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1.. INTRODUCTION 

--. . . ' - .-- .i 

. The symmetry analysis of differential equations Is one of the ce'ntral problems in 
~odern applied mathem;_l.tics ami mathematical physics; Among nu~erous methods ~f 
analysis' and integration "of differential equations the mo~t general and universal ones 
are based on their symro'etry properties. S.Lie has introduced the concept of symm~try 
just for the purpose of creating solutions ~f differential eq~ations. Fr~m the theoretical 
point of view the problems of symmetry analysis are investigated iri sufficient detaiL 
But in practice to find the symmetry group (or even some individ~al generators) of 
a given differential equation it is necessary to carry out extremely: tedious algebraic 
manipulations. That is why computer algebra has continued to play an increasingly 
important part in the practical symmetry an~lysis [1];' ! ' •. i ' 

. . _·"' '.' ; i." ,_ - ·,·1. . ' Now there are several computer algebra packages for symmetry analysis of differen-
tial equations. Among them the big packages SODE for ordinary dif(~rential-~quations 
'and SPDE for partial differential equations are the best developed [1]-[2] for determin
ing so-called classical or, point .or Lie symmetries. They ,\lse the mo~t· gen~ra~ method 
of computation which is based on generating and solving of the determining system in 
the form of linear diff~rential equations in functions which occur in the definition. ~f a: 

• ' -. • , , I -

symmetry generator. Both Reduce and Scratchpad II versions ofthe packages SODE 
and SPDE have ·.been designed according to basic concepts of soft'ware engineering. 
Moreover, data abstraction as one of the main attributes of the Scratchpad II system 
allowed one to gain.veryeffective module organization of the packag~ with the detailed 
inve~tigation of its complexity [2]. The most difficult part .. ofth~· wh~le computational 
process is simplification and integration of the determining equations. At this step a 
user has often to do a reasonable ansatz on the structure of symmetri'es. By this reason 

. . '.. . . .·. . . .. . . . . . ·- I . 
an interactive regime is always assumed. ..• _ i . 

In the searching of so-called generalized or higher (Lie~Biicklund) ~ymmetries, when 
functions which occur in the definition of a symmetry generator may qepend not only on 
thepoint,i.~., the dependent and the independent, variables but also]on the derivatives 
of the unknown functions, an appropriate ansatz plays even more important role. The 

. . . . '. . . . . . . '. I .. ·• .. , . ' 

pointis that the existenceof a higher symmetry imposes much more;strong limitations 
on th~ equations under consideration than the existence of thecla:ssical Lie symmetries. 
Because of this, a -~niversal computer algebra package for the. constiu'ction of higher
order symmetrie.S based on the most general scheme of computatiori (see, for example 
[3]) may not be usable for many nonlinear problems. Therefore speeiJl constructive and 
effective methods for finding the generalized symmetries in some sufficiently wide class 
of nonlinear· differen_tial equations are of interest for the design of the· corresponding 
computer algebra packages. 

i ' 

In this paper a computer-aided approach to construction of higher symmetries is 
I 

llfnnr.ac-lliiillill IOltnn')i { 
J ~ itcJeJ8BIPIG j 
. ~_,.,OTEKj 

i 



presented which-can be applied to a wide class of niulticomponent quasilinear partial 
differential equations of the evolution type. After necessary mathematical definitions 
and formulae (Sect.2), description of the computational procedure for higher symme
try analysis (Sect.3) and its implementation (Sect.4) in the form of pac~ge written 
in internal language (Rlisp) of the Reduce computer algebra system· are given. The 
package consists of two functionally independent modules. One of them is destin~d for 
the symmetry analysis proper and the other for_ solving systems of nonlinear' algebraic 

· equations which arise in the presence of arbitrary numerical parameters. As an illustra
tion, the computation of the third order Lie-Biiclund symm~trie5for eight:param~tric 
family of coupled nonlinear Schrodinger equations is considered (Sect.5). 

;,.i 

. 2. MATHEMATICAL BACKGROUN-D. 

Among the partial differentiaJ equations ~f physical il)-terest, of great. importanc~ 
.is the class. of. polynomial-nonlinear evolution equations (NLEE) in one-spatial and 
one-temporal dimension of the following form' . 

u1 = ~(x,u, ... ,uN) = AuN + F(x,u, ... ;UN-1;nh .. n;.), N ~ 2 
ti = u(t,xJ::::: (ut, ... ,uM), ·uk = akufaxk, F= (Fl, ... ,FM), 

A ~ diag().1; ... , AM), A;, a; E C, A;¥ 0, 
' '. 

(1) 

where the vector functi'on F is a polynomial in its arguments including numeric pa
rameters n; if any. F is said to be a differential function of N- 1 order. Tne functi~n 
~ has the order N respecti~ely. ' · 

The class (1) contains sri~h well-known integrable NLEE as the Korteweg-de Vries 
equation, the Burgers equation, the nonlinear Schrodinger equation and many other 
ones which are now ~nder intensive investigation. . 

The concept of integrability is closely connected with the existence of higher symme
tries [4]: NLEE is integrable if and only if it possesses infinitely many time-independent 
higher symmetries. But in practice the existence of M different higher symmetri~ is 
sufficient for integrability of M.,;omj>Onent NLEK · . 

Definition. A vector function H = (H1, ••• , HM) of a finite number of differential 
variables x, u, uh •.• , un is an-order (higher) symmetry of the system (1} if it leaves {1) 
invariant under the transformation t' = t, x' = x, u' = u + T H(x, u, u ..... 'un) within 
order T. This mearis that H corresponds to the canonical Lie-Biicklund operator [5] . . . 

. ~Hi~+-·· 
X = .l...J · au• ~ 

i=1 

and satisfies the differential equation 

dH 
dt =~.(H), 

(2) 

-·" -1·, ;"'t ~ ••• 
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which is equivalent to the operator relation 

dH. :..:. [H ~ ] .:.:. d~. 
dt . . •• • ~ - dr · 
Here~. and H.: are matrix differential operators: 

· N n 

~.="C'~;Di, [.~;]k.=a~kfaut, H.="C'H;Di, [H_ ;]k.=aHkfaut ~ J L..., .1 J '' 
. i=O ' . i=O I.-

and 

'd a Moo· a 
D= d =a+ LLui+1"'i)i• 

. X X i=l j=O , Uj 

!!_ = "tfni(~i)~, !!_ = "tfni(Hi)~ . 
dt ._1 ·-o au,. dr ._1 ·-o au,. 1 ,_ ,_ . . . . ,_ ,_ ··.. . I . . 
are the total differentiation operators :with respect to x, t aria 7- respectively . . I 

3. CONSTRUCTION OF HIGHER SYMMETRIES I 
I 

•.. 

(3) 

(4) 

(5) 

• -. ; < • ~ ' • • • • ' l ' ' 

To compute higher-order (n > N) symmetries for a given NLEE of the form (1) 
the effective algorithms have been developed [6;7, 8] which take into!account the basic 
methods being used by experts[9] in their pencil andpaper work. 

The basic idea is to construct step by step the coefficients A;, i = n, n - 1, ... , 0 
of the matrix differential op_enitor • · ' · · · · · . · · · · · 

L =Ao + A1D + ··· + AnDn (6) 

as a solution of the operator equation 

dL.•' ·(· · .
1 
•. · d~. '· d~N-1 'N 1 '·· · · · •·• · 

dt-L:.,~.=dr=~D-+·... I .(7) 

which corresponds to relation (3) with the constant diagonal matrix ~N =A as defined • . . I .• . 
In {1). . i 

. !he isolati~n of_ the coefficients of Di in the operator equ. ality {7) ~ives the following 
cham of equat10ns m A; · · · ·. . · ' I ' · · · · · • · 

. . I 

DN+n : (A, An] = 0, . 
,DN+n-1 : N .:J\. D(An) +(A, An-1] + [~N-1> An] ~ 0, 

............................................................................ -............. . 
(8) flN+n-i: 

< • • • • 1 

N ·A· D(An-i+t)+ (A,An-i] + [~N-t,An-i+t] +B; = 0, 
• • > ' .............. ··················································\········································ 

DN: N ·A· D(At)+ [A,Ao] + (~N-t,A1] + Bn = 0, 

3 



! 
I 

where B; is expressed in terms of Ai, j > n- i + 1. .. 

The structure of the matrix A in (1) and the form of the i-th equation of the chain (8) 
niake possible finding the diagonal parts of An-i+ I and non-diagonal parts of An--i· For 
example, in the case of different eigenvalues A;, from the first two equations of (8) it fol
lows that An is arbitrary diagonal number matrix An = diag(p..t, J-12, ••• , J.IM ), p.; E C. 
The general recurrent formulae for A; as solutions of(8) are given in [6, 7, 8]. Because 
of this, equations (8) allow orie to compute sequentially matrices An, An_1 , ••• ~ A1· and 
the non-diagonal part of A0 • 

To provide the existence of a local higher symmetry H(x, u, u11 ••• , un), the chain 
(8) must admit local, i.e. depending on a finite number of dynamic variables taken 
from an infinite set x, u, Ut. ... , solutions A; as well. From Eqs.(8) it follows that to 

. find the diagonal part of A; it is necessary to solve an equation of the form 

D(Q) = S, (9r 

where the operator Dis defined by expression (4). For a given localS; Eq.(9) admits 
a local solution Q = D-1 (S) only if S satisfies a number of restrictions [6]. The reverse 
operator n-t is none other than an integration operator with respect to x. Hence at 
each step of the chain (8) a number of arbitrary constants-is generated. These constants 
may be important for the analysis of the next steps. ' ' ' 

After the construction of the n-th order operator (6) by means of Eqs.(8) onecan 
compute tlie n-th order symmetry using the operator relation 

H. - diag(Ho) = L = L- diag(A0 ), (10) 

which follows from Eqs.(3) and (7). Operating by both sides of (10) on u1 = Ux we 
obtain 

D(H) = L(ut), Lj = D- ofox- Utj: ofoui (11) 

Eq.(ll) defines the components Hi of the symmetry H within arbitrary functions 
hi(ui) . 

Hi= jj-t(Lut)i +hi(ui). (12) 

The algorithms of D and iJ reversion are described in [6]. They allow verifying the 
conditions of solvability of Eqs.(9) and (11) 

· S E lm(D), (Lut)i E Im(Di)· 

The notation p E JmD means that p = Da where a is some local function. It is just 
solvability of (9) in terms of the corresponding local functions of the chain (8) that 
leads to the existence of higher symmetries for Eq.(1). 

Since a higher symmetry of some fixed order may not e"xist for a given NLEE of the 
form (1), the best computational strategy is the following one. 

4 
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Step 1. Verification of the necessary conditions for the existence ~f higher symme
tries. Those necessary conditions follow from-solvability of Eq.(7) in terms of the ~eries 
(6) and have the form of the local conservation laws [6]-[7] 

... a· . .. . . 
dtR(i,j) E lmD, i = 0,1, ... ,j= 1,2, ..• ,M . (13) 

;_;,·- I; 

The densities R(i,j) in (13) are computed in terms of the r.h.s. of (1) [6]-[7]. Fo~ 
example, R(O,j) = f)Fi f8u~_1 • · · 

. In the presence of the arbitrary, parameters a; in (1) the necessary conditions (13) for 
a higher-order symmetry are equivalent to some system of nonlinear algebraic equations 
in those parameters. As an illustration, let us consider the two-component case u·= 

(v, w) _and the following;local expression p =a* v2 * w + b * v * w2 +c *vi* w1" The 
condition p = Da is solvable in terms of the localfunction a if arid only if c = a+ b. 
.In that case a,:=~* v * w1 +b* vi* iv.<:· . · 

In what follows we have to verify whether the' obtained, algebraic system has- a 
solution._ It is remarkablethat the Grobner. ba.Sis technique (10], being the well-known 
tool of cOmputer algebra; gives the most elegant 'and effective method for solving that 

,problem. -:·. . ,., -_,_:.,_, 

Step 2. The previous step gives very important info~mation on the exist~n~~ ~f 
a higher symmetry .. •Now it is possible to try to construct the explicit f~rin ~f the . 
.latter for some fixed order using the above algorithm:IAt thisstep we m~jobtain rlew 
restrictions on the r.h.s·_, of ( 1) in tile form 'of algebraic equations in· its 'parameters. · 

; - Step 3. Solving of the resulting system' of the nonlinear algebraic eq~~tiims obt~ined 
at steps 1,2. Here th~ Grobner basis tech'niq~e'agai'u p~ovides a means for simplifying 
the problem drastically. Moreovei; in many cases, in·' piuticuhir,' in .probl~ms of clas
sification- of integrable NLEE [12], it allows one to firid. all (even-infinitely many) the 
solutions in explicit algebraic form. · · 

' 

;, 

4. IMPLEMENTATION IN REDUCE 

We have implemented the above computational scheme for the polynomial-nonlinear 
evolution equations (1) in the Reduce computer algebra system [13]. Our package 
consists of the two functionally different modules written in the language Rlisp'of the 
Re~uce symbolic mode. · 

The first module HSYM, which abbreviates Higher Symmetry, provides the pro
cedures for the sequential verifyi~g of the nece;sary conditions '(13) in the case' when 
there are no arbitrary parameters in the initial NLEE (1). If they are the HSYM 
generates an· equivalent sys~em of nonlinear algebraic equations. The solvability of the 

~ latter guarantees the existence of thehigher-order conservation laws (13). Their den: 
sities R(i,j) are'computedin explicit form. The HSYM has also a special procedure 

5 



r~alizing the method ofSect.,3 for finding the explicit .form of the hig,her symmetry of 
the order spec:ified by a _user. , , · 

The restriction imposed in the HSYM that F is a polynomial in its arguments, being 
very important from the viewpoint of applications, has made possible establishing the 
efficient algorithms for the realization of alL the necessary algebraic manipulations. 
They are based on the built-in recursive representation for polynomials in "standard 
form" and effectively use the,corresponding built-in procedures acting at "standard 
forms" and "standard quotients" of the Reduce internal data. 

The second m<>:dule ASYS, which abbreviates Algebraic System, provides yerifying · 
the consistency of the systems of algebraic' equations which arise at step 1 ofSect.3 
as the necessary conditions for the existence of higher symmetries. For this purpose 
it is sufficient to compute (10) a Grabner basis G for an<ideal generated· by a set 
of the polynomials urider consideration. The system is tmsolvable if { 1} E G. The 
ASYS contains the procedures for a Grabner basis computation realizing the well-
known Buchb~rger algorithm (io]. ; ' · · · 

. Solving the systems of algebraic equations at step 3 of Sect.3 is accomplished in 
the ASYS as follows. A .lexicographic Grabner basis is .constructed. Then the ASYS 
computes the dimension and independent sets of variables for the ideal according to 
the meth_od describe,d in (11]. If our algebraic equations have infinitely many solutions 

· the idealhas a positive dimension and:.the variables of each independent set can be' 
considered as free,pll:r~eters/ In,this.c~ethe obtained Grobner basis is recomputed 
for each set .of,parametersleaving·the order of the other variables-unchanged. As.a 
result a set of Grabner bases is obtained with a simple structure and with "separated" 
variables ( G i~ "t~iang~larized7) [10], In this ~ayt~e.pr9blem of solving a (often very 
complicatedrsystem of nonlinear algebraicequations is always reduced to solving an 
equation in one ~~riabl~: · · · · · · · · · 

. In 'the g~~eral case only this last stage of computation may not be done automati
cally by our package. But our experience shows that the ~olutions can often be found 
with the help of the Reduce polynomial factorization facilities [13]. In the case of in
tegrable NLEE their higher symmetry analysis leads to algebraic equations which can 
certainly be solved in completely algebraic way by using the ASYS [12]. 

~-

5. EXAMPLE 

As an . example of application of our package let us consider the following eight
parametric system of two coupled nonlinear Schrodinger equations 

{ 
i(IVt)t = at(Wt}""' +.Btl Wt I2Wt + "Ytl l¥2l

2
1¥t+ OtW~Wi, 

i(w2)t = o2(w2)rx + ,821 1¥21
2

1¥2 + /21 \IT~ 1
2

1¥2 + o2w;w;. 
(14) 

Here W; are complex functions and a;, ,8;, /io o; (i = 1, 2) are real parameters. This 
family of nonlinear evolution equations includes, for example, the systems describin~ 
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. . . . .· I . 
the interaction of electromagneticwaves with different polarizations ih nonlinear optics 
[14] and the resonant interaction of long acoustic and shortwaves [1'5j:,The complete 
integrability of (14) at7t = 72 and Ot.= o2 have been studiedhy ahothermethod in 
[16]. . . . ' . 

In order to be integrable (14) must have the higher symmetries of the ()rder:n .2: .3 
of the form · '• , . 

H;(wi,(wi),~ ... ,(wi), .. .x(n-tim••l), i,j = 1,2; n .2: 3, 

whichcorrespond to the canonical Lie-Biicklund operators (2)~ .··· 

Introducing the notations u = Wt, v = Wi, p = ll12, q = 1¥2, T = iit we can r~write 
- . , " I , 

(14)'in the form (1) . · 
! 

Ur = O'tUzz + .Btu2v + 'JtUpq + /jtvp2 , 
. ,8 2 c . '. 2 Vr = -O'tVzz -'. tUV - /tVpq- OtUq , 

Pr = 0'2Pzz + ,82p2q + 12uvp + /j2u2q , ' 

I 
l 

qr = -:-a2q,, - f32pq2 _:. 12uvq - o2v2p . · · 1 
. . . . . . . . . .. · .. I • . ·.· . 

As a result of the first two necessary conditions, the module HSYM gene~ates the 
three set of algebraic equations in dependence on the relation between Ot and a2 and 
under assumption that ata2 # 0 in accordance with (1): I . ; 

I 
1) at# ±a2, I 

. . , ! 

Ot/2/jt- 0'2/20t = .Bt/t02- ~~otf2 = ~t.B2/2-:- "Yt"Y~~4= f3t/jt -;- '"(t/j2~2:::: 0,, (15) 

"Yio2- 2/32/20t = "Yl/2/jt - 2/3272/ji = "Yt"Y2/j2- 7~/jt ~- ,821)2·_-:)2/jt/21 0, . 

atf3tlt - a2"Yt12/2 = 0'1/1/2--: 2a2.82"Y2 = 0'1/t/)2- a27t02 = 0, I . 
! 

2) ' 
at = a2, . · . · . I 

.a~ot -· /)r= .an2/jt- 2/j;/j2 = .a2/j2- 12ot12 ~ ~ist..:. 4/j~/j~ = .Bt/jt ~ E/jt/2 = o, 
"Y~/j2- 4/j~ = 'Yi- 7tf32 -·2/jr = "Yl/2- .8272- 2/jt/)2 = .Bt/j2 -72/)2/2 r 0, 

/tOt- 2{32ot = 7t02- 72/jt = f3t"Yt - .8212 = .Bt72- 7~ + 2o~ = 0, , . • . i 

I 

'l 
3) at= -a2, 

.Bt"Yt- .8272 = f3t72 + "Y~ = .Bt/jt = "Yi + 7tf32 ='=7t"Y2 + .8272 = 0, 

7tOt := 7to2 = /321)2 = 12/jt = 121)2 = 0. 

(16) 

(17) 

The riwdule ASYS allows one readily~<? o'bt'ain all the solutions! of (15)-(17). But 
the construction of a symmetry according to the algorithms of Se~t.3 which are'im
plemented in the module HSYM, may lead to new restrictions on t~e initial evolution 
equations in addition to those which follow from the nec~ssary integribility conditions. 

! 
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In the case of polynoinial-n~nlinear evolution equation~· with arbitrary parameter's the 
HSYM allows one to produce an extra set of algebraic equations for a giveri oider of a 
higher. symmetry (s~e Sect.2,3). We omit here those extra equations' because of thei.r 
awkwardness. · 

Table 1 gives all the solutions of (15)-(17) such that (14) possesses the Li~-Baclund 
symmetries of the order n 2::: 3. The corresponding third order symmetries a:re li~ted 
in Table 2. 

Table 1 
' . ....~ 

Subset of solutions of (15)-(17) which provides the existence of Lie-Backlund symme-
tries 

Free Solutions 
variables ... 

1) O.t. o.2, /3}, !32 1'1 = 0, 1'2 = 0, 81 = 0, 82 = 0 . 
. 2) 0.}, f3I. {32 0.2 = ±o.b 1'1 = ±{32, 1'2 = ±/3~; 81 = 0, 82 = 0. 
3) 0.},0},02 0.2 = 0.1,/31 = ±82,")'1 == ±28I.f32 = ±8~-,")'2 = ±282. 

" ' 

Table 2 
Lie-Backlund symmetries of the third prder for the solutions of Table 1 

Free Symmetries '' 
I variables ,• 

1) aha2, HI = O<t(111I)'"""' + 3Pt(111t).,l11111~ 
P1tP2 H2 = a2(ll12)n; + 3/32(1112)~11112 12 

. •· 

2) ahf3h/32 Hl = O<t(111t).,n ± 3/2 /32(11111112)., 1112 + 3f3t(111t).,l111t I' 
H2 = ±a1(ll12),,, ± 3/2 f3t(ll1t1112), 111i + 3/32{1112)-11112 12 · 

3) ah8h82 H1 = at(111t)'"""' ± 3(111t).,(8tl111212 + 82l-ll1t 12 ) + 38t(1112).,(1112111i ± 111t1112) 
H2-= at(ll12)'""', ± 3(1112)_(8tl1112 1

2 + 82l \ll1 1
2

) + 3S2(111t),.{ll1tll12 ± ll12ll1i) 
' 

.· . We conclude that all the systems of the· form (I j possessing the canonical Lie
Backlund symmetries of the above structure are exhausted by Table 1. This conclusion 
is consistent with the results of Ref.[16]. The complete list of th~ third order sy~me
tries is given in Table 2. The computation of the symmetries 1)- 3) with our Reduce 
package requires about 20, 40 and 50 seconds on an ·IBM PC AT-386 (25 Mhz) respec
tively. Other canonical Lie-Backlund symmetries of the order n 2::: 4 can be found in a 
completely automatic way as well. 
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