


The first step towards the phase operator <P for the
quantum Bose-oscillator was done by Dirac in 1927 El] who
suggested the following "polar decomposition" of t]éxe creation QU

and. annihilation QL operators
+ A P + ¥ —
=g, a=¢ (v N=da [a,a]=1.®

It was found afterwards thé.t such a decomposition ;eallry‘ cannot
‘exist and a number of attempts to find some substitute of (1)
was done."l.‘hey may be found in the review (_2]. The first
mathematically correct construcfcion of the operator CD was
proposed by Garrison and Wong in 1970 [31. They considered the
phase operator as a multiplication operator in the Hilbert space
of analytical functions on the unit ‘circle of complex plane
and found the operator canonically conjugated to 1;. Unfortu-
nately, the connection of their construction to thé polar de-
composition problem for the operators (L , Oj‘was x_:ot investi-
gated; g¢o thls result proved to be helpless for physicists.

The problem of polar decomposition (I) was solved by Popov

and Yarunin in 1973 [_41. They considered the rfdiménsional
sub-space of the Hilbert space corresponding to ’chéT harmonic¢

|
oscillator. The projections of (L , Qj' on this subspace
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have a single decomposition x)(up to the unitary equivalence)

Ielr.z }\/@

K%

‘L
, Mo qﬂQi (2)

‘<Y.VL'\CPFL\YL> = £ 7, KexXpL LMK - VL)}

There is no methematical problem to derive formulae (2). But
there 1.'_3 a loss of physical meaning, in them, because in the
subspace of projected varilables <P,L ’ A/'L we have the second
"yacuum state" \‘7_ {7 and commutation relation for the opera-
tors Q,l N Q-L are identical to those for the angular momentun
components [61. So the problem of limit T —> Oo in (2) 1is
important. There are two various possibilities to ‘solve this
problem. One of them was realised in Eil The second was pro—'
posed by Barnet and Pegg \_53311(1 developed by other authors \_7_]

We start with the possibility [5,7].

It is based on the calculation of the average value of q),z’
in some physical state, characterised by the distribution ope-

rator (O -4 . .
J <CP‘L>=?:—<]£K ‘ P“g:\,>‘{):=

Ao AT K (- )]
_ x LR (n-m)
g{i > <mlpin>e *
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x) The same formulae were derived by Barnett and Pegg in.

1989 [5]

i
Quantum phase states \{'R) in the r-dimensional subspace are
.defined as follows:
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It was noticed in ‘:5,71 that the calculation of the limit

1 -> ©o in (3) gives the pmse distribution function p(@)

in accordance with the usual formula

r
L P> = &\(J D(q) d ¥ (4)
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By comparing (3) and (4) one can suppose, as it was done in
[5,7] , that the distribution function P(\Q) is expressed
by fommula

Pe) = Mz e
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It should be noted that formula (5) looks like some quasi-

A
classical approach in which the discrete number U?K is
changed by the variable O £ P < fT .



Now we are going to consider the second possibility \.\/ ' ' i
Here the function [_ is an analytical function outside the.

of taking the limit "L —>©% in (2), and to show that really i |
t unit circle of the complex plane 72 . It should be noticed

formula (5) 1is not exact. :
that the operator ¢ is a self-adjoint operator

This pofsibility was realised in [4]. In that work the W,‘} , i
‘/ with a finite norm in the Hilbert space. The

quantum states of an operator P 3 '
. point of the oscillator phase problem is that ithe formulae
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were considered and thelr scalar products with the oscillator '

basic functions wre found are fulfilled instead of (I) and that <D and A 1s not a
canonlcally conjugated palr of operators in an ordinary quant um

V\'\(D\ ﬂ-.?> = \Q <Y‘L\ &'\,‘7> 3 0 \< ‘? < 2"’ mechanical sense. The mathematica.l equivalence of‘ this
construction to that proposed in LJ]was proved 1n \_8]

(6)
V(- A N - Taking (6) into account we find the exact formula for the
v = — 2 - ‘
< l 4§“‘?> L (2‘“\3@‘ % % (2)43 C\i‘ ( average value of @ ) zn-
| @> =3 <mipidcniPre> - (¢ Q;M,
Integration over the unit circle in (6) 1s made amd the : wmn=0 0 . )
function Q4 (2 ) 1s determined as follows? :
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If we substitute (8) into CQ y Wwe can see that Gl(}@)
becomes equal to €>QQ) in (5). It means tht the function

F)(Q) in (4,5) is an approximation which. is derived from
'the,exact formulae (7) 1f we change the matrix elements
<YL\ '&'\Q> by their asymptotic values (8).

It 1s clear that the discrepancy in {SP), produced by
this éhange,_depends on the'physical nature of the distribu-~
tion SD . Namely, if §3 deseribes a highly exclted state
of Bose-system, the terms in (7) with small m,n don't give
much contribution to 67) and expression (5) 1s a good appro-
ximation. Such a situation is expected to be in mosf problems
of coherent ppticts. In tﬁe opposite case, when §3 describes
the éystem near the gréund state with small myn, the mistake
due to the change CQ(Q) by F)(Q> can be noticeable. Such a
situation may happen in some low~temperature collective effects

in oondensed matter physics.
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