


1 INTRODUCTION '

: The symmetry analys1s of dlfferentlal equatlons is one of the central problems in
modern applled mathematlcs and mathematlcal physics: Among numerous methods of ;
analy31s and integration of dlfferentlal equations the most general and unlversal ones
are based on their symmetry propertles S.Lie has mtroduced the concept of symmetry
just for the purpose of creating solutions of differential equations. From the theoretical
point of view the problems of symmetry analysis are investigated i 1n sufficient detail.
But inpractice to find the symmetry group (or_even. some 1nd1v1dual generators) of

“a given differential equation it is necessary to- carry out extremely tedious algebralc

_manipulations. That is why computer algebra has contmued to play an 1ncreasmgly
, 1mportant part in the practxcal symmetry analy51s [1] Lf’.“‘ -’f 1 -

_ * Now there are several computer algebra packages for symmetry analys1s of d1fferen-
tial equations. Among them the big packages SODE for ordinary dlfferentlal ‘equations
‘and SPDE for partial differential equations are the best developed [1] [2] for: determin-

" ing so-called classical or, point.or Lie symmetries. They use the most general method :

of computation which is based on generating and solving of the determlnmg system m'

the form of linear dlffelentlal equations in functlons Wl’llCh occur in the definition of a

symmetry generator Both Reduce and Scratchpad 11 velsrons of the packages SODE
and SPDE have: been designed according to basic concepts of software engineering.

Moreover, data abstraction as one of the main attributes of the Scr atchpad 1T system

~ allowed one to gain very effective module organization of the package with the detailed

mvestlgatlon of its complex1ty 2. The most difficult part of the whple computatlonal

process is s1mp11ﬁcat10n and integration of the determmmg equatlons At this step a

user has often todo a reasonable ansatz on the structure of symmetrles By th1s reason

an. mteractlve reglme is always assumed , ; ; ;
; ln the searchmg of so-called generalzzed or. hzgher (Lze Backlund) symmetrles, when
functions which occur in the definition of a symmetry generator may depend not only on
the point, i.e., the dependent and the independent, variables but also on the derivatives
of the unknown functions, an, approprlate ansatz plays even more 1mportant role The
pomt is that the existence of a higher symmetry i imposes 1 much more strong llmltatlons
on the equatlons under. consideration than the existence of the classrcal L1e symmetrres

‘Because of this; a universal computer algebra package for the constructlon of higher-
order symmetries based on the most general scheme of computatlon (see, for example
[3]) may not be usable for many nonlinear problems. Therefore special constructive and
effective methods for finding the generalized symmetries in some sufﬁc1ently wide class -
of nonlinear differential equations are of interest for-the design of the corresponding-
computer algebra packages. : i

In this paper a computer-aided approach to construction of. h1gher symmetues is
. . !
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‘ presented whxch ‘can be applred to a wide class of multxcomponent quasxlrnear partlal

differential equations of the evolution type. After necessary mathematical deﬁnltlons
and formulae (Sect.2), description of the computational procedure for higher symme-

“try analysis (Sect.3) and its implementation (Sect.4) in the form of package written "

in internal language (Rlisp) of the Reduce computer algebra system are given. The

package consists of two functxonally independent modules. One of them is destined for -
_ the symmetry analysis proper and the other for solving systems ‘of nonhnear algebraxc -

-equations which arise in the presence of a.rbxtrary numerical para.meters Asan illustra-

tion, the computation of the third order Lie-Baclund symmetrles for exght parametr]c

famlly of coupled nonlmear Schrodlnger equations is consxdered (Sect 5)
. -

‘2. MAT_HEMATICAI:. BACKGROUND

Among the partxal dxfferentlal equatxons of physxca.l 1nterest of great 1mportance '

is the class of polynomial- nonhnear evolution equatxons (NLEE) in one-spatxal and
one—temporal drmensron of the followmg form ‘

AuN+F(a: U, UNDL; @ aK), N>‘)
M) up = 6"u/6z" F (Fl
AM) A.,a.EC A#O o

Jup=P(z,u, uN)
Tu= u(t z)= (u

A= dzag(Al,

. where the vector functlon Fisa polynomxa.l in its arguments 1ncludmg numeric pa-*
rameters q; if any. F is said to be a differential functxon of N—1 order The functlon ,

L) has the order N respectxvely

e

~ The class (1) contains such well-known integrable NLEE as the Korteweg-de Vries.
equation, the Burgers equation; the nonlmear Schrodmger equatxon and many otherk

ones which are now under intensive 1nvest1gatxon

‘The concept of integrability is closely connected with the existence of hxgher symme- )
tries [4]:' NLEE is integrable if and only if it possesses infinitely many tlme—xndependent g

higher symmetries. But in practice the existence of M different higher symmetrxes is
suﬂicrent for integrability of M-component NLEE: R :

Deﬁmtzon A vector function H = (H',...,HM ) of a finite number of differential

variables z,u,u,;...,u, is a n-order (hxgher) symmctry of the system (1) if it leaves (1)
invariant ‘under the transformatxon t'=tz'=z,v=u+1H(z,u,u,,.

order T. ThlS means that H corresponds to the ca.nomcal Lxe-Backlund operator 61N

:_— ia, . B ) ) . o o

and satisﬁes the differential equation - L
dH ' E
ar =&,(H), ... : Cos .

= F o

., U,) within :

kWhikch is equivalentto‘ the operator relation: :

"~ dL,: d(I)

- chaln of equatlons in A;

dH. da. | St
di . [H.,@]—‘ T ) : ‘ : : ‘ 1 g T (3)
Here<I> and H..are matrlx dlfferentxal operators ‘i‘
'<1> _Z«r D' 1 ._aqﬂ‘/au,, H, = ZHD' [H]k —-(')H"/(')u @
Cer 1=0 . B Ti=0 ‘ T w.
kand, o ’ . ’ ' ‘
?z;f—*,az‘*ZZ"ft%’ e
i=1 3=0 L ‘
J t . —_— = J ‘_’___._
ZZD(‘I’ a., CEE LD
=1 J—Q ) . |=l 1=0 J

are the total dlfferentlatlon operators w1th respect to z,t and 7 respectiVely.

3. ‘CONST’f{UCTI“O'N' OF HIéHER SYMMETRIES

To compute hlgher-order (n >N ) symmetrles for'a glven NLEE ‘of the form (1)
the effective algorithms have been developed [6, 7, 8] which take 1nto account the ba.sm’ '
methods being used by experts [9] in their pencil and paper work.

The basic idea is to construct step by step the coeﬂic1ents A,, = n,n— 1 0 :

: of the matrxx dlfferentlal operator a

as a solutlon of the opelator equatlon o S = , .

BNy pyy T e e e :
_ &®N-1p R
dt dr '+ : (0
whlch corresponds to relation (3) with the constant diagonal matrix ®n = A as defined
in (1) o

-'The isolation of the coeﬂicrents of D¥in the operator equa.llty (7) gflves the following

[L_,‘I) ] =

DY (A A =0, - R
DN N "D(Ax )+ (A, A,,_1]+[<I>~_1, ] =0, e o
.--;:-;::: --------------------------------------------------------------------------------------------- . (8)
DN+n~i .. N A - D(A,,_,+1)+[A An_.]+[¢~-1, ,,_,+1]+B —0 TR

...........................................................................................................

DV  N.A. D(A1)+[A A0]+[<1>N 1,A1]+B =0,



where ‘B; is expressed in terms of A4;, j > n—1i+41..

The structure of the matrix A in (1) and the form of the 1- th equa.tlon of the cham (8) S

make possible finding the diagonal parts of A,_;4; and non-diagonal parts of A,,_;. For.

example, in the case of different eigenvalues A;, from the first two equations of (8) it fol-:

lows that ‘A, is arbitrary diagonal number matrix A, = diag(p1, ft2,- - -, tm), - pi €-C.

The general recurrent formulae for A; as solutions of (8) are given in [6, 7, 8] Because”,

“of this, equations (8) allow one to compute sequentially matrices A,, An_1, -
the non-diagonal part of Ag. , .

To provide the existence of a.local higher symmetry H(z,u,u,,.
~(8) must admit local, i.e. depending on a finite number of dynamlc variables’ taken
from an infinite set z,u,u,,..., solutions A; as well. From Eqs.(8) it follows that to
_find the diagonal part of A; it is necessary to solve an equation of the form

Al and

D(@Q) =S, : o R ey
V where the operator D is defined by expression (4). For a given local S, Eq.(9) admits o

a local solution Q = D~1(S) only if S satisfies a number of restrictions [6]: The reverse

operator D! is none other than an-integration operator with respect to z. Hence at ;-
each step of the chain (8) a number of arbitrary constants-is generated These constants

may be important for the analysis of the next steps.

After the construction of the n-th order operator (6) by means of Eqgs.(8) one can
compute the n-th order symmetry us1ng the operator relation =

—-dzag(Ho) ’
which follows from Eqs 3) and (7) Operatlng by both s1des of (10) on u1 = uy weai,
obta.m ‘ ; : ; s
D(H) - L(w), Lj=D- 8/0z — w "a/aui_'” - a (11)\ ~
Eq. (11) deﬁnes the components Hi of the symmetry H within: arbrtrary funct1ons :
hJ(uJ) U : : .

CH= DM IwY ). - (12) e

The algorithms of D-and D reversion are described i in [6] They allow. verlfylng the E

. condltlons of solva.b111ty of Egs.(9) and (11)

‘S € Im(D), (Lw) € Im(D;).

The notation p € ImD means that p = Do where o is some local function. 1t is just,
~ solvability of (9) in terms of the corresponding local functions of the cham (8) that

leads to the existence of higher symmetries for Eq.(1). -

Since a higher symmetry of some fixed order may not exist for a given NLEE of the .

Vform (1), the best computational strategy is the followmg one.

Jun), the chain

L= L dzag(Ao) et o (1)

i

B (6) and ha.ve the form of. the local conservatlon laws [6] ) e e )

In that case: a =a*xvrw o+ b* Uy Wona e s ek ssushe

,problem T e S THT S BT Pt

Step 1. Verlﬁcatxon of the necessa.ry ‘conditions for the ex1stence of hlgher symme-
tries. Those necessary conditions follow from’ solva.blllty of Eq (7) in terms of the serles'

R(z J)eImD, z—o Lo ,J-—l 2,...,M‘. i (13),

The densrtles R(z,]) in (13) are computed in terms of the r.h S of (1) [6] [7] For

example, R(0,5) = 0F Joul, .

+-In the presence of the arbrtrary para.meters o;in (1) the necessary condltlons (13) for

~a hlgher‘order symmetry are equivalent to some system of nonlinear algebraic equations

in those parameters.. As an illustration, let us-consider the two-component case u'=
(v w) and the followmg local expression p=a x vy *w+ b % v * wy +'c % vy % wi. The
COIldll'.lOl’l p,.= Do is solvable in terms of the local: functlon o.if: a.nd only 1f c= a + b
ARSI S Loariial

In what follows we have to verlfy whether the 'obtained’ a.lgebra.rc system has a

,solutlon It is remarkable that the Grobner basis technique [10]; being the well-known

tool of computer a.lgebra g1ves ‘the. most elegant ‘and effectlve method for solvrng that

! Step 2. The; prev1ous step- gives very: 1mporta.nt lnforma.tlon “on’ the exxstence of )

‘a' hlgher symmetry. .- Now it is possible to try to construct: the' exphcrt form of the -
latter for some fixed order:using the above algorithm:!At this’ step we may obtain’ new _4 ,

r&tnctwns on the r.h.s:: of (1} in the form ‘of a.lgebra.rc equatlons in- 1ts para.meters

= Step 8. Solv1ng of the resulting system of the nonlmear a.lgebra.lc equatlons obtained *
at steps 1,2. Here the Grobner basis technlque a.galn prov1des a‘means for simplifying
the problem drastically. Moreover in'many ‘cases, in’particular, ‘in ‘problems of clas-
sification of integrable NLEE [12], it- a.llows one to ﬁnd a.ll (even 1nﬁmtely ma.ny) the
solutions in exphcrt a.lgebra.lc form R e o

4.-‘IMPLEMENTAT10N N REDUCE" '

We have xmplemented the above computational scheme for the polynomial-nonlinear-
evolution equations (1) in the Reduce computer algebra system [13]. Our package
consists of the two functionally dllferent modules wrltten in the la.nguage Rllsp ‘of the
Reduce symbolic mode.

‘The first module HSYM which a.bbrevxates Higher Symmetry, provxdes the: pro-
~cedures for the sequential verifying of the necessary conditions '(13) in'the case when

* there are no arbitrary . parameters in the initial NLEE (1).. If they are the HSYM

generates an equivalent system of nonlmear algebralc equatlons The solva.blllty of the
- latter guarantees the existence of the lngher-order conservation laws (13). Their den-
s1t1es R(1,7) are computed in-explicit form The HSYM has also a specxa.l plocedure



.the order specxﬁed by a user.

rea.llzrng the method of Sect 3 for ﬁndmg the explrcnt form of the: hrgher symmetry of
The restriction 1mposed in the HSYM tha.t F isa polynomxal in 1ts arguments being
very important from the viewpoint of applications, has made possible establishing the

efficient algorithms for the realization: of all the necessary algebraic: -manipulations.-
They are based on the built-in recursive representation for polynomlals in "standard: -

form”: and effectively: use the-corresponding built-in procedures actlng at: standard
forms and "standard quotients” of the Reduce internal data. ~~ ... -

The second module ASYS, which abbreviates: Algebraic System; provndes venfymg
the consxstency of the' systems-of algebraic’ equations which arise at:step 1 of ‘Sect:3. .|

as:the necessary conditions for 'the existence of higher symmetries. - For this pnrpose
it is sufficient to compute-[10] a Grobner: basis G:for-an“ideal generated by a set
of the polynomials urider consideration. - The system'is unsolvable if- {1}- € G.- The
ASYS contains the procedures for a Grobner basxs computa.txon rea.llzmg the well~

known Buchberger algorithm [10].

-:Solving the systems of a.lgebra.lc equa.tlons at step 3 of Sect 3is a.ccompllshed in

: the ASYS as follows. A lexicographic Grébner basis is .constructed. Then'the ASYS

+

computes the dimension and independent sets of variables for the ideal according to

- -the method described in [11]. If our algebraic equations have infinitely many solutions

S T

the ideal has ‘a posntlve d1mensxon and: the variables of each independent set can: be

consxdered as free parameters.: In:this. case ‘the obtamed Gradbner 'basis .is recomputed

" for each set of: parameters leaving:the- order of the other variables-: -unchanged. ‘As-a

variables (G is ”trlangula.rnzed”) [10] In thls way the problem of solving a (often very

\ { (1), = aa(1). + Bl Ty | 'y + | s | U, + 6,203,

result a set of Grobner bases is obtained with a simple structure and with "separated”

compllcated) system of nonllnea.r a.lgebra.rc equa.tlons is a.lwa.ys reduced to solvmg an

| equa.tlon in one va.rla.ble

In the genera.l case only thrs last stage of computa.tlon may not: be done a.utomatl-
cally by our package. But our experience shows that the solutions can often be found

with the help of the Reduce polynomial factorization facilities [13]. In the case of in-
- tegrable NLEE their higher symmetry analysis:leads to algebraic equations which can

certa.mly be solved in completely algebraic way by using the ASYS [12].

AT

As an example of application of our package let us consider.the following elght-
para.metnc system of two coupled nonlinear Schrédinger.equations ... -,

‘(‘1'2)z = 02(‘1'2),, +ﬂ2| ‘1'2 | Us + 7l 7, |? ¥ + 52‘1' U3,

Here ¥, are complex functions and aj, B;, 7, 6 (i = 1,2) are real parameters. This ‘A

family of nonlinear evolution equations includes, for example, the systems describing

s

)

e T
-- - .

,‘of the form

i

tthe mteract10n of electromagnetrc waves w1th different polarizations. 1h nonlinear opt1cs
[14] and the resonant interaction of long-acoustic and short_waves [1’5] ,The complete
4mtegra.b111ty of (14) a.t Mm=m a.nd 61 = 62 ha.ve been studied by a.nother method in-

[16]. . S
. In order to be mtegra.ble (14) ‘must. have the hlgher symmetrles of the order n > 3 :

H(‘IJJ,(\I' );—1 !(‘IJJ);- ..t(n—hmes))’ l,] _1 2 n > 3

Wthh correspond to the canonical Lle-Ba.cklund opera.tors (2) i

Introducmg the notations u = ¥, v = ‘Ill, p= ¥, q= ;‘112, T =lit we can rewrlte‘
(14) in the form (1) o '

Uy = Olizg + Brutv + ‘hqu + 511’17 )
pf = —onvg; — ﬂluv —mvpq — 51uq ,
Pr = QaPzz + ﬂzp ¢+ 7uvp + 8u’q
@r = —02Gzz — ﬁzpq = 7zuvq 5zv p

As a result of the first two necessary COIldlthIlS, the module HS YM"gener‘ates{the‘
three set of algebraic equations in dependence on the relation between a.nd oz and
under assumptlon tha.t @, # 0in accorda.nce w1th (1) =

1) 23] ‘_fé :’:a’l’s“ ) N )
171261 = a2y = finba — 426, /2 = ﬂlﬂﬂz '71’72/4 -.3151 '7152 =0,
Y262 = 2B21261 = N 7261 ~ 2[327251 717262 — 726 = ,3262 o 7261/2 =0,

o Biv — 0!27172/2 = 017172 = 20!2,52’72 = 017152 - 027152 = 0 e

2)- 01 = 02,
32‘7251 - 25 52

126 — 46,62 = Piby —mbi /2 = 0,

61 -_ 63 ﬂz&z ’7261 /2 = : (16)
7362 — 48 =1} — P2 — 28 = nm — Bry2 — 2616, = Préz — 7262/2 =0,
‘7151 — 266, = ‘7152 1261 = 1317{1 —Bm= ﬂl’h ’72 + 252 =0,
3) [o 3 =-';‘C!2; L
B - B2 = Br7e + ‘72 = frby = 71 + ’71/92 ’71’)’2 + ,32’72 = 0 . (17)
Nb1 = 162 = by = 251 Y262 =0.

The module ASYS a.llows one readlly to obtain a.ll the solutlons of (15) (17) But
the construction of a symmetry accordmg to the algorithms of Sect.3 which are im-
plemented in the module HSYM, may lead to new restrictions on the initial evolution’
equations in addition to those which follow from the necéssary integrability conditions.

-3



i
In the case of polynomial- nonlmear evolution equatxons thh arbltrary parameters the
“HSYM allows one to produce an extra set of algebraic equations for a given order of a
‘higher. symmetry’ (see Sect.2,3). We om1t here those extra equations beca.use of thelr

. awkwardness

" Table 1 gives all the solutlons of (15) (17) such that (14) possesses the L1e Baclund -
symmetries of the order n > 3. The corresponding third order symmetnes are listed

in Table 2.

Table 1
Subset of solutlons of (15) 17 whxch provxdes the ex1stence of Lle-Backlund symme-
tries .

- Free ; ’ Solutlons
- variables . QT
1) oy, 02,51, 8: ’)’1-—0,"/2—0 51—0 52—0 L
1 2) o1, b1, oy =do,n =£h, 7 =£p1;6 =0, 52
3) 01;51, S |oar=ay,fi =48, =126, 8, = +by, 72 = :l:252-

NP

- Table 2

L1e-Backlund symmetries of the thxrd order for the solutlons of Table l
Free - Symmetries
variables | 5 o

1) aj,ay, H = (), +36(%,), | 4|
Buifa | Hy = 03(¥3),,. +36(¥32),| Ta|*
2_) ap BB | Hy = a (1), £ 3/2 Bo(T, ¥,), ‘I’z + 361(¥), l v, lz
S H2 :]:01(\1’2) + 3/2 ﬁl(\l’l\l’z) \I’ +3ﬂ2(\1’2) I \I’z l
3) and, b | Hy = 01(‘1’1),,, :l: 3(01),(6:] T, l + 6|9, | )+35x(‘1’2) (95 £ ¥, 03)

A}

‘We conclude that all the systems of the form (l) possessmg the canonical Lie-
Backlund symmetries of the above structure are exhausted by Table 1. This conclusion
is consistent with the results of Ref. (16]. The complete list of the third order symme-

tries is given in Table 2. The computation of the symmetries 1) — 3) with our Reduce

package requires about 20, 40 and 50 seconds on'an-IBM PC AT-386 (25 Mhz) respec-

tively. Other canonical Lie-Bicklund symmetries of the order n > 4 can be found in a
‘ completely automatlc way as well

; H,_al(w,),, :1:3(\112) (5,1 w2| +5,| T, | )+35,(\1:1) (\1:.\1: ﬂ;,\r) L
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