
go --51-t 

W.Lassner* 

OPERATOR ORDERING 

CODtilllBHMR 
OtibBAMHBHHOrO 

MHCTMTYTa 
RABPHbiX 

MCCIBAOBaHMM 

AYtiHa 

ES-90-578 

AND SYMBOL REPRESENTATIONS 

OF ENVELOPING ALGEBRAS 

* Sektion Informatik, Karl-Marx-Universitat, 
Leipzig 7010 

1990 



.. ~. 

·' 

... ' ... * :·~ 7·' 7'' ~:, 

I;asS!ler w ... 
Operator Ordering and 
Symbol ••• 
E5-90-578. 

" 

'i 

HAepHblx HccneAoBamdl ,ny6Ha, .1990 

·~ .. 

---: 

:{ 

f 
l 
I 

I. Introduction 

Operator symbol representations have their origin in mathematical 

literature - in the theory of pseudo-differential operators and in 'physical 

literature in so-called phase space methods of quantum mechanics. Phase space 

methods in quantum theory make . use of symbol representations of the Weyl 

algebra. A restriction to a pure algebraic· view point, i.e. to symbols of 

algebra elements rather than of operators, allows to extent the class of 

non-commutative algebras for whic"h symbol representations exist. Furthermore, 

the twisted product techniques can be extended to subrings of the quotient 

division ring of the Weyl algebra. The method has been elaborated/!/ for 

calculations in computer algebra systems and was applied . to. quantum 

mechanical problems (see /1/ and ref. therein), to Grabner bases calculations 

. . 1 . b / 2/ d L' ' ' d 1 1 m non-commutative age ra , an to ie optics m or er to -ca cu ate 

aberrations (see /3/ and ref. therein). 

The method can . be generalized to enveloping algebras U(L) of Lie algebras 

L different from the Heis~nberg Lie algebra. The method starts from a 

one-to-one correspondence between the linear sp~ce of the erweloping algebra 

U(L) and that of the symmetric algebra S(L) over L. The algebra S(L) can be 

equipped with a so-called twisted product so ·that it becomes isomorphic to 

U(L). 

Operator orderings have been described in mathematical and physical 

1. b . h . / 4- 6/ s b 1 . f 1 iterature y vanous tee mques . ym o representattons are power u 

tools ·in this contex/
4
/. · A generalization to enveloping algebras U(L) resp. 

to differential operators . over Lie groups . will be of theoretical and 

practical interest. 

The ordering problem consists first of all in a description of different 

operator orderings._ Different ordering rules correspond 'to different bases in 

U(L). The elements of U(L) are represented by different symbols in dependence 

of the ordering rule chosen. An appropriated twisted product depends on the 

ordering rule in a non-trivial way. We gen_eralize the notion of an ordering 

defining function if>. It is possible ' to calculate tjJ for various ordering 

rules. This helps to determine a transformation between different types of 

jr (Hli!_.,::;;-.,,n;rl);dllj ';:m:nrryy I 
~!l~;r3l:U: ::u:c.·n~Iion:.urne 

· ~iSJI"ICrfEHt\ ----- . .., '-~ 



symbols and allows to . use the same fast multiplication· algorithm for 

different orderings. The fast multiplication algorithm · for the 

non-commutative algebra must not be related to twisted product techniques. A 

very fast algorithm171 makes uses of the fast integer arithmetic of special 

processors. The algebra elements are represented by integers in that case. 

The representation is related to a given basis. The mentioned transformation 

allows to use the same fast algorithm also if the algebra elements are given 

in another basis related to a different ordering. 

.J 
2. Basic notions and notations 

Let 

algebra 

L be a finite dimensional . Lie algebra over the field K • The Lie 

L is given by its structure constants 
k 

cij in a basis 

n 
{X

1
,x

2
, ... ,Xn} , [Xi,Xjl= I: c~lk for i,j=1,2, ..• ,n , 

. . k~ 

We denote by U(L) the enveloping algebra of L over K. One gets 

U(L)= T(L)/J from the tensor algebra T(L) of L by .factorization according 

to the ideal J generated by the .set { x~>Y _. Y®X -[X,Y] I X,Y e .L }. The 
n n-1 

enveloping algebra U(L) has a graded structure U(L) = ® U , U = U \.U , • • • n n n 
1 1 1 

where Un= {XeU(Uideg X ~ n }. The set ·{X 1X 
2

• ··X n} ,(i ,i , .. ,i le Nn is a 
12 n 12 no 

basis of U(L). according to the Poincar~-Birkhoff:..Witt theorem. We use the 

. convention ' X0X0 ••• X0 = 1, and we . denote by capital letters 
1 2 n 

X· 
k 

also the 

elements of L In their ·embedding L • U(L) in U(L) . So, there is 

no problem to 

in U(L) from 

i i i 
differ non-commutative multiplication of elements X 

1
X 

2 
• • ·X n 1 2 n 

commutative multiplication in the ·symmetric algebra. S(L). The 
i i i 

basis elements of S(L) are denoted by small letters x 
1
x 

2 
• • x n The 1 2 n 

symm~tric algebra S(L) over L can be obtained from the tensor· algebra T(L). 

by factorization S(L)=T(L)/1 · according to the ideal I generated by the set 

{X®Y - Y®X I X,Y e L}. S(L) is isomorphic" to the algebra of polynomials 

Klx1,x2, ... ,xnl . 

We use multiindex notation: 

n . n 
x=(x

1
,x

2
, ... ,xn)' i.;=(i.;l'i;

2
, .. ,i;nl' i;x= L i.;kxk , a=(a1,a2, ... ,an)e N 

. . k=1 

n 
lal=E ak 

k=1 

a 
X 

a a a 
1 2 n 

X X •••X 
1 2 n 

alai 

ai;a 

2 

alai 
a a . a· 

ai; 
1

1 aE;
2

2 • • • aE;nn 

.I 
\ 

~ 
l; 
I 

l 

' I 

l 

3. Generalized Weyl ordering 

A one-to-one correspondence between the linear spaces of S(L) and U(L) is 

defined by the Gelfand map
181

: 

w: S(L) U(L) 

given by 
1 

w(x. x .... x. ) = - 1 I: X. X. • • • · X. 
11 12 1r r. 7t 1n(l) 1n(2) 1n(r) 

(1) 

and by linearity of w. The sum runs over all permutations of r elements. The 

r.h.s. of (l) is the complete symmetrization ( X. X ..•. X.) of X. X .... X . 
1 1 1 1 1 1 
12 r 12·r 

This complete symmetrization will be synonymously called Weyl ordering. 

The map (l) will be called Weyl quantization due to applications in physics. 

The element y e S(L) is called Weyl symbol of w(y) e U(L). The notions 

Weyl ordering and Weyl quantization are now generalizations of the 

corresponding notions known for the .special case if L is the Heisenberg Lie 

algebra H . H is the (n+ll-dimensional Lie algebra over R given by 
. n n 

[Pi,Qj] 

element. 

.s .. z 
1J 

1 if i=j 
with o .. = { o if if.j 1J 

(i,j= 1,2, .. ,n), where. Z is a central 

Example 1: Let L be the Lie algebra so(3) with the basis {X1,x2,X~}, 
IX

1
,X

2
l=X

3
, ·lx

2
,X

3
l=X

1
, [X

3
,X

1
l=X3. 

Then 

w(x
1
x

2
) 1 

<X1X2> = 2(X1X2+X2X1) 

The element x
1
x

2 
e S(L=so(3)) is the Weyl symbol of 

1 
2(X1X2+X2X1) 

1 
x1x2- 2 x3 

4. Twisted product for Weyl symbols 

e U(so(3)). 

We · introduce in S(L) a new non-commutative multiplication which makes 

S(L) isomorphic to U(L). Since w is bijective we are allowed to define 

. -1 
Y1 • Y2 ="" ( w (yl)·w (y2) ) (2) 

A key idea in symbol representations is to calculate the non-commutative 

multiplication between symbols in a direct way without the non-commutative 

multiplication in U(L). 
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For the usage of computer algebra .systems it is very convenient that the 

multiplication coincides with the following convolution produc/
91

. ·Note that 

only differentiations occur. 

( X 0( a 
Yl • y2)(x) = e x' • ax,) y1(x') y2(x") I x' =x"=x (3) 

The . differential operator D in the exponential series is formally given .by 

where 

oca , ,a ·,J= 
X X 

-rca , ,a ,l 
X X , 

..J • 
-r(l;,l)) = ;\(f;,l))-t;~ll is the non-=linear part of the exponent in 

Baker-Campbell-Hausdorff formula (see for instance /9/) 

e t;Xo e l)X = e i\(i;,l))X 

(4) 

the 

(5) 

Since we calculate twisted products of polynomials, the formal exponential 

series of Eq. 3 will be used only up to a finite ortler. · A proof, that the 

twisted product of Eq. 3 coincides with that defined 'in Eq. 2 will be given 

in section 6 together with a justification of the notation used. The operator 

D will be given by a truncated series. . . 
·The twisted product in combination with the linear map w from Eq. (1) 

allo~s to execute tedious calculations in U(L) using. now. only symbols. This 

can ·be done easily in almost all computer algebra systems, since only 

differentiation and commutative · polynomial algebra facilities are required. 

Of course, D has to be determined. However; if D is calculated once up to an 

order high enough in dependence of degree of the polynomials, then D can be 

used in all subsequent calculations. Moreover, useful formulae as applied in 

a LOG LAN package1101 f.or calculations in enveloping · algebras and Lie fields 

can be derived from the twisted product. 

5. Orderings defined by a function 

In order to apply the twisted product techniques also for orderings 

different from· that defined by the map w of Eq. 1, we introduce the notion of 

an ordering· defining function tf> • For this reasons we consider another way 

to define the map w. The method is partially known in literature for the 

special case if L is the Heisenberg Lie algebra (see /1/ and references 

therein). 

.4 

-~ 

I 

f 

II¥ 
I 
I 

\ 
~ 

n 
Let t;x= [ t;k xk be a general homogeneous element of degree 1 in S(L). 

k=1 
Replacing the small x' s by capital X's and not touching the parameters t; we 

get a linear element in U(L). If this will be done in tli.e exponential series 

et;x. so this is just the way to des~ribe Weyl quantization for exponential 

series 
Q ( e t;x ) = e t;X (6) 

From Eq. 6 we derive the Gelfand map of Eq. 1, i.e. the Weyl quantization ,. ' 

of polynomials. Formal differentiation 
ala. I 
at;a. ... 1 t;=o 

applied on et;x gives the 

a. a. 
monomial a. 1 2 

X = X X ''X 

a. 
n 

1 2 n whereas the same operator applied on et;X gives 

just the complete symmetrization 
a. a. a. a. a. a. 

<X 
1
X 2

• ·X n> = w(x 1x 2
• ·x n ) e U(L) of 

12 n 12 n · a. . a. a. 
X 1x 2, ·X n. 

1 2 n 
That will not wonder, since the Weyl quantization 

a. a. a. a. a. a 
w(x 

1x 2
• ·x n) of x 1x 2

• ·x n occurs 
a a a. a. 

1 2 n 1 2 n as "coefficient" of t; = t; 1t; 2 
• • t; n 

1 2 n 
i 

in the exponential series et;X=[(~~) , ( lal=il. Differentiation with respect 
• I. . 
I 

to t; at t;=O picks out just that coefficient: 

a alai t;x a1 a2 an 
w(x ) = -- Q(e >I =<X X .. X > (7)' 

at;a t;=O 1 2 n 

So we receive the linear map w by formal differentiation from n as shown 

in the following diagram. 

alai 

at;a 

e t;x n 

l,.o l 
a a a w 

e t;X 

l 
'alai 

at;a .. · lt;=O 

a a. a 
1 2 n 

X X ''X 
1 2 n 

<X 1x 2, ·X n > ·--·----·--.. -·--.. ----------? 
1 2 n 

complete symmetrization 

a a a 
We refer · to x 

1
x 

2 
• • x n as the Weyl symbol of the symmetrized basis 

1 2 n 
a a a. 

1 2 n · 
<X 1X 

2 
··X n>. Note that the map element w defines the Weyl basis 

a a a 
1 2 n I n . {<X X ··X > a e N } of U(L) accordmg to Eq. 

1 2 n (1). We introduce an 

ordering defining function tf> and generalize the map Q as follows 

. 5 



= e ~X + ¢(~)X (8) 

where 

o
41 

( e ~x i 

¢=(¢1(~) •... ,¢n(~)} has to be appropriately chosen. We will not try 

to characterized the class of allowed functions · ~- However, ¢ can be 

explicitly determined for various orderings. The particular case 4> = 0 

describes Weyl ordering. Formal differentiation to ~ at ~=0 can be used to 

generate a basis in U(L). The basis differs from the Weyl basis if ¢ is not 

zero or a constant. 

We define the map w 4> for polynomials by 

..J 
I a: I 

w¢(xa:) = :~a: Q¢(e~x) ~~=0 

and by linearity of w. 

a: a: a: 
<X 1x 2··X n> 

1 2 n 4> 

The method is summarized in the following diagra~. 

e ~X 
Q¢ e ~X + ¢(~)X 

(9) 

ala: I 
1~=0 

1 1 
ala: I 

-- ... a~a: · · · I ~=o a~a: 

a: a: a: (J¢ a: a: a: 
1 2 n --·--------------------·7 · <X 

1 
X 

2 
· ·X n > X X . ·x 

1 2 n 1 2 n ¢ 

a: a: a: 
1 2 n 

~ x · ·x 
1 2 n 

as the ¢-symbol of the ¢-ordered We now speak of 

a: a: a: 
basis element <X 

1
X 

2 
· ·X n > 4> of U(L) • 

Example 2: Standard ordering, Poincare-Birkhoff-Witt basis. 

In many practical cases and with almost all computer algebra systems it 
a: a: a: 

seems much easier to work with the Poincare-Birkhoff-Witt basis X 
1
X 

2
· ·X n 

1 2 n 
of U(L) than with the symmetrized elements of the Weyl basis. The function 4> 

for the Poincare-Birkhoff-Witt basis (PBW-basis) or standard basis can be 

calculated iteratively using the Baker-Campbell-Hausdorff form';lla. We will do 

it step wise so that the origin and 

a:i a« 
Because of X. = --

1 a~~i 
1 

~.x.l e 1 1 ~.=o 
1 

nature of ¢ becomes transparent. 

for i=l,2, ... ,n , we obtain 

6 

I 
! 
i 
.1 
1 

J 
,\ 
} 

a: a: a: 
X 1x 2. ·X n = 

a: 
a 1 
- e~1x1l 
ac: a: ~ =O 

)·· ·( 
a:n ~ X ) 

a __ · e n nl~n=O . 
1 2 n 

.. 1' 1 1 
a: ' a~n n 

· Since the differentiation concerns different parameters this equals to 

a:1 a:2 a:n ala: I ~X ~ X • 
X X ··X = -- ( e 1 1· · ·e n n >I . 

1 2 n a~a: ·. ~=0 

In order to find the function ¢ such that 

a: a: a: la:l 
X 1x 2.·.x n = _a_ ( e ~X +¢(~)X >I 

1 2 n a: · ~=0 
a~ 

we iteratively apply the BCH-formula 

~1x1· ~2x2 
e e 

~nxn 
e 

~1x1 +~2x2 +-r<s1•S2 >x 
e 

~3x3 
e 

where si=(O, .. ,O,~i'O, ... ,O) denotes the n-tuple with 

component; Then the "vector valued" function ¢ is given by 
(1) (n-1) 

¢(~) = '( .+ •.• +'( 

where -r(k) is recurrently defined by 

(k) ' ' (1) (k-1) 
-r =-r<st···+sk +-r + ... +-r ·sk+l> 

with 
(1) 

-r =-r<sl's2> 

~i 

~nxn 
e 

in the 

(10) 

(11) 

(12) 

(13) 

i-th 

(14) 

(15) 

The· function ¢ is the key to transformations between symbol for different 
• 

orderings. Let ¢(~) be the ordering defining function for the 

Poincare-Birkhoff-Witt basis, i.e. for the standard ordering of example 2. 
x•¢(a ) 

The transformation e x .... 1 applied on a standard symbol of an 
X'=X 

element Y of U(L) gives. just the Weyl symbol of the same element Y. 

x•¢(ax) ' ) I 
y (X X'=X e s = yw(x) 

(16)' 

The proof starts again from exponentials. Note that e~x is the ¢-symbol of 

e~X+¢(~)X according to Eq. 8. The following identity 

x•¢(8) ~x ._ 
e e I 

X'=X 

~x + ¢(~)x = e 
(17) 

may be verified by comparison .of coefficients. 

7 



The r.h.s. of Eq. 17 is just the Weyl symbol of e l;X +<f>(l;JX. 

alai 
Formal differentiation -

at;a 
lt;=O of Eq. · 17 gives for the l.h.s. 

a a a x•.p(a ) 
x a I where e x x•=x 

a . 1 z n 
X 1S the </>-symbol of <X

1 
X

2 
• • X

0 
) </> 

a a a 
X 

1
X 

2
• ·X

0 

1 z n 
for the standard ordering. The same formal differentiation 

gives for the r.h.s. of Eq. 17 a. polynomial in xl' ... ,x
0 

which is just 

a a a a a a 
1 z n 1 z n 

the Weyl symbol of <X X ··X >"' = X X ··X 
1 z n P IJ z . n 

6. Twisted products 

The idea to derive the twisted product for polynomials starting from 

exponential series is the key for very simple proofs. First we show that for 

Weyl ordering the twisted product of Eq. 2 is given by Eq. 3, where D has to 

be the nonlinear part of the BCH-formula. So we start- with an Ansatz that the 

twisted product is given by an operator exD for an appropriate D and we have 

to demand 

Q(el;x) o Q(e71x) Q(e 
x D( a ' , ax,) l;x• l!X"I ) 

x e e x·=x·=x . 

Note that the following identity is valid. 

x D(ax, ,ax,) ei;x'el!X" I x·=x·=x e exD(l;, l)) + l;x + l)X 

This identity may be easily verified by comparison of coefficients in 

(18) 

(19) 

the 

exponential series. Substitution of Eq. 19 into the r.h.s of E;q. 18 and 

Weyl quantization (Q) gives 

e ~X e l)X c~ + ll + nck.llllX e . 

. Hence, D(~,l)) has to coincide with the nonlinear part -r(~,l)) in the 

BCH-formula. 

(20) 

In order to justify the notation used, we remember that according to the 

BCH-formula e~Xe l!X=e(~+l)+-r(~.l!llX the nonlinear part -r(~,l)) defines an 

analytic map from L x L into L. -r(~,l)) may be obtained by an absolutely 

8 

co 

convergent series -rc~.l!l = L e:·c~.l!l • where c are recurrently defined 
n n 

n=Z · 
polynomial maps from L x L into L of· degree n. We refer to /11/ for details; 

alalal~l · · 
Formal differentiation ~ ···I~= =O applied on the rewritten Eq. 18· · 

a~a a71 71 

x nca a 
Q(e x' ~ x") e~X e71X ~x· 71X" I ) 

e e x•=x·=x (21) 

gives 

w(xa • x~) = w(xa) w(x~) (22) 

according to Eq. 7. So the twisted product of Eq. 2 coincides with that of 

Eq. 3 due to linearity of w. o 

7; Conclusions 

If the basis of U(L) is given not in the Weyl ordering but in the 

standard ordering (resp. </>-ordering) there exist in principle two 

procedures for the multiplication of two elements of U(L). 

1/ 
I ~/ 

a) Replace the elements of U(L) by their · symbols . accor~ing -~i~ the 

ordering rule given. These </>-symbols are immediately given by !/replacing 

Algorithm I: 

.·,; ' the capital X s by small ones. 
x•.p(a ) 

b) Transform the </>-symbols by e · x ····I into Weyl symbols. 
X'=X 

c) Compute the twisted product. The result is given by its Weyl _symbol. 
· -x•.p(a J . · 

. X 
d) Transform the Weyl symbol to a </>-symbol by e . ···I x•=x 

e) The (commutative) </>-symbol written in </>-ordering gives just the result 

by r~placing small x•s by capital ones. 

Algorithm II: 

This algorithm differs from Algorithm I by the fact that one defines a 

twisted product immediately for </>-symbols. This may be done by the. same 

techniques and it will be presented in a forthcoming paper. 

Note that the transformation between different orderings helps also if 

another fast multiplication for a given basis of U(L) is available in a 

computer algebra system. 

9 



The Goldberg-Eriksen algorithm for BCH-series is an effective one/12/ for 

the computation of D up to a certain order/13/. Several simplification for 

the twisted product ~ealization in REDUCE/14/ . .,;_nd criteria for the truncation 

of the series are applicable/
13

/. Note that the twisted product operator acts 

on polynomials. So the BCH-series for D and the exponential series e0 are 

used only up to a certain order in dependence of the degree of the 

polynomials. 
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