


1. Int‘rodlllfébt:ibn -

“The Puiseux expansion of a function z()), defined as a solution of the given algebraic
equation '

F(z,\)=0
; with the small parameter ) is the following series
1:()\) = z:x’)‘él +~$52)‘E2 + zﬁ;)\ta + 1‘ ) o L (1) V

where €; < €3 < €3 < ... are rational -numbers with . the same dénbnﬁnat,(')r.","ly‘he
expansion (1) is a convergent series in the neighborhood of the point A =0 with ‘this
_ point deleted. . o S B B
The theory of Puiseﬁx expansions is a major tool in algebfai{;,gve‘bmetry‘\}vher_e théy
“act as Laurent expansions in ordinary function theory. In addition; to it the Puiseux
expansions are a powerful tool for solving many éo;ryiplith?.tidnal pfObléff)si Among them
are: T T )

. Ca.lcul;ition of the genus of the Riemann éprface, ct;hstru}:f(iorli of differentials of
- the first kind, or general construction of meromorphic functions on the Riemann
“surface (Coates’ algorithm [1,2]). T T

"4 Determination and analysis of branching the solutions of no

(3, 4]

nlinear’ equations

. Symbolic integration of algebfa.i'c functions [2; 57];

e Finding of the complete ﬁopologiéal invariants of Algebraic curliyes‘[ﬁ].

"o Fast numeric eyalpationkof the 3611_1tions ofrlineé.r' differential eq%ﬁétio’ris c‘dntbjning‘
algebraic functions (7). ) ; ‘ -

¢ Analysis of the elliptic curves deterr'niriingtithe meromorphic solutions of linear

 differential equations of Halphen type [8]. o ’
<~ The construction of the Puiseux expansions (1) is a very tedious procedure. There-
“fore a computer implementation is very useful for applications. A number of ‘computer
programs have been created recently for computation of Puiseux ex;)lansions." They are

‘written in different languages: Reduce {9, 10}, Scratchpad II [11], Lisp [12], Pascal -
[13]. All these programs except [12] are based on the classical algorit?lm of Newton and
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Puxseux [15] The program [9] is wrltten in Rl:l.sp, i.e.in symbollc mode of the Reduce -

language, but has not been widely distributed. Another previous Reduce program [10]

was written in algebraic mode of the Reduce language and by this reason is not very

efficient.

In this paper our new implementation of the classical Newton- Puiseux method

~ (Sect.2) in the symbolic (Rlisp) mode of Reduce 3.3 [14] is described (Sect.3). The’ ’
program is running under MS-DOS on 286 and 386—based lBM PCs. Its efficiency is

: demonstrated by dlfferent examplm (Sect 4)

S 2. Descrlptlon of Algorlthm "

ln this section we give a brief descrlptlon of the method for constructmg the Pulseux k

expansions of the algebraic function z()\) defined by the equation F(z,) = 0, where

’F(z,y) € Q[z,y], ie. F is a polynomlal inz,y w1th ratlonal coefﬁcrents, vamshmg at
pomt (0. 0)

We use the classncal Newton and Pu1seux algorithm, based on the well-known New-
ton polygon method [15, 4] for successive construction®of the terms of the Purseux :
~‘expansions (l) It should be noted that this method is a very useful tool for computer
’ algebralc analysrs and solvmg of lmear algebralc equations’ at'a smgular pomt (16, 17] '

- Using the Newton and Pulseux method one can compute all’ possnble values of T -

and €. Let the equatlon F (z /\) = 0 be given in the form

Zf.(x)z =0. 'f f' et

=0

2

. We assume that i in nerghborhood of the point A = 0 the coeﬂicrents f,(/\) are presented

jby the convergent series

fi(A) = fo;/\"« +2f,;z\?‘+§ ’ S (3) s

r--l

where p, is a ratlonal number After the substltutlon of the first terms of (3) and (1) fi

.into (2) in'the limit A — 0 we have the followmg equatlon

.—0 e

‘ Now we may clicose the value of ¢ in such a '»QAy s to have at least two equal
- exponents (05 + jeyou + le) w1th the others satlsfymg the mequallty 0s+ se >: s, +je.: ‘

”Hence from eq (4) we obtam

/\0;+J=Zf0 z$ -—0 SRR "“ ,; —7 (5)

=0

w g

where the summatlon is over- all values s such that 0s + se = g, +15 There is only one -

' possibility for vamshmg the left hand side of (5) 1f A 76 0. It means that the condrtlon”-f :

| Zfo.z -0 e

must be satisfied.

- For the computation of the possible values of £ we use the Newton polygon method
It may be split into the followmg successive steps:: IR PR

1, ‘Plottmg the pomts (s, g,), s= 1 ) in a cartes1an coordmate system

2. For each point (kyor), k=1;.000n computmg the value of the varlable e
PR Sl v : _go—gk S
&g = L »

- that is, the value of tan , go, “where P is the angle between the negatlve dnrectxon}‘*T
of the p-axis and the line connecting two points (0, 20) and (k, gk)

3. Finding the Pomt (l g;) whlch satrsﬁes the Condltlons
L 0€1>€kforallk—l T e
¥ ‘fEI'_EL then I > k.

4. Omlttmg all the pomts (k, gk) with k <! and 1epeatmg steps 2 4 untll the last
point (n, gn)-
~ After this algorlthm we get a set of points called Newton set.” If we connect the

neighboring points by straight lines we obtain the Newton polygon. - All the points
(s,05), s = 0,...,n lie either on or above this polygon., The possible values of ‘€ are

~ determined by the slopes of the segments of the Newton polygon For a glven value of-

€ z, must satisfy (6). e SR L
Therefore, to obtam the coefficient z. we have to solve eq. (6), wh1ch is generally

. a polynomial equation in one variable.’ Solving (6) is the most nontrivial step of the

whole procedure. In many cases, however, eq.(6) is quite simple (see, for instance, the -

- examples of Sect.4) to be solvable by a standard built-in Reduce pacl\age Solve. [14]

used in the given program.
As a result we obtdin the first Pulseux terms in (1)

z =z +O(X) 20

for all possible values-of €, i.e. branches. ‘Then one can:substitute (7) in eq. (2) and,

- having denoted the second . term O(A%) by z, fepeat the above procedure This gives

the second: Puiseux: terms. In-such a way.one can: compute the explicit- form of: the'i
first ‘k terms of: the. Pulseu\ expansions :z:(,\) = :z:,, D SRR .T“Ae" + O()\"‘) for. any ;



k. Proofs of the fu:t thst all n eolutlons of (2) ma.y be presented in the form (1) andﬁ :

constructed by the above a.lgonthm are glven in [3, 15, 18]

3. Implementation in Reduce

' We have’ irriplemehted the algorithm of-Sect.2 inthé'computer algebra‘systém
Reduce 3.3 [14]. The program is written'in the symbolic mode (Rlisp) of the Reduce

programming language. Input data for the program are a polynomial F(z,\) = 0 with
a given singular point (0,0). A nonlinear function of genera.l form must be reduced to
a polynomial to be used in our program. It may be done, for example, by the standard
- package for computatlon ofa Teylor expa.nslon which is available in Reduce

The main procedures of our pa.ckage are -

PUISE(f,x,1,nt) - the procedure for the computa.tlon of nt terms of the Puiseux
‘expansion. “This procedure returns a list of all solutrons of the equatlon f (x 1)-0
in the form-of (1).” : :

" PUISEtL (t,x 1) is similar to the procedure PUISE but computes only the ﬁrst terms
The result has the form {{e, z.},...} and presents all the list of branches (7)-

' RESULTPUISE() returns the mtermedra.te result of the procedure PUISE in the case of
' mcorrect break of the procedure; for example, because of the lack of computer
memory (see example 3 of Sect.4).

There is a switch ALLPUISE in our program Thrs switch. controls the set of values

of € whlch has to be computed ‘There are three possrble sntuatrons
o e < 0, then 2 solutron satlsﬁes the condltron llm,\_.o z(A)
‘e £= 0 then llm,\_.o ::(A) const \

o€ > 0 then a solutron has dwergent (”blg ) terms in the lnmrt - - 0

The last two cases are avorded when computmg if ALLPUISE is turned olf By default'

ALLPUISE is off.

4. :, ‘Exam;-)les

. Below we give three examples of use of our program.-All computations were done
by an IBM PC AT (12 Mhz). In accordance with our assumption of Sect.2 all input
€équations vanish at the point (0.0). of computa.tlon of the Puiseux expansions: Each

example is supplied with complete computer output including comments to explain the

main aspects of the computational procedure.

. puise(equ,v,z,3);

Y sin(w)-wtwr*2#sin(z)-z**4=0 °

. '/. And now computat:l.on of the Pu:.seux expe.ns:l.ons ’

Example 1 [18]

equ:=ws*3- 3*zw+2*zn2s B T 0 FECEL AR Rt
% Computat:l.on of the Pu:l.seux expansions

t3 ,2'

J {u-32/729*z + 8/81*2 + 2/3*2
- u=i- 1/1atsan(2)*sqa'r(3)*z + SQRT(2Z)*SQRT(3) - 1/3+Z,
| W=1/18+SQRT(Z)*SQRT(3)4Z - . SQRT(2) *SQRT(3) ,—_1/_3_*2} -

* Time: 16260 ms

. Example 2 [4] l R : L

% Computation of a Taylor expz{nsion R |

equ =u¢*2*z—v**2*2*#3/6+v**2*z**5/120-u*#2*z**7/5040-u#*3/6+‘k* :

e Jd :

[

w*t5/120-n¢¢7/5040-z¢t4$

Vpu1se(equ,v,z,3):

’ . P e s 'iféi7ff
{W=5/288%SQRT(Z)*Z + SQRT(Z)*Z + 1/12+Z ,

W= - 5/288%SQRT(Z)*Z - SQRT(2)*Z + 1/12+Z ,

W=5287/540%Z- - 1/6%Z + S*Z}

anm‘ple 3 ~{] 8]

w0 3 l EEC I
; equ -2#2##7-2##8-2##3#v+(4zt#2+z##3)tv##2+(z#t3-zt#4)#v##3-\7 L
; 4z¢uu4+7zustutt5+(1-zu:2)tut¢6+5tzustvu7+zu3tuua$




% Computation of the Puiseux expansions
puise(equ,v,z.3);

‘No more free cons cell.
ERROR 96 NIL
Cont? (Y or N)

y

Time: 120880 ms (
B i

%There are no more memory cells for determining the third - ‘term. -

YIntermediate results can be prlnted out by u51ng the .

~ Yprocedure RESULTPUISE - : ; - G

4: resultpuise() ;

5 4
W= - Z + 2%2 ,
V 2
W= - 3/64%xZ + 1/4%Z,
3/a /4 o
W=1/4%Z %2+ SQRT(Z)*SQRT(2),
3/a 1/4

: W= - 1/4%7 %2 ‘+"§QRT(Z)*JSQRTV(2H) N
3/4

W=1/4*Z  *SQRT( - SQRT(2)) - SQRT(Z)*SQRT(2),

: 3/4 * B ‘
W= - 1/4%Z  *SQRT( - SQRT(2)) - SQRT(Z) *SQRT(2) }

;I;:l.me-: 2360 ms

5. Conclusion

As mentloned in Sect. 2 ‘the main restriction in the use of our program is connected
‘with quite restrictive facilities of the package Solve of the Reduce system in solving

nonlmear algebra1c equations. The above assumption F(z, y) € Qlz,y] means that

. e

~ the ﬁrst term of (1) bemg computed at the ﬁrst cycle of the algonthm is an algebraxc
““number.. Therefore, in general case, to repeat the procedure, that is, to compute the

next terms of (1) it‘is necessary to manipulate with algebraic numbers ‘and to solve

‘polynomial equations in algebraic extensions of Q. The Reduco—facllltla for the ma-
‘nipulation with algebraic numbers available in Anum packdge [14] are far from sufficient

for these computatlons ‘A number of new ideas and their computer implementations

~ given in [9 11, 13] are very fruitful for further developments and generallzatlons

In: many appllca.tlons one needs to manipulate w1th the Pulseux expans1ons as math-

. ematlcal objects, i.e. to compute their sum, product ‘degree, i inversion, decomposntlon,

etc. There are useful Reduce packaga [19 20] wluch allow -one to ca.rry out these
operatlons automatlcally by computer as well. : -

' We would like to acknowledge N:A. Kostov and Z T Kostova for useful d1scussxonsr

o a.nd suggestlons
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