better for improving the convergence of asymptdtic ‘se- =

kr;es.‘Iﬁ what follovsjwe Shall use condition (2) with the no-

Ctationv oo

z,(n, g) = z,(n, g) = z(n, g).
‘:‘Peréuihg>the'spheme of the method;bf'self-Simila;‘appfdximé-
tion§/2f~we,define:the;coupling function g(n, £) by the equa- -

tdon. o L e s T LS I R S T R
£,(n, g, 2(n, g)) = £5 & = g(n, €). e (3)

‘Thed, we introduce the distribution of:approximatidnsjjv |
¥ (ns £) = [£.(n, g,(n, £),.z,(n, g(n,€))) =

- £ (n, g(n,6), 2, (n, g(,E)N17 (4)
satisfying the normalization -

£ (n,8) E
T f v (naE)dE = 1, (5)

in which'fﬁ(n,é) is just the se}f-similat'approximatipﬁ for the
sought function f(n, g).
i".‘ ‘f 3 ,,‘:JV‘.‘}:, : . . :

s

3. ONE-DIMENSIONAL ANHARMONIC OSCILLATOR O

Now the scheme of Section .2 wi

> S , i1l be applied for calculating
the eigenvalues of the Hamiltonian" TR RS

CE g A -
_%gx?,f&kmégg?: e et ek 0 (6)
. describing the one-diméqsiohal'anhafmoniC‘6sci11at0r; in which’
"m;~w}ixiérélpoéitiVe’phfameférsﬁéndhxfé<C-b;ﬂkw);fFOr:an il-
lustration we choose the anharmonic oscillator for the: follo-'
.wing reasons. The mathematical structure of Hamiltonian (6) is
/ common for a great number of various physical problems’zl.The¢f
strandard perturbation theory in powers of the anharmonicity =~
:constant Yields,stronglywdivergent«serigslfor(a}lgfiniteiva:% g
lues of this constant’®”.” Exact numerical solutions for the =
eigenvalues are avariable’®’/ making it possible to check the
~accuracy of our method. Y T



" For the élgehvalues E‘(nr—‘bvdlh7“ﬁ'. " o e Ly
| ni e ) of o erator 6
'is convenient to use the d1men51onle55 qu&ntltlzs ( ) 1t

By the Raylelgh - Schrodlnger ert b :
w1th the Hamiltonian pertur atlon theory, Startlng

: = ¢ %3ﬁ et
_o1 42 mwl o s
Ho = 2mSidx2 +H75f3%%) - (8)2
we can find the approximate ‘eigenvalues
(e (k) : « I y i e

[ n n wo
e (n,g,2) = =5 z = —
depending on a trial
parameter’z. In this notati
w1th the zero approx1mat10n ‘ = 10n: b981nn1n8
‘eo(n,g.Z) =(n+ —)Z.
we have in the ‘first order

el(n,g, ) = eo(n,g, ) - (n + )

il

. wDeflne the vern : - autdbung il fgaldite
‘dltlon (2) goYernlng functlon Z(n,g)rby the f1xed p01nt co

;>;35§%l%”;n

%(lO)

”ih which

-0+ D - (15):
The p051t1ve solutlon to equatlon (14) reads'

(@) cos (o, /35858, 6l
z(n, g) =¥ | ) , (16)

M Aﬂ+Al’l;g—>_-gl’l -
where .
ail“é arccos(g/g ),

w1403
At = (3g) £ /1 ( 7 5’ 1
=(93y s)fl = 0.0644150&/%.
.. From

The weak anharmon1c1ty region corresponds to g << g,
(16) it follows that this reglon becomes more and more, narrow

as the. elgenvalue number increases. Accordlng to (15),

Yo=1; vy, ,=n (n > o).

Therefore, for higher eigenvalues the weak anharmonicity re- ..
gion practically disappears, since . R

gl{'4 0; n > o,

This .explains why ‘the techniques based on the standard pertur—<
bation theory seize to provide a good accuracy for sufficient--

1y high eigenvalues. S
Taking account of (14) we,mayvrewrite (ll)rand;(12) in»the .

© form . .. e e
,e,i(.',"&»?**f,(?*‘%5 3——# .

e =v.(jntf 1 [3’z'zj_é:1; (254;’293 ] iy
“h9re o ;';‘.;_v:, el L 1;i5:¢a IR R SN
EISECEE i a8



-~ Eq.(18) has the property,T
B 1 -

.ad=l, lim a = - =, . s . i ~
o n> oo 0 3 - S L 5

To abbreviate the subsequent exPressmns we shall use the‘?;

>4 notatlon
e (n;g) = e (n,g, Z(n,g)) 5“(i9)'
Equatlon (3) for the coupling functron now reads s
eo(n,g) = & g = gln, £). @
For the distribution of approx1mat10ns (4) weﬂhaye s
Y12(n, £) = [e,(n, gln, £)) - el(n, (n, E))] 1, C(21)
wh1ch together with (17) and (20), glves ' ‘jyric;
yrz(n, E) 48&*/(n * —)“ ; “difj

T @,

In place of norma11zat10n (5) we get

e e W

€, (n)g)

I ylz(n’ g)dg =
e (n)g) ‘ ‘

Integrating¢(23),,wéﬁobtainftﬁéfedﬁafibhiwgﬁg

ealng)/(n 4 %)2 - exP { (n g)/(n + % )2;;,1'?; i
S 2 ey
el(n,g)/(n + } o

e, (n g) —~(n + —)(1 + R g), g > 0

e (n, ) I

>'e(n g)

0.37.

In the weak anharmonlclty reglon, Eq (24) y1elds Y
3 N 7 . N H

(25)

~wh1ch 001nc1des ‘with the exact asymptotic axpan51on’9’ in: po-dv

wers of g. In the strong anharmon1c1ty 11m1t Eq (24) leads to

,~g,n > ®,

e, (n, g) -'— (n + —) eXp (- Z§ ) (6v, g) %, g >, S (26)
fFor hlgher e1genva1ues, (26) transforms to b "?‘7f§a;_
| | D 44 . ' T S Ao DAL g

exp(1/146) - Gn )“’3 e @n

- The.. 1atter expre551on can be compared w1th the correspon51ng )

exact asymptotlc expan51on’9’

2

(3 )H/S t/a’ g,n > oo

For an ea51er comparlson, (27) and (28) can, be wr1tten as

e (ng) = 1.372 338 n*/? VIR P, (29)
"and f
'e(n,g) ~ 1.376 507 n* g1’3; gom > =5 (30)

respectlvely The accuracy of (29) w1th respect to (30) is

“It would not be, of course, honest to check an atcuracy “of

“'a method by comparing only some: asymptotlc expan51ons, ‘as ‘well

as by considering only several elgenvalues, for 1nstance, so-”'
lely that of ‘the ground state. .The true accuracy of ‘a 'method -
must be characterlzed by the, max1ma1 error defined by compa-
ring the’ ‘calculated quant1ty with the correspondlng exact- ‘re-
sults in the -whole region of var1at10n for all parameters ‘gi-
ven. In 'the present case; we have to compare the solution to :

. equation (24) with the known ‘numerical” values’?’ for all eigen-

value numbers n=0,1,2,..:.% and all anharmon1c1ty parameters
g (0, =) +In the same way, if a fixed point condition would
yield several p0551b1e branches for the governlng functlon

~z(n,g), then, for each g1ven ‘set of parameters, we should take

the max1mal error. among all the branches ThlS is especlally



"1mportant 1f one 1ntends to est1mate the accuracy of a: method
for its farther: application to compllcated problems whose
‘exact solutions are not available..Thus by the maximal error
we mean : "

€, = Sup .sup ' _;___§_ _ ll.

* g,n Z(n,g) e(“’g)

Fortunately, in our case we have the un1que p051t1ve solutlon

for the governing function:([6). However, in Section 5 we- shall ﬂ

~-present an example when there appear two p051t1ve branches of
the governing function.: . : ;

" Calculating the maximal error of the self 51m11ar approx1-'

mation we conclude that it is of the order of 10°3 for all L

e1genvalues and all” anharmonicity parameters.kli ' e

\4 COMPARISON WITH QUASICLASSICAL APPROXIMATION

’ Let us compare the accuracy of our method with that of other
approx1mate approaches.
lator .the quasiclassical (WKB) approximation can be used’®’.

“In this approximation the eigenvalues of" the Hamiltonian (6)
read

(1 + 1283 )%/% - 1
e I(B(n,g) = —= -,
l6g

L (31)

,where J

ﬂcendental equatlon_«;_a,wv

=ntg

] ”.:

"— K(ﬁ )J

';w1th K(p ) be1ng ‘a compIete e111pt1c 1ntegra1 of the f1rst
k1nd ‘ , ,

k1‘

K<p )= - S

[(1 - tz)(l - P2t )]“2 ’

fand W1th the var1able p

given by,the expression.

p2 ' [1 - (1 + 12gJ ) 2137, A(ﬁé)'

‘ J (g) is to be obta1ned ‘from the Bohr - Sommerfeld ﬂf
- quantlzatlon condltlon whlch 1n the treated case: 1s a trans- o

For ‘instance, for the anharmonic oscil- |

o

{

{
!

_the renormalized perturbation theory

"el(n,g)'“ 3 (n + —)(ﬁYng

,In thlS way, to obta1n the e1genvalues in the WKB approx1mat1m
‘one needs to solve the transcendental system of equatlons : :

(31)-(33).
In the weak anharmon1c1ty 11m1t the WKB approx1mat10n 1eads

. to the expansion .

WKB(n,g) «(n+ —)[1 + Z(n + )g], g 0, 'g34)

191

which is wrong as compared with the exact one c01n01d1ng

with the self-similar form (25). The WKB'approximation has the

correct asymptotic behaviour only in the strong anharmonlclty
and, s1mu1taneously, high. level limits g m, n > o, ‘when it

A‘F"becomes equ1valent to the correspondlng exact expan51on (30)

(n,g) = e(n g)’ g’n o, T (35)

The accuracy of the WKB approx1mat10n is’ good only 1n this

'asymptotlc region'of g >> 1, n >>'1, and’ worsens’ for the’ 1ow

lying. levels. For example, for the ground state n = 0 and

g » = the error is 22%, and it becomes even higher for inter-
mediate g ~ 1. The maximal error, as defined .in:the previous’
section, for the WKB approximation is too high to consider this
approximation as a satisfactory one for the whole range of-pa-
rameters g and n. Moreover, it is expressed through much more
complicated formulae. than the self-similar approximatijon.-

~,5 RENORMALIZED PERTURBATION THEORY

Compare now our method of self- s1m11ar approximations w1th
15-7,101 As far as Steven-
son’7/ has shown that the minimal d1fference criterion is much

‘3poorer than the minimal sen51t1v1ty cr1ter10n, ve. shall use
here the opt1ma1 variant defining. z(n,g) by:Eq.(13).:

The first-order renormalized perturbation-theory: correspond‘

to e,(n,g,2z) from (17) with z(n,g) defined by equation (14).:

- In‘the weak anharmonicity limit one.has the.same expansion as
" the self- S1m1lar one g1ven by (25) In the strong anharmon1c1-
"ty 11m1t we - get ;;Z T e Sowl : :

)1/3 g > o, o = ii‘;kglh_ ‘,(36)

"which d1ffers from the self 51m11ar form (26) so that the re-

latlon



(n g) = e1(n g)exp (-a /48) . o . (37)
| "holds. For the h1gh level limit, (36) transforms 1nto -
ﬂéi(n;g) z.z nula'(6g)1/33 g,n > », ; . (38)

which, for a better conparison with the exact expansion (30),
‘can be written as

el(n,g) = 1. 362 840 n“la glfa; g,m >, - (39) ‘

The accuracy of (39) is 17 o

' The maximal error of the first- order approx1matlon e1(n g) -

is of the order of 10~ 2, which is sufficiently higher than-that

. of. the self-similar approx1mat1on e, (n,g), be1ng of the order P

~of 10°°

The second order renormalized approximation is equivalent
in our case to ez(n,g,z) from (12) with z(n,g) defined by, the
' equat1on .

202 S
wh1ch y1e1ds B v B
S L " -

z6 - 2z - 16Y 82>

" By using the" substitution -

= 2(z? - 1), S W
eq (41) can: be changed tof ‘h 7; R .,‘bﬁe ¥
«Luz#' 16Y n8U ¥ lZg(n “+n ) g =0 - f ;,qz (43);5"

‘The 1atter equat1on has no: real solutlon for n = 0 1 and has <
”two real solutlons ‘ !

2

8Y g(l i\/ 1 _2 a; ) k _"f : FE 5 (44) ‘

'for n 2 2. Here Y is the same as (15) and a_-is g1ven by
(18). Therefore, the function z(n,g) also has two, real bran-
- ches defined by the equation PR
é - ' — % = . ) - LT B . R 45
z z, =6y g=0n22, - | : (' )

+

10

§-~e;(n,g,z) -0, R (40)

in which -

ii 53(14:1J1 ggan)yﬁ;*<*Q ‘ri'fhﬂafv;kawg
The‘hlgh level - 11m1t ‘of. (46) is: L
'hehce

Y = 1.784669 n, ,y;l:”bfééidés n.oo (47),

The weak anharmon1c1ty 11m1t colnc1des W1th the self- 51m11ar,

express1on (25) In the strong anharmon1c1ty 11m1t, Eq (45) gi-.
ves - ; . o . . . '

2 (n,g)

<6Y 8)“3 +°° E o 'fj;;(&a)t— |

Consequently, approx1mat1ons (11) and (12) become o
L R , N N by

AFIES ST SR

¥ “ o ~l S l E 'Yn o -_0-_ ;1_/3 e _ B N R “3=
el(nag),7a2(9 f;2)§1;T;§§§r)(6Yn 9 R S ST P

R

and;;resbectibeiy;

il 45*4 e g e
et (n,g) ! —(n +'1)(1 + QY* 24)(6Y g)“3 o)

- where’

Ay, 25
+; 6(Yt )2

+_6 =12 =4~ (51)
, By Yn- R N DT

H

Eq (51) is 51m11ar to (18) but defines two dlfferent branches

which in: the h1gh 1eve1 11m1t are

11m al =1, 055 213, Lin a; # - 0. 321095 *"’3{}‘, f?:?f;(525}~‘

mo® T n->°°»v

Approx1mat10n (11) 1n the strong anharnonicity'and.high le-
vel 11m1t reads‘r; [N R e ST B L < N




v

1.410 821 n*’/3 gl/3.

R

e;(n,g)
o g,n > =

ei(n,é)': 1.365 262 n*’3 gl)a'

The correspondlng accuracies are 37 and 0.8%, respectlvely, as’

compared with the exact expansion (30).
Approximation (12) has the asymptotic form

es(n,g) = 1.362 366 n*/3 gl/3, o
‘J, 8 ‘n -> ’00 (54 )‘
e;(n,g) = 1.376 920 n*/3 g/2. ,

These two branches have “the asymptotlc accurac1es of 17 and

“0.03%Z, respectlvely In the whole range of the parameters g
and n 2 2 the approximation e;(n,g) corresponds to-an _error
of 1%Z; and e,(n,g), to ‘an error of 0.37%. : g

Thus, the second-order renormalized perturbatlon theory is

applicable for ca1cu1at1ng the elgenvalues of the anharmonlc
oscillator only for n 2 2, where  its maximal error, as deflned
in Section 3, is of the order of 107 2. -

, Aga1n, we see that the method of self similar approx1ma- L
tions’ is simpler and more accurate’ than the renormallzed ‘per-
-turbation theory.

A natural.question can arise whether it is p0551b1e to - im-
prove the second-order renormalized perturbation theory by an
additional self-similar renormalization. To chek this, let us
build the distribution of approximations (21). More exactly,

(53)

we have ‘now two distributions correspondlng to e (n, g) wh1ch3°
are
g a5/ + By | fr )
ygz(g) I 2 1 ft 2 3 " ) (55)
bt €2/ (n + 1170 e L
: N - \\ I
: here
S . ) , N ;+:‘ P P
+ 22 In 2 Yn N .
b“ c3 ( Yfﬁ) (6 Y T an - 6).
n n s

From equation (46) we can express

g oeyE N
a = —2(8-3—) -6,
omo 5y Yn

12

“because of’ which::

The normallzatlon (23) y1e1ds two branches of therself-s1;
mllar approx1mat10n satlsfylng the equation

e aﬂf* et B (s ady om0

e bt o1 2o
[el(n,g)/(n+ .‘5)] =1

;[ei(n,g)/(nl+i%)]g£f51ﬁﬂ£ nimk
| _ (58)
1 ¢
,hg[ef(n;g)y(ﬁz+ﬁ%)12¢f¢1

In the strongZanharmOhicityflimit,;658)»leads{toyx}x 1

:e. (ny g)L—Ae

(n’s) ‘exp: (b /48)"gf+ -

Comparing (60) W1th the exact expansion (30),We see - that

the asymptotic- accuracy of e,c(n, g) 3Z,P-and aof
e, (n,g), 0.2%. The numerical calculat1on shows that in the
whole range:of.g and n 2:2;the error; of e (n,g) is.not,more
than 0.77% and; that of W (n,g) 1s 1ess or of the order .0f.0.37.
Thus, an add1t10nal self 51m11ar renormallzatlon smoothes the
difference between;: the branches of second- order renormallzed
perturbatlon theory and sllghtly 1mproves'1t by maklng‘ he ma-
x1ma1 error;0. 77 for n érz-d




. However, no pr1nC1pa1 1mprovement is ach1eved,.s1nce, as
before, there are no solutions for n = 0,1 and the maximal er-
ror is of the order of 10" 2, Therefore; it is more reasonable:
to use directly the method of self-similar approximations. ap-;
plied in Section 3, as it works for all n = 0,1,2,... and ~
g € (0, =) having the maximal error of the ‘order of 10-3.

The main difference between the renormalized perturbat1on
theory and: the method of self-similar approximations is that
the former yields an additive-type renormalization while the |
.latter leads to an exponential-type renormalization, which .can
be illustrated in the follow1ng way Let us subst1tute an ap-
proximate . form : RS : ,

f (n,g(n, &), z (n, g(n, E))) = £ (n, g(n, E), zk(n g(n E))) +

'iinto the:distribution of .approximations .(4), which:gives

"yks (ns E) = [Rks(n) g]
"Then, .from normallzatlon (5) we f1nd the self 51m11arfapprox1-
mation : :

£, (n, 8s Z(n,g)) =ofy (n, g> Z(n g)) exp[R (n)]

-with an exponentlal type renormallzatlon At partlcular example
of such a renormalization is-given by formula (26).

. Thus, ~we .have “shown -that ;the method .of self‘51m11ar(approxi-
‘mations can be successfully used for.the eigenvalue problem.;
“The eigenvalues of the anharmonic oscillator can be calculated
with a maximal error of the order’ of '10:3 sfor.all anharmonici-
Lty parameters The method 1s more 51mp1e and accurate than the

theory.

" REFERENCES® * "

e,1QjSteVenson“P;M',—*Nucl Phys ;(1984 B 231 p 65
TZ;“Yﬁkaldv’V.Ii . Math. Phys y 1991, 32, p+1235 REE
3. Yukalov V.I.~-~Phy51ca,‘1990 ‘A-167, p. 833‘3434i S
4. Yukalov V.I. = Inti*J: Mod. Phys:, 1989, B3, pi169L.:
5.%Yukalov V.I: - Mosc.Univ.'Phys. Bull, 1976, 31, pi10.
6

. Yukalov V.I. = Theor. Math. Phys., 1976, 28, p.652%

14

i

‘Stevenson P.M. - Phys. Rev., 1981 D23, p- 2916.
,]Bender C. M., Wu T.T. - Phys. Rev., 1973, D7, p.1620.
.'Hloe F. T. Machllen D.,. Montrol E W. - Phys. Rep., 1978

43, p.305..

.,Caswell W E; - Ann Phys s 1979 123, p.153.

Rece1ved by Publlshlng Department
:on October 25, 1991



