


1. Introduction

Operator symbol - - representations  have their - origin  -in ;mathematicavl :
literature .in the theory of pseudo—difl‘erential operators and. .in . physical
" literature in so-called phase space methods.of quantum mechanics. Phase space
methods in quantum theory make use of symbol representations of the Weyl
algebra. A restriction to a pure algebraic view point, -i.e. to symbols of
algebra elements rather than of operators,v allost to extent the: class - of
non-commutative algebras for which symbol representatlons ex1st Furthermore,
the twisted product techniques can be extended to subrmgs of - the quotlent
division ring of the Weyl algebra. The method has ‘been elaborated /for
calculations in computer -algebra systems and was .applied. to, quanturn
mechanical problems (see /1/ and ref. therein), to Grobner bases calculations
in° non-commutative algebra/Z/, and to Lie optics in.. order to: rcalculate
aberrations (see /3/ and ref. therein). : ‘\ ‘ ‘ X ’

The method can be ‘generalized to envelopmg algebras U(L) of Lie algebras‘
"L dlfferent from the Heisenberg Lie algebra. The method starts from ‘a
one-to-one correspondence between the linear space of the envelopmg algebra
U(L) and that of the symmetrlc algebra S(L) over L. The algebra S(L) can be‘
equipped with a so-called twisted product so that it . becomes 1somorph1c to"
U(L). , ‘ ’

Operator orderings have been described in mathematical and ‘physical

literature by various techniques/4_6/. Symbol  representations are: powerful

tools "in this context/4/-.' A - generalization - to enveloping algebras U(L) - resp.
to differential operators . over . Lie . groups. will 'be of‘ theoretical - and
practical interest. o ‘ _

The ordering problem consists first of all in a description of "different
operator orderings. . Different ordering rules correspond to different bases in
U(L). The elements of U(L) are represented by different symbols - in dependence"
of the ordering rule chosen An appropriated twisted product depends on the
ordering rule in a non-trivial way. We gen_erahze the notion of an ordering
defining function ¢. It is possible " to 'calculate ¢ for vaxfious ordering

rules. This helps to determine a transformation' between different types of.
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symbols and allows to. use ‘the same fast muluplication algorlthm for

different orderings. ' The  fast multiplication» algomthm . for the
: non-commutatlve algebra must not be’ related to twisted product techniques. A
very fast algorlthmn/makes uses of the fast integer ar1thmet1c of special
processors The algebra elements are Vrepresented by ‘integers ‘in that . case.
The representatlon is related to a given basis. The mentioned transformation
allows  to use the same fast algorithm also. if the algebra elements are given
in another basis related to a different ordering. )
B » ’J‘

2. Basic notions and notations

The Lie

in a - basis

K Let LA be a vfinite' dimensional .Lie algebra over the field K .

. ; Kk
algebra L is given by its structure ~ constants cij
« n
k ; -
LX.]= Y. X for ij=12,....,n
, le,XZ,...,Xn) ’ [X!,XJ] u§1 ik Jj

" We denote by U(L) the enveloping algebra of L over K. One gets

U(L)- T(L)/J from the tensor algebra T(L) of L by factorization according
to the ideal J generated by the set: { XeY - ‘Yex -IX, Y] I XY € T N The

envelopmg algebra U(L) has a graded struc"u.xirei U(L)i ® Un Un'— u™u™
{XeU(L)|deg X = n }. The set (X x 2---Xnn) Nt plgeedn Je N, is a
U(L), according- to the Pomcaré—Birkhoff ~Witt theorem. We use the

Xg= 1, and we  denote by capital letters 'Xk

‘where Un
bas1s of
convention X X also the

So, there is
. 1 i i
no problem to differ non—commutatlve multiplication of elements X X X

. elements of L in their embedding L ————-) U(L) in UL) .

n
n
in ~ U(L) from commutative multiplication in the “symmetric algebra S(L) The
: ' ii i
. . ) n
" basis elements of S(L) are denoted by small letters X 'x <X, . The

symmetric algebra S(L) over L can be obtained from the tensor’ algebra T(L).

by factorization S(L)=T(L)/1 according to the ideal I generated by the set

{XeY - YeX | X,Y € L) S(L) is isomor"phic' to the algebra of polynomials
K[xl.xz, ] .

We use multiindex ‘notation:
. : : n . n
= TE= . = = ceey N
»x (xl,xz,...,xn), 3 ,(El’EZ'"’En)' £x: E:jkxk", o (al.az. an)‘e

3 o [
3 al az n 6' | a' |

lal=F o . x% = x 'x %-x =
. . . 4 - o
kel K og*  eEn 9€3z -+ -9€)n

g ol

[

i

’ defined by the Gelfand map

3. Generalized’Weyl ordering

A one-to-one correspondence between the linear spaces of S(L) and U(L) is
/8/, :

w: S(L) ——— UL)
given by
w(x. x....x, ) =
i7i i
1 2 T

’!l»—l

T X. X, e-- X, R ¢}
T ‘n() 'w(2) Latry - 4

and by linearity of w. The sum runs over all permutations of r elements. The

r.h.s. of (1) is the complete symmetrization < Xi Xi...Xi > of X. X....Xi
: . 2 T 1 2 r
This complete symmetrization .will be. synonymously ‘ called . Weyl ordering.

The map (1) will be called Weyl quantization due to applications in physics.
The element y € S(L) is called Weyl symbol 'of‘ w(y) e U(L). The notions
Weyl ordering and Weyl quantization are now generalizations of :the
correspondmg notions known for the special case if L is  the Heisenberg Lie
algebra Hn . Hn' is the (n+l) dlmenswnal L1e algebra over R glven by

1 if i=j

[Pi’Q'] = Sijz ‘w1th Sijz,' (o if ifj (1,J=1,2,..,n), where. z is a central“

element.

Examgle 1:- Let L be the :Lie algebra- so(3) with the ba51s (XI,X ,X:';),h
[XX]-X lX X]—X [X X]X
Then

w(xlxz) = <X1X2> —(X1X2+X2X1)

The element’ XX, € S(L=s0(3)) is the:Weyl symbol of .

—(XX+XX) -

KXo 1 2 X € U(so(3)).

3
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4. Twisted product for Weyl symbols

We " introduce in = S(L)" a new non-commutative multiplication ‘which makes

S(L) isomorphic to U(L). Since w is bijective’ we are allowed to define
o R VR ) L : : } )
Ve ¥y =% Co (y) w?(yz) Yoo - (2) )

A key idea in symbol representations is to calculate the non—commutative

multiplication between symbols in a direct way . without the non-commutative -

~ multiplication in U(L).



For the usage of computer algebra systems it is: very convement that the
/9

multiplication coincides with the followmg COnVOlutlon product -Note that’
only dlfferentlatlons occur. ) :
: x D( B,r s ax") :

(y, = y)x) = : Vi) ¥ ) | h ey (3)

"I;he.differential operator D in the exponential series is fo‘rmally given by

W)= f : (4)
D(axl )ax”) T(axl !axll), . .
o - R
where ~ T(€,m) = A(§,m)-€-n is the non-linear part of the exponent in the
Baker-Campbell-Hausdorff formula (see for instance /9/)

£X nX

€ ° €

_ ¢ MEMX

'Since we calculate twisted products of polynomials, the formal exponentialA
series of Eq. 3 will be used oniy up to a.finite order. A proof, that the
twist_e.d/‘product of Eo. 3 coincides with. that defined in Eq. 2 will be given
in section 6 tog‘ether with a 'justifieation of "the notation used. The operator
D will be given by a truncated series.

~The twisted product in combmatlon with the lmear map ® from Eq «(1)
allows to execute tedious calculations in U(L) -using. now. only symbols “This
cao ‘be done easily in almost alf computer algebra systems, since only
differentiation .and commutatlve ' polynorﬁial algebra facilities are required.
© Of course, D has to be determined. However; if D is calculated once up to an
order high enough in dependence of degree of the polyuomials, then D' can. be
used i‘n all subsequent calculations. Moreover, useful formulae as applied in

a LOGLAN package/m/for calculations in enveloping algebras and Lie fields
can be derived. from the twisted product.

S. Orderings defined by a function

In order to -apply -the twisted product techniques also for orderings

dlff erent’ from that ‘defined by the map w of Eq. 1, we introduce the notion of .

an ordering - defining function ¢ . For thls reasons we consider another way

to define the map w. The method is partially known In literature for the

special case if 'L -is the Heisenberg Lie algebra .(see /1/ ‘and . references -

therein).

(5)-

EES AN
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: e : .
element . <X 1X ;--X 2). Note that the map w

Let "£x=} E X be a general homogeneous element of degree 1 in-S(L).
) k=1

\ Replacmg the small x’s by capital X’s and not touchmg the parameters 5 we

get a linear . element in U(L) If thls will be done m the exponentlal series

e>”, so this is just the way to descrlbe Weyl quantlzatlon for exponentlal'

series : . :
Q('egx)=e€x (e)

From Eq. 6 we derive the Gelfand map of Eq. 1, i.e. ‘the Weyl quantization
’

lel

‘of polynomials. Formal differentiation ..|€_0 applied on egx gives the

« « « ; aE ‘ ~ o -

. o 2 n . £X .
monomijal x = X X, X whereas the same operator applied on e gives

‘ % %2 ‘»xn“ a1/ %2 n .
just the complete symmetrization <Xl X 2--X n> = w(xl X “eex ) € UL) of
oo a

XIIXZZ--Xnn. That  will not wonder, since the Weyl quantization
@« Ce k@ ' - a oil @, o«

w(xl X, Xy ) of X %, Teex " occurs as ‘"coefficient" of & = £ € “--£

, 172 n
(£x)'
“ !

i .

to &£ -at £=0 picks out just that coefficient:

in the exponential series e€X= , (led=i). Differentiation with respect

o élal £x o« o o T
lx) = —= Qe>7)|,_ =<X X "X (7
o £=0 172 n .
og
So we receive -the linear map w by formal differentiation from Q as shown -

in the following diagram.

Q :
e 5% e §X
glel | vglel
aga £=0 aga‘ £=0
o, o w : o o o
X x_Teex ’ > X X TeeXT> -
1 2 n . 1 2 n
complete symmetrlizatlion
x o o

We refer to xllxzz--xnn as the -Weyl symbol of - the symmetrized basis

@ « L S
defines -the Weyl basis
@ e, a n - . SRR .
(<X1 X "X >/ @ € N} of U(L) according to Eq. (1. We introduce. an

_ordering defining furiction ¢ and generalize the map £ as follows



(e fXjoeBXre@x T g
¢ o : ‘

where  ¢= (@), (€) has to
to characterized the class of allowed functlons ¢ However, ¢ can be
for various

exp]lCltly determined orderings. The particular case ¢ = O

describes Weyl ordering. Formal differentiation to € at £€=0 can be used to

vgenerate a basis in U(L). The basis differs from the Weyl basis if ¢ is not
Zero or a constant.

We define the map % for polynomials by

‘ ’ .

» la] @ o o«

a a £x n

w,(x) = —Q,.(e>). <XX X . 9)
¢ P le=o n’e . |

and by ‘linearity of w.

‘The method is summarized - in the following diagram.

Q -
e £x [ e £X + ¢(E)X
alal | alal
S | . og* &0
w »
[ o ‘ ¢ : o a [
Tx 'x Zeex ® 5 X 'x 2ex ™
1 72 n 1 "2 n ‘¢
o o a

We now speak of :;llxz -,-xnn as the ¢-symbol of the ¢-ordered

a o o
Z n

ba51s element - E2ex My of UL .

¢

Examgle 2: Standard ordering; Poincaré-Birkhoff-Witt basis.

In many practical cases and with almost all computer algebra systems it
a o o

seem$ much easier to work with the Poincaré-Birkhoff-Witt basis’ Xl )(22 -)(nn

of U(L) than with the ’symmetrized elements of the Weyl basis..The "function' ¢

for. the Poincaré-Birkhoff-Witt basis (PBW-basis) or standard basis can be )

calculated " iteratively uéing the Baker-Campbell-Hausdorff formula. We will do

it step wise 'so that theorigin and nature of ¢ becomes transparent.

. . 8%
Because of Xil,= a_ & 1[ -0
ae%i &

1

for i=1,2,...,n ., we obtain

be approprlately chosen We will no‘t try'

' orderings. ~ Let = ¢(§) be the

o a e w '*":”alw" ‘ ,-;U:"ian“ S e &
x 2ox M= (2 e esnquE ) - (10)
851.1 ) BEnn,',” B R

eslxl_ lg -0

" Since the differentiation concerns different parameters this equals to

a o o . o
ol

Iy 2y N _ £X £ X -
XX, X "= — (et se “n"n _)|€=0 (1)
, 13
In order to find the function ¢ such that
[- . 1 a ' 'Ial
Xl1)(22_J_Xnn - BT' (e E)f +$(£)X )Igzo 12)
5% .
we iteratively apply the BCH-formula
E1X1- szz Ean E1X1+€2)(2+1:(§1’§2)X Esxs Enxn (13)

e e TR = e e s e ,
where £=(0,..,0,6,,0,...,0) denotes the n-tuple with *si in the i-th

vcomponent Then the vector valued" function ¢ is given by

v e = tPs 0D e
where T(k) is recurrently defined by
K__ g, W, (k1)
T ~_T(§l+"'+_§kw T &l (15)
‘with
—T(EI’EZ

The functwn ¢ is the- key to transformations between symbol for ‘different

‘ordering defining function = for  the

Poincaré-Birkhoff~Witt basis, i.e. for the standard ordering of example 2.
Coxt¢(a):
X
"'lx’=x
element Y of U(L) gives. just the Weyl symbol of the same element Y. .

The transformation e applied on a standard ‘symbol of an

x'¢(6 )
e Y (X)l _ yw(x) (16) -

The proof starts again from exponentials. Note that 5% is the ¢-symbol of

e€X+¢(§)X according to Eq. 8. The f ollowi‘ng identity . ‘
x'¢(6x) £x

e [

o EX + 9(8)x . ) . 17)

X=X

may be verified by cbmparisonlof coefficients.



S ’rh'e' r.h.s. of Eq. 17 is _|ust the Weyl symbol of ‘e EX +¢(§)X

Formal differentiation e of Eq.‘17 gives‘f‘or the Lh.s.
aga £€=0 .
s ol a

x¢(3x) o : where  x* is the ¢-symbol of " <X X 2..x "> =
e X =y . 172 n ¢
Aallaz %n '
Xl X2 . -Xn for the standard ordering. The same formal differentiation
gives for the r.h.s. of Eq. 17 a polynomial in Xppeees X which is just

. : 061 az Otn ocl ccz a
the Weyl symbol of <Xl X2 . -Xn >¢ = XIJX2 - -Xn

6. Twisted products

The idea. to derive the twisted product -for polynomials starting from
exponentiel series is the key for very simple proofs. First we show that for
Weyi ordering ‘the twisted product of Eq. 2 is given by Eq. 3, where D has‘ to
be ‘the nbnlinear'part of the BCH-formula. So we start with an Ansatz that the

twisted product is given by an operator eXD for an appropri'ate D and we have

to demand

x D3, , 3, (18)

%) o Q{enx) = Qle egx’enx"| )

X’=X"=X

i No'.cevthat the following identity is valid.

. X D(a ,,

e €X‘ ™| = XDEM + €x + nx

X’=X"=X (19)
This identity may be easily verified by comparison of coefficients in the
exponential  series. Substitution of ‘Eq. 19 into the r.h.s of Eq. 18 and

Weyl quantization (Q) gi\}es

o EX o X _ (€4 m + DEMX

(20)

.Hence, "D(£,m) - has " to coincide with the. nonlinear part T(€,m) in the
BCH-formula.
In order-to justify the notation used, we remember that according to the

) : X X_
BCH—formula E e’ (E+T)+T(E,T)))X the nonlmear part T(E,'n) defines an

analytlc map from 'L x L into L. 't(E n) may be obtamed by an absolutely

.Formal differentiation

convergent series T(E,T)) = ): c (E n) , where ‘c'n ére i‘echrfehfiy defined
polynomlal maps from L x L mto L of - degree n. We refer to /11/ for detalls :
lel 5181 \

a

5 E=n=0

a——_ applxed on the rewritten Eq. 18-
o€~ om

x D(a_,,8_,) : .
: xx £xX’ X" _ €&X nX )
Q(e e e Ix'=x"=x )=e" e 1)
gives - . 3

w(x* » xB) = w(x%) w(xB) (22)

according to Eq. 7. So the ;wisted product of Eq. 2 coincides with that of
Eq. 3 dué to linearity of w. o

7. Conclusions

If the basis of U(L) is given not in the Weyl ordering but in the
standard = ordering (resp. ¢—ordering) there exist in principle two

procedures for the mdltiplicatien of two elements of U(L).

Algorithm I: . : ) /.

a) Replace the elements of U(L) by their - symbols accerding )
ordering rule given. These ¢-symbols are immediately giveh by’
the capltal X's by small ones. ' R
: x'¢(6x)

b) Transf orm the ¢-symbols by e into Weyl symbols.

el

’ c) Compute the twisted product The result is given by -its Weyl symbol
-X* ¢(8 )

d) Transform the Weyl symbol to-a ¢-symbol by ‘e lx'=x .
e) The (commutative) ¢-symbol written in ¢-ordering gives just the.besuli .

by replacing small x’s by capital ones.

Algomthm 1I: i :
This algorithm dlffers from Algorithm 1 by the fact. that one defines a
twisted product 1mmed1ately for ¢-symbols. This may be done by the same

techniques and it will be presented in a forthcoming paper.

Note that the transformation between different orderings helps also if

another fast mulfiplication for a given basis of U(L) is available ‘in -a

‘computer algebra system.



/12/

. The Goldberg-Enksen algorlthm for BCH-serles is-an effectlve one’ . for

“/13/

the computatlon of D up to a certam order . Several 51mp11f1cat10n for

the twisted product reallzatlon in REDUCE

/14/-an‘d‘ criteria for the truncation

713/

~ of the series are -applicable’” ~". Note that the twisted product operatoi' acts

on polynomials. So. the BCH-series for D and the éprnential series eD are

used only up to a certain order in dependence of the degree of - the

polynomials.

s
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