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Makhankov V.G., Katyshev Yu.V. E5 -9058 

On the Stationary Solutions of a Nonlinear Equation 
of Schrodinger Type with Some Self-Consistent 
Potentials 

Soliton solutions of Schrodinger equations have been 
investigated: a) with potential satysfying a nonhomogeneous 
Boussinesq equation and b) with saturable nonlinearity 
( 1- e-1/1 2 ) .p . It is shown that upper bounds on the soliton 
~mplitude arise. 

The problem of stability of nonhomogeneous stationary 
~quations of Schrodinger type with various nonlinearities 
is considered. It is shown that in two- and three-dimensio­
hal geometry, possible stationary solutions are unstable 
~ith respect to scale transformation. 
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1. Introduction 

In connection witb intensive development of the soliton 
theory /I I, up to now an unabated interest of tbeorists 
working in various fields of physics is attracted to the 
search for two- and tbree-dimensional stationary solutions 
of diverse nonlinear wave equations. From the point of view 
of plasma turbulence tbeory, nonlinear field theory and 
many oilier applications it is important to investigate 
such solutions for a nonlinear Schrodinger equation for 
Klein-Gordon equations and sine-Gordon equation. 

For equations in which a nonlinear term increases with 
the increase of the function sough for, it has been shown· 
tbat tbere are no stable stationary solutions in a non-one­
dimensional geometry. In tbis connection it is interesting 
to consider various models witb more complicated non­
linearities including saturable ones. As the latter we shall 
take nonlinear terms remaining bounded at the unrestrict­
ed growtb of unknown function. In section 2 tbe stationary 
solutions of Schrodinger equation with the potential sa­
tisfying a nonhomogeneous Boussinesq equation are con­
sidered. In section 3 tbe potential is taken in the form 
{1'"" I- Pxp(- o l~ i 2 ). where ,; is the function to 
be determined, u is a constant. Finally, in section 4 
a fairly general case of F ( ,; · 2 ) type nonlinearity is 
studied, and in section 5 brief conclusions are drawn. 

-------------------------
*The Schrodinger and Klein- Gordon equations with 

cubic nonlinearity have beE:n considered in refs. /2/ and /3< 
respectively, and in ref. ;4/ sine-Gordon equation has 
been investigated. 
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2. A Model of Coupled Schrooinger and Boussinesq 
Equations 

In the previous works I 5 I of one of the authors the 
system of coupled Schrodinger and Boussinesq equations 
has been proposed for the investigation of Langmuir 
solitons in plasmas* 

j a t/J + t/J XX 

at 
- UtjJ = 0, 

2 z <~ a2 a2 2 
(-a ___ a __ ~-a-)u -£ --(U2 ) = ~lfjil). 

at2 ax2 3 ax 4 ax 2 ax 

(2.1) 

Here, ljJ is the envelope of electric field, u is the 
disturbance of plasma density, and the dimensionless 
variables x, t ha:ve been determined in ref. 15/. This 
system well describes nearsonic Langmuir solitons 
removing the divergence inherent to linear wave equation 
for the potential 15 I. In the linear approximation in a 

small parameter 4 me 
£ = 3 "lliT the two-parametric set 

of solutions fji(O)(A,M) of the system of equations 
a , < o) 

. lfJ + 0 (0) _ u<Ol,1,(0) 
I ' XX 'f' at 
JO)_ u<O) =(I·'·(O) l2) 

tt XX 'f' XX 

splits into two solutions 

fjl = fji(O) +fji12 
' 

Here 

0, 

(2.2) 

*Analogous system of Schrodinger and Korteweg-de 
Vries (KdV) equations has been studied by the Japanese 
authors 16/. 
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t/1(0)= ySiv'
2 

, u<O)=-y2(t/J(0))2, 

dt(-y- t/Jm 0 
V2 

¢; = x - Mt , , the parameter M = _v_ is the soliton 
. cs 

velocity ( c s is the sound velocity), y 2 
= 1 I ( 1 - M 2) . The 

energy level in the soliton rest frame ¢; is * 
2 ~ 

,\ ( 0) = - ~2 ( tjJ ( o l ) 2 ' S = f tjJ 2 dx ' d S = 0 . 
m -~ dt 

The functions 0 1 and ljJ 2 are given by 

(0) £ 6 2 1 2 
ljJ 1 = ljJ 3 y S ( 6 + sech K ¢;) , 

E 4 3 2 chK,f - 1 4 
fji 2 = -2y t/Jmth (K~ (en chKE + 1 + 3 sechK~), 

where K = v -A . The first correction repeats the form of 
the zeroth approximation tjJ < 0 l , i.e., it is an one­
humped function of ¢; , the second one is a two-humped 
function and is equal to zero in the point ~ = 0 . 

An analysis of the A level corrections proportional 
to < results in 

,\ 1 = 0 ' ,\ 2 = - ; y6 ljJ! ' 
i.e., the energy level of the second solution is lower, and 
hence it is more realizable. 

-------------------------
*Here and below we understand the term energy level 

as an eigenvalue of the stationary Schrodinger equation 
ljJ a+ Afji - Ufji = 0 , i.e., the function ljJ is tFansform­
ed as ljJ .... ljJ exp ( - i At ) 
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In 15 I and I 6 I the exact analytical solution of the 
system (2.1) has been also obtained, and it is an one­
parameter set analogous to the soliton type solutions 
of the homogeneous KdV and Boussinesq equations. How­
ever, in contrast to the latter cases, the solitons of the 
system (2.1) remain subsonic ones, and their level A is 
negative. The solution has the form 

·> 3 

l!3 

~ v' 4H' A 
2 

th ( y- A 0 sech ( \ 1 - A 0 . 

6 A sech 
2 

( \/--=-:\ 0 , 

(2.3) 

(2.4) 

and the connection between parameters A and \1 is 

-
,, 2 

1-M2_ :!1 - -3 (A. (2.5) 

The forms of the solutions c'1i ( I;) and 1!1 
2 

( r;) are 
identical (both are two-humped) that apparently indicates 
the continuous transition 1/; 2 to •/1 3 with the enhancement 
of the role of the terms proportional to , , that takes 
place at 1\1 , 1 . 

If the results of this model to extrapolate to the case 
1\1 ._. 0, then Eq. (2.5) tells us that there are no solitons 

with the energy greater than 1 A I ~ l -
· cr ' :20 

3. Soliton Solutions of the One-Dimensional 
Schr&linger Equation with a Saturable 
Nonlinearity 

/5 I 
In the paper 1 1 it has been already pointed out that the 

system (2.1) is not quite adequate in the study of standing 
Langmuir solitons. The equation of the form 

l.jJ - ( A 2 
- .1. ) ljJ - .1. !/; exp ( - E I !/; 1

2 ) = 0 
XX E E (3.1) 
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j 

j 

is mor'e realistic * . Here we pass from A introduced 
in section 2 to the positively definite quantity A2 (A._.- A2l. 
We shall look for the soliton type solutions of Eq. (3.1) 
by using the conventional procedure of the integration 
in the phase plane. The first integral of Eq. (3.1) has the 
form 

!/; 2 = ( A2 - j_) !/; 2 -
X ( 

l ~ exp ( -' l! 
2

) 1 ( . 

We find the constant C from the condition 

~~ ' 0 

as 
X -• ± (XJ • 

Then in the point of the maximum of ,/1 ( x) from the con-
dition ~~ x ~ n we have 

and 

,\2 
1 2 , 2 exp ( -r 1:1 m) - J t , 1,1 m 

( 2 til 2 
m 

rh'1 2 I 1 2 I , 2 1 1/2 -- I (;.., - - l u - -.- exp ( -, u ) ' -
2 

I . 
. I x , 2 

1 

From the last formula we get the condition of the existence 
of a soli ton solution 

;..,2 - I 
( 

0 . (3.2) 

that is, as in section 2, we have again a constraint on 
the value ; A for the existence of stationary solutions. 

-------------------------
*Equation (3.1) can be strictly obtained from the system 

of the hydrodynamical equations of plasma theory. 
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4. On the Stability of the Nonhomogeneous Stationary 
Solutions to Nonlinear Equations of SchrOdinger 
Type ' 

. At first, for the simplicity, we consider a stationary 
equation of the Langmuir turbulence in spherical sym­
metry 

2 1 a 2 a cJ; 2 cJ; -< 1012 
- A l/1 + - - r - - -I/; + ~( 1 - e · ) = 0 . ( 4.1) 

r 2 ar ~ar r2 f 

This equation can be obtained by the variation of the 
Lagrangian 

00 

2 2 
£:> = - f dr ! [ ( r 0 )r l + 2 t/1 

0 

2 r <1 2 2 2 (lj; - 2A t/; ) 

r
2 

[ 2 2 1 2 1 
-((-) cj; ( 1-A t:) +(T)exp(-t: 0 l-(T)]l. (4.2) 

When the first variation 85? is equal to zero, we have 
Eq. (4.1). The sign of the second variation 8 2 f defines 
the stability of solution. When o 2 f < 0 , the solutions to 
Eq. (4.1) will be stable. We verify the stability of solu­
tions of Eq. (4.1) with respect to a scale transformation 
of the form r -. ar, l/; a = tjJ ( a r , A ) . Let 0 ( r, A ) be 
a solution of Eq. (4.1), i.e., of[ 1/; ( r, A) J = 0 . We 
consider 

f =-fdrll(rt/1) l 2 +20~-r 2 f(l/; ,All=-8(l)+S( 2l, 
a ar ·a a a a 

0 

where 

8 ( l )= Joo d ! [ ( ' ) ] 2 - 2 0 2 ] S ( 2) = Joo 2 f ( I A) d a r rljfa r 1 , a , ka r lf-la' , r. 
0 0 
• ( 1) ( 2) 

The functionals 8 and 8 · transform as 

8< 1> 
a = 

8< 1> 

a 
8 < 2) s< 2> 

a = ~--

8 

t 

4 

t 

From the condition o £:> = 0 we have 

or 

di:> I = 8(1> -38(2> = o, 
da a= 1 

8 ( 2) = _l 8 (1 ) > 0. 
3 

Finding of o 2 
£:> gives us 

d
2

i:> I =- 28( 1l + 128( 2)= 2S(l) > 0. 
d a2 a= 1 

(4.3.) 

(4.4) 

This means that if the solutions to Eq. (4.3) exist, then 
they are unstable, in any case with respect to the consi­
dered scale transformation. 

Analogous arguments are true for a more general equa­
tion of the stationary plasma turbulence 

div(-A
2 

V¢- VV
2

¢ + F(\V¢\
2

) V¢)=0. (4.5) 

This equation can be obtained by the variation of the 
Lagrangian 

(V¢)2 

f=-J<t-.¢l
2

d;+Jdr(f F<Odt-A
2 

<v¢l
2
l. (4.6) 

0 

The electric field is determined as usually from the 
equation 

E = - v¢ · 

The transformation 

r-.ar, ¢ =a¢(ar,A) 
a 

gives us the relation (4.4). 

The same procedure can be used for the study of 
equations describing the propagation of intense electro­
magnetic wave in a nonlinear medium with saturation.' 
For examfs1e, in cylindrical symmetry we have I 7 I (see 
also ref. sl ) 
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2 1 a atiJ 
1 

2, 
1 -A f + - - p --- + f 1 - cxp ( - f 1 = 0 . 

P a P ap (4.7) 

It is easy to obatin a Lagrangian whose variation gives 
Eq. (4.7) and to find the second variation of this Lagran­
gian with respect to the above-mentioned scale transfor­
mation. 

Note that the problem of stability of stationary solu­
tions to the nonlinear Klein-Gordon equation with saturable 
nonlinearity, e.g., of (4.1) type or ~~~ 3/ ( t + ~;2) type 
(see ref. I 8

/ ) can be investigated in an analogous way. 

5. Conclusions 

We formulate briefly the results of this work. One 
may conclude now that the Langmuir wave collapse pre­
dicted by Zakharov and described by Schrodinger equation 
with cubic nonlinearity or that of the form (2.2) will 
proceed up to a singularity in the solution. This is con­
firmed by the nonexistence of stationary states in non­
one-dimensional geometry and also by the absence of 
forces which can put hindrance to the collapse if it 
starts. 

Moreover, an equation of the type (4.l)with cubic 
nonlinearity has either collapsing or divergent solutions. 

It is natural that the behaviour of the solutions of 
Schrodinger equation with saturable nonlinearity is more 
complicated. As the analysis of stationary solutions in 
plane geometry shows, even in this case the upper bouds 
on the soliton amplitude (level) arise. This means that 
the plane collapse can go on only up to the definite value 
of amplitude. Then the packet will apparently break. 
Naturally an analogous situation is expected for two- and 
three-dimensional solutions *. 

-------------------------
* An indica:)on of such a possibilitY, is ~ the numerical 

experiment 19 • The computations 1 to, ll; could not find 
this phenomenon. 
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The fact that the stable stationary solutions in non­
one-dimensional geometry do not exist for the whole 
class of nonlinear wave equations (including ones 
with saturable nonlinearities) and even for some systems 
of two interacting scalar fields (this is confirmed by the 
above reasoning and the computer experiments I 9 ' 10 I ) 
is hardly accidental. Most likely a general phenomenon 
becomes apparent here. Probably it consists in the impos­
sibility of constructing stationary quasi-particle (soliton) 
solutions by means of only scalar nonlinear fields (also 
see ref. 112 I ). Therefore the idea of consideration of 
models of interacting scalar and spinor fields seems to 
be very interesting in constructing stable stationary 
quasi-particle states. As far as we know such models have 
been independently proposed in ref. 1131 and 1141. 

It is obvious that subsequent detailed investigation on 
the basis of scalar-spinor models of stationary quasi­
particle solutions, their stability and interactions, if the 
latter will be found, is of great value. 
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