

объединенный инСтитут ядерных исследований
 дубна

E5-90-8
M. Slodička

ERROR ESTIMATES FOR DISCRETIZATION IN TIME TO LINEAR HOMOGENEOUS
PARABOLIC EQUATIONS WITH
NONSMOOTH INITIAL DATA

Submitted to "Mathematics of Computation"

1. Introduction. Let X be a Banach apace with norm ||. Let A be a sectorial operator in X with the dowain $D(A)$. We consider this abstract homogeneous parabolic problem

$$
\begin{align*}
& u^{\prime}(t)+A u(t)=0 \tag{1.1}\\
& u(0)=v \in X .
\end{align*}
$$

It is well known that there exists a unique solution of (1.1) and it can be deecribed in this way

$$
\begin{equation*}
u(t)=T(t) v=(2 \pi i)^{-1} \int_{\Gamma} e^{\lambda t}(\lambda+A)^{-1} v d \lambda, \tag{1.2}
\end{equation*}
$$

where Γ is a curve in $\rho(-A)$ (the resolvent set of $-A$) such that arg $\lambda \rightarrow \pm \varphi$ as $|\lambda| \rightarrow \infty$ for any fixed $\varphi \in(x / 2, x)$.

In this paper we give error estimates for discretization in time (Rothe's method, backward Euler'e method) to the problem (1.1). We are interested here in the cate when no regularity assumptions are assumed for the initial element $v \in X$. The eain results are formulated in the Theorem 2.

If anybody is interested in error estimates for the semidiecrete Galerkin method applied to our problen (or to nonhomogeneous problem) in Hilbert spaces we refer the reader for example to [1-3], [6-6],....

In [6] one can found error estinates for completely discrete schemes applied to this eimple problem

$$
\begin{align*}
& u=0 \quad \text { on } \partial \Omega x<0, \infty) \tag{1.3}\\
& u(x, 0)=v(x) \in L_{2}(\Omega) .
\end{align*}
$$

For the homogeneous case ($f=0$) and for semidiscretization in time only, there is the error estimate derived in time steps t_{n} ($t_{n}=n \Delta t, \Delta t$ is a time step) and it is
$C\left(\Delta t t_{n}^{-1}\right)^{p} \| v \psi_{L_{2}(\Omega)}$,
where C is an absolute constant and p is the order of time discretizstion.

Remark 1. The same technique as in [6] may be applied to our problem if X ie a Hilbert space and A is selfadjoint positive definite in X.

Remark 2. For the backward Euler methorl thie eetimate followe from (1.4)

$$
\begin{equation*}
c \Delta t t_{n}^{-1}\|v\|_{L_{2}(\Omega)} . \tag{1.5}
\end{equation*}
$$

The same result is proved in [4] for a weak solution of an more abstract, homogereous parabolic problem in a Hilbert space.

Remark 3. In the following C denotes the pobitive generic constant independekt of t, T.

The contribution of our paper is following:

1) we work in a Banach epace only;
ii) we deal with more gerieral operator A as in [4], [6];
iii) we us on another proof technique;
iv) we showed the continuity between backward Euler's wethod and the theory of semigroupe.
2. Preparatory lemmas. In this paragraph we prove a few assertions from real and complex analyeis.

Lemma 1. If $\lambda \in \mathbb{C}, \operatorname{Re} \lambda<0$ and $t, \tau>0$ then

$$
\left|(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right| \leqslant|\lambda|^{2}|\operatorname{Re} \lambda|^{-2}\left|(1-\tau \operatorname{Re} \lambda)^{-t / \tau}-e^{\operatorname{Re} \lambda t}\right| .
$$

Proof : For any fixed t, τ, λ we denote

$$
f(\lambda)=e^{-\lambda t}(1-\tau \lambda)^{-t / \tau} .
$$

It is easy to see that

$$
f^{\prime}(\lambda)=t \tau \lambda e^{-\lambda t}(1-\tau \lambda)^{-t / \tau-1} .
$$

So we can write

$$
\begin{gathered}
f(\lambda)-f(0)=\int_{0}^{1} \lambda f^{\prime}(\theta \lambda) d \theta= \\
=t \lambda^{2} \tau \int_{0}^{1} e^{-\theta \lambda t}(1-\tau \theta \lambda)^{-t / \tau-1} \theta \mathrm{~d} \theta .
\end{gathered}
$$

Using this we get

$$
\begin{gathered}
|f(\lambda)-f(0)| \leqslant t|\lambda|^{2} \tau \int_{0}^{1} e^{-\theta \operatorname{Re} \lambda t}|1-\tau \theta \lambda|^{-t / \tau-1} \theta \mathrm{~d} \theta \leqslant \\
\leqslant t|\lambda|^{2} \tau \int_{0}^{1} e^{-\theta \operatorname{Re} \lambda t}(1-\tau \theta \operatorname{Re} \lambda)^{-t / \tau-1} \theta \mathrm{~d} \theta= \\
\quad=|\lambda|^{2}|\operatorname{Re} \lambda|^{-2}(f(\operatorname{Re} \lambda)-f(0)) .
\end{gathered}
$$

The rest of the proof follows from

$$
\left|(1-\tau \lambda)^{-t / \lambda}-e^{\lambda t}\right|=e^{\operatorname{Re\lambda t}}|f(\lambda)-f(0)|
$$

Leman 2. Let δ, t, τ be positive real numbers. Then

$$
\int_{0}\left[(1+\tau y)^{-t / \tau}-e^{-y t}\right] y^{-1} \mathrm{~d} y \leqslant \tau t^{-1} .
$$

Proof : Let us denote

$$
E \pm(\alpha)=\int_{\alpha} e^{-z z^{-1}} \mathrm{~d} z \quad \forall \alpha>0 .
$$

One can prove that

$$
\alpha_{e} \alpha_{E i(\alpha)} \leqslant 1 \quad \forall \alpha>0 .
$$

Using

$$
\left.\frac{d}{d y}\left[e^{y t}\left(1+\tau_{y}\right)^{-t / \tau}-1\right]=t \tau_{y} y t_{(1+\tau y)}\right)^{-t / \tau-1}
$$

and integrating by parts we have

$$
\begin{aligned}
& \infty \\
& \int_{8}\left[(1+\tau y)^{-t / \tau}-e^{-y t}\right] y^{-1} \mathrm{~d} y= \\
& =\int_{0}^{\infty} e^{-y t y^{-1}} \int_{0}^{y} t \tau s e^{s t}(1+\tau s)^{-t / \tau-1} \mathrm{~d} s \mathrm{~d} y= \\
& =\int_{\delta} e^{-s t_{s}-1} \mathrm{~d} s \int_{0} t \tau s e^{s t}(1+\tau s)^{-t / \tau-1} \mathrm{~d} s+ \\
& +\int_{0}^{\infty} \int_{y}^{\infty} e^{-s t} s^{-1} \mathrm{ds} t \tau y e^{y t}(1+\tau y)^{-t / \tau-1} \mathrm{~d} y \leqslant \\
& 0 \\
& \leqslant E i(\delta t) \delta t e^{\delta t} \int_{0}(1+\tau s)^{-t / \tau-1} \mathrm{~d} s+ \\
& +\int_{0}^{\infty} E i(y t) y t e^{y t} \tau(1+\tau y)^{-t / \tau-1} \mathrm{~d} y \leqslant \int_{0}^{\infty} \tau(1+\tau s)^{-t / \tau-1} \mathrm{~d} s=\tau t^{-1} \cdot \square
\end{aligned}
$$

Lemma 3. Let $\lambda \in \mathbb{C}$ where $|\lambda| \leqslant \delta$. Then for $\tau \leqslant(2 \delta)^{-1}$ there exists a positive constant $C=C(\delta)$ such that

$$
\left|(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right| \leqslant e^{C t} \tau t^{-1} \quad \forall t>0
$$

Proof: Let us fix $t>0$ and $0<\tau<(28)^{-1}$. If we denote

$$
f(\lambda)=e^{-\lambda t}(1-\tau \lambda)^{-t / \tau}
$$

then analogonsly as in Lemma 1 we estimate

$$
\begin{aligned}
&|f(\lambda)-f(0)| \leqslant t \tau\left\{\left.\lambda\right|^{2} \int_{0}^{1} e^{-\theta R e \lambda t} \mid 1-\tau \theta \lambda\right\}^{-t / \tau-1} \theta \\
& d \theta \leqslant \\
& \leqslant t \tau|\lambda|^{2} \int_{0}^{1} e^{\theta t(|\lambda|-\operatorname{Re} \lambda)} e^{-\theta|\lambda| t}(1-\tau|\lambda| \theta)^{-t / \tau-1} \theta d \theta \leqslant \\
& \leqslant e^{2 \delta t}(f(|\lambda|)-f(0))
\end{aligned}
$$

In virtue of

$$
f(x)-f(0)=\int_{0}^{x} t \tau y e^{-y t}(1-\tau y)^{-t / \tau-1} \mathrm{~d} y
$$

and using

$$
\text { tye } \quad-y t \quad 1 \quad \forall y, t \in \mathbb{R}
$$

one can nbtain

$$
f(|\lambda|)-f(0) \leqslant \int_{0}^{|\lambda|}(1-\tau y)^{-t / \tau-1} d y \leqslant \tau t^{-1}(1-\tau|\lambda|)^{-t / \tau} \leqslant \tau t^{-1} e^{2 \delta t} .
$$

The rest of the proof follows from

$$
\left|(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right|=e^{\operatorname{Re} \lambda t}|f(\lambda)-f(0)|
$$

3. Main results. Solving the problem (1,1) by discretization in time we get euch elliptic problems

$$
\begin{gather*}
\left(u_{i}-u_{i-1}\right) \tau^{-1}+A u_{i}=0 \tag{3.1}\\
u_{0}=v_{1}
\end{gather*}
$$

where τ is a time step; $u_{i}=u(i \tau) ; i=1,2, \ldots$.
It is easy to see that

$$
u_{i}=(I+\tau A)^{-i} v
$$

The main idea of Rothe method is following. If we know all the $w_{i}(i=1,2, \ldots)$ then we construct the Rothe function (ae a approximate solution of (1.1)) in this way

$$
\begin{equation*}
u_{n}(t)=u_{i-1}+\left(t-t_{i-1}\right) \tau^{-1}\left(u_{i}-u_{i-1}\right) \tag{3.2}
\end{equation*}
$$

where $t \in\left\langle t_{i-1}, t_{i}\right\rangle$.
Our approach is based on another definition of approximate solution which cuts $u_{n}(t)$ in the time steps $i \tau$ (i.e. in u_{i}). Let Γ be the curve taken from (1,1). Le us define the operator $T_{\tau}(t)$: $X \rightarrow X$ (for every $t>0,0<\tau<\tau_{0}$) in this way

$$
\begin{equation*}
T_{\tau}(t)=(2 \pi \dot{j})^{-1} \int_{\Gamma}(1-\tau \lambda)^{-t / \tau}(\lambda+A)^{-1} \mathrm{~d} \lambda \tag{3.3}
\end{equation*}
$$

One can prove that the integral in (3.3) is absolutely convergent for every fixed t, τ. The parameter τ corresponds with the time etep in (3.1). For any fixed $\tau>0, T_{\tau}(t) v$ is said to be the approximate solution of (1.1) in our sense. In order to ehov relation between $u_{n}(t)$ and $T_{\tau}(t) v$ we prove

$$
\begin{equation*}
T_{\tau}(i \tau)=(I+\tau A)^{-i} \tag{3.4}
\end{equation*}
$$

for $i=1,2, \ldots$.
In fact we can write

$$
I=T(0)=T_{\tau}(0)=(2 \pi i)^{-1} \int_{\Gamma}(\lambda+A)^{-1} \mathrm{~d} \lambda=
$$

$$
\begin{align*}
& =(2 \pi i)^{-1} \int_{\Gamma}(1-\tau \lambda)^{-1}(\lambda+A)^{-1}(1-\tau \lambda)^{i} \mathrm{~d} \lambda= \tag{3.5}\\
& =(2 \pi i)^{-1} \int_{\Gamma}(1-\tau \lambda)^{-i}(\lambda+A)^{-1} \sum_{k=0}^{i}\left[\begin{array}{c}
i \\
k
\end{array}\right](-1)^{k_{i} k^{k} \lambda^{k} \mathrm{~d} \lambda}
\end{align*}
$$

Using $(\lambda+A)(\lambda+A)^{-1}=I$ we get $A(\lambda+A)^{-1}=-\lambda(\lambda+A)^{-1}$ and in the end one carn prove

$$
\begin{equation*}
A^{k}(\lambda+A)^{-1}=(-1)^{k} \lambda^{k}(\lambda+A)^{-1} \tag{3.6}
\end{equation*}
$$

for any $k=1,2, \ldots$.
From (3.5), (3.6) we deduce

$$
\begin{equation*}
I=(2 \pi i)^{-1} \int_{\Gamma}(1-\pi \lambda)^{-i}(\lambda+A)^{-1}(I+\pi A)^{i} \mathrm{~d} \lambda \tag{3.7}
\end{equation*}
$$

The operator $(I+\tau A)^{-1}$ is linear and bounded for every $i=1,2, \ldots$ and so (3.7) yielde (3.4). Really in fact we have

$$
\begin{aligned}
(I+\tau A)^{-i} & =(I+\tau A)^{-i}(2 \pi i)^{-1} \int_{\Gamma}(1-\tau \lambda)^{-i}(\lambda+A)^{-1}(I+\pi A)^{i} \mathrm{~d} \lambda= \\
& =(2 \pi i)^{-1} \int_{\Gamma}(1-\tau \lambda)^{-i}(\lambda+A)^{-1} \mathrm{~d} \lambda=T_{\tau}(i \pi) .
\end{aligned}
$$

So we can say that $T_{\tau}(t)$ is a fractional power of $(I+\tau A)^{-1}$, more precisely

$$
\begin{equation*}
T_{\tau}(t)=(I+\tau A)^{-t / \tau} \tag{3.8}
\end{equation*}
$$

Theorem 1. The family $\left\{T_{\mathfrak{r}}(t)\right\}_{t \geqslant 0}$ is a semigroup.
Proof : It is easy to see that $T_{\tau}(0)=T(0)=I$. Using Cauchy integral theorem we may shift the path of integration in (3.3) for a small distance to the right without changing the value of the integral. The new curve we denote by Γ^{\prime}. In virtue of the resolvent identity

$$
(\lambda+A)^{-1}-(\mu+A)^{-1}=(\mu-\lambda)(\lambda+A)^{-1}(\mu+A)^{-1}
$$

we can write

$$
\begin{aligned}
& T_{\tau}(t) T_{\tau}(s)=(2 \pi i)^{-2} \iint_{\Gamma}(\lambda+A)^{-1}(\mu+A)^{-1}(1-\tau \lambda)^{-t / \tau}(1-\tau \mu)^{-s / \tau} d \mu d \lambda= \\
& =(2 \pi i)^{-2} \iint_{\Gamma}(\mu-\lambda)^{-1}\left[(\lambda+A)^{-1}-(\mu+A)^{-1}\right](1-\tau \lambda)^{-t / \tau}(1-\tau \mu)^{-s / \tau} \mathrm{d} \mu \mathrm{~d} \lambda .
\end{aligned}
$$

One can prove

$$
(2 \pi i)^{-1} \int_{\Gamma}(1-\tau \mu)^{-s / \tau}(\mu-\lambda)^{-1} \mathrm{~d} \mu=(1-\tau \lambda)^{-s / \tau}
$$

and

$$
(2 \pi i)^{-1} \int_{\Gamma}(1-\tau \lambda)^{-t / \tau}(\lambda-\mu)^{-1} \mathrm{~d} \lambda=0 .
$$

From these facts we deduce

$$
T_{\tau}(t) T_{\tau}(s)=(2 X i)^{-1} \int_{\Gamma}(\lambda+A)^{-1}(1-\tau \lambda)^{-(t+s) / \tau} d \lambda .
$$

Theoren 2. (i) If $\mathrm{Re} \sigma(-A) \leqslant-\delta_{0}\left(\delta_{0}, 0\right)$, then there exists $\tau_{0}>0$ such that

$$
t \mid T_{\tau}(t)-T(t) \| \leqslant c \tau \quad \forall \tau<\tau_{0}, \forall t>0
$$

(ii) If $\operatorname{Re} \sigma(-A) \leqslant \delta_{0}\left(\delta_{0}>0\right)$, then there exists $\tau_{0}>0$ such that

$$
t\left\|T_{\tau}(t)-T(t)\right\| \leqslant C e^{C t_{\tau}} \quad \forall \tau<\tau_{0}, \forall t>0
$$

The constants C, τ_{0} depend only on the $O(A) \ldots$
Proof: (i) Without lost of generality we can euppose that the curve Γ is described in this way

$$
\begin{equation*}
\lambda \in \Gamma \Leftrightarrow \lambda=-\delta-s \cos \varphi \pm i s \sin \varphi \tag{3.9}
\end{equation*}
$$ where $s \in\langle 0, \infty\rangle, \varphi \in(0, \pi / 2), \delta=\delta\left(\delta_{0}\right)>0$.

Let us divide Γ into Γ_{1} and Γ_{2} such that

$$
\begin{equation*}
\lambda \in \Gamma_{1} \Leftrightarrow \lambda \in \Gamma \wedge \operatorname{Im} \lambda \geqslant 0 \tag{3.10}
\end{equation*}
$$

$$
\lambda \in \Gamma_{2} \Leftrightarrow \lambda \in \Gamma \wedge \operatorname{Im} \lambda<0
$$

We give the proof of (i) only for Γ_{1}. The second case can be proved analogously. Using Lemme 1 one can see that

$$
V\left(\Gamma_{1}\right)=\left|(2 \pi i)^{-1} \int_{\Gamma_{1}}(\lambda+A)^{-1}\left[(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right] d \lambda\right| \leqslant
$$

$$
\begin{aligned}
& \leqslant c \int_{\Gamma_{1}}|\lambda|^{-1}\left|(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right| d \lambda \leqslant \\
\leqslant & c \int_{\Gamma_{1}}|\lambda|^{2}|\operatorname{Re} \lambda|^{-3} \mid(1-\tau \operatorname{Re} \lambda)^{-t / \tau}-e^{\operatorname{Re} \lambda t \mid} d \lambda
\end{aligned}
$$

For $\lambda \in \Gamma_{1}$ we have $|\lambda|^{2}|\operatorname{Re} \lambda|^{-2} \leqslant C(\varphi, \delta)$ and in virtue of $(3.9),(3.10) \underset{\infty}{w}$ deduce

$$
\begin{aligned}
& V\left(\Gamma_{1}\right) \leqslant C \int_{0}^{\infty}\left[[1+\tau(\delta+s \cos \varphi)]^{-t / \tau}-\mathrm{e}^{-(\delta+s \cos \varphi) t}\right] \mathrm{x} \\
& \left.x(\delta+s \cos \varphi)^{-1} \mathrm{~d} s=c \int_{\delta}^{\infty}[1+\tau y)^{-t / \tau}-\mathrm{e}^{-y t}\right]^{-1} \mathrm{~d} y
\end{aligned}
$$

The rest of the proof is a consequence of Lemma 2 .
(ii) Let us divide Γ into Γ_{1} and Γ_{2} in this way

$$
\begin{aligned}
& \lambda \in \Gamma_{1} \Leftrightarrow \lambda \in \Gamma \wedge \operatorname{Re} \lambda \leqslant-\delta_{0} \\
& \lambda \in \Gamma_{2} \Leftrightarrow \lambda \in \Gamma \wedge \lambda \notin \Gamma_{1}
\end{aligned}
$$

We omit the proof for Γ_{1} because it goes in the same way as in (i). In the case when $\lambda \in \Gamma_{2}$ there exists $\delta>0, \delta=\delta\left(\delta_{0}, \varphi\right)$ such that

$$
|\lambda| \leqslant B \quad \text { if } \lambda \in \Gamma_{2}
$$

So we have

$$
\begin{aligned}
& V\left(\Gamma_{2}\right)=\|(2 \pi i)^{-1} \int_{\Gamma_{2}}(\lambda+A)^{-1}\left[(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right] d \lambda \\
& \leqslant C \int_{2}|\lambda|^{-1\left|(1-\tau \lambda)^{-t / \tau}-e^{\lambda t}\right| d \lambda}
\end{aligned}
$$

Using Lemma 3 one can see that

$$
V\left(\Gamma_{2}\right) \leqslant C e^{C t_{\tau}} t^{-1}
$$

where the constant C depends on $\sigma(A)$ i.e. $C=\mathcal{C}\left(\delta_{0}, \varphi\right)$, from which we conclude (ii).
i. H. P. HELFRICH, "Error estimates for Semidiscrete Galerkin Type Approximatione to Semilinear Evolution Equatione with Nonsmooth Initial Data," Numer. Math., v. 51, 1987, pp.559-569
2. C. JOHNSON \& S. LARSON \& V. THOMEE \& L. B. WAHLBIN, "Error Estimates for Spatially Discrete Approximations of Semilinear Parabolic Equations with Nonemooth Initisl Data." Math. Comp., v, 49, 1987, pp. 331-357
3. M. LUSKIN \& R. RANNACHER, "On the smoothing property of the Galerkin method for parabolic equations," SIAM J. Numer. Anal., v. 19, 1982, pp. 93-113
4. H. MINGYOU \& V. THOMEE, "On the backward Euler method for parabolic equatione with rough initial data," SIAM J. Numer. Anal., v. 19, 1982, pp. 599-603
5. P. H. SAMMON, "Convergence estimstes for semidiscrete parabolic equation approximations," SIAM J. Numer. Anal., v. 19. 1982, pp. 68-92
6. V. THOMEE, Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Math. 1054, Berlin - Heidelberg - New York - Tokyo, Springer Verlag, 1984

```
Received by Publishing Department
    on January 8, 1930.
```

