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In the present paper we come back to’ the problem considered in )
our paper xa in 1939., o ‘ S
We shall proceed to prove “the. following arithmetical theorem-:

Theorem

Given a finite system of integer, pairwise, nonequal numbers o
Let us denote ) R o
M = maxan ;o N=8M-

J < :

Then, we can number the natural sequence of N numbers: O,l,;..Nél
.80 that the derived sequence ’

Xpy o K

N . e

has the property.‘ L R
Any integer j? satisfying the inequalities

2 .
n— \.< . =/ --b. ’ 13
2”R( 1- mz(qu) .K, AU
bin which- 9. is any positive integer such that Rt
| NE . S S
: = mEegen >0 ~ . -8

can be represented as a combination Lo
n=np+nz~n5_ni_ (4)
of numbers of the system (I). Here
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and hence for

R(x)=1lx-E (x)] ’ ) El B [nl< M
: ‘ ) , . .. . . O . O
- F (x)1s the nearest to x integer. , ; ‘ the inequality
Proof L o f . ' —'-%/;<l‘l+/75+./7t—l7h<-h—/'
Let us denote by p, 7,5, the number of different combinations 1 114, C el ' 2
which can be used to represent n in the form (4). B 8§ valld. Consequently, ‘
If n ocannot be repreéented in this form,we put _ ‘ - ’ &-i‘ ( )
S : : , » y Rxc=N-15- /7,+n,o o«
s -0 |  Stemenen =45 15 p
R . . ) . { L= L K=f
Introduce the function : o
. , ) hen : . . Thus - . ,
- . = e 1 . o - i . . .
S - © I S e ftn)= / “,Zn f é”__f ‘Pm"’v”'”f”t*”ﬁ"’c NOR
0, : L N =0 ket 551 £=1 p=1 ' =
Then, 1t 1is obvious that , T e % L o ‘%”‘p;ncf" g P (nxoc)zll
R ' . (6) , N &0 K= -
n)s= ﬁ(ﬂ-fnsrn -1, ). ‘ : : 1
F( Sgi tz-i éi ‘ i or : Lo : , We see alsdo that : g
Let P “be a primitive ‘root of the Nth order of 1%. , Z i nx“z ‘= Z Z P( x~2) =Nm"- : (8)
R 2_'[‘[; ; : . P 3 =0 A’:( «L=0 K=1 %={ .
. ] . , ; ; Ariange now the qua_ntities
bt A = ' o . .
ocp 0, k+0(moa ) ) xet ;
and hence : B o - - ; in the order of decreasing. We get trhev"'sequence
¢ ) /% (Z/ (k”}“b‘ ,/V-l f (M=) Angz"' z Ay
nj=+ (x ) { ‘ .
o No( K== ) oc =0 ,(=,’p »] Denote by “’4 the values of of corresponding to /47,’
for . ) , oo . ,
- > . N . . . m Ny Kg (2
N N R R o =1 z PETE
[ AL < —— B . B
7 <n< 3 | ol A¢

Note here that
e A Thus, we ha.ve numbered the sequence 0,] 2,...N—1 into o(,,

‘ ‘  ; We see that
"3M—/75+/7f-/7p£>3/\{_ ) nxdz

A, E -IZJJ I

9, ct=0




- and consequently

Ay =m?,

From (7) we have

N _,,“K
f(n)—/T’,KZ: K.; Int< M
A

o<, =0-

witn (8)

X N’"

and :

Let now 7 and 7 -be integers satisfying conditions (2) and (3)'

of our theorem.-
It is clear that

-Neky

-ZA

A’l';-/

: : .
Nifcn) =z 2 A
K=

;Z¢ {f—(/-,o‘”‘”}- _KZA flfp‘”“”l z-—g— =

fA f{1-11-p 1} - 92”’2> B o

On the other hand

lf"ﬂndxl le ‘N l—“ EIP{Z/U(E(,MK)“HOCK} | =

2R ( _NE : :
and therefore
¥ . N, ve & 2 Nomt
,(ZIAK{/-II-JD ‘I}gﬁf@;‘u,;,/’x>m=(;+/)
Thus - : |
/VZ 2 N2m2

f(n)>¢——/ '-"g", = 0

and our theorem is proved.
2 - '

P G S

Given an infinite sequence of vairwise nbneqnal integers

My yovii Mmoo
such that g
N
m

26 = Const . ’

Then, thefé 1s & sequence of numbers
: 2
/& 1., /{z ? é .. 0 é /(k =

having the following property: any numbei- 7. satisfying the
inequalities

646° g .
2R (nAg)= ¢ 7.1 7) {9)
in which g is anx@ositiveinteger sucn‘,xthet
- &46° > 0,

?*/

.,i\ e

can be represented in the form

”_””/_nll/’ o S _(IO)»

ns=n'+n

ot Ve

’ m w . = ’
where 77, /?”, ne.n are elements of the sequence 77, ... /77,, ...

?

Proof

Based on the theorém (I for anyr m we ‘find the relevant

set . .
o, ot
where :
cstnines. Ny =2 BMpy >8Gm ...
Assume that

5 (m) M
Then, it is obvious that

o
0s A7 <

Therefore, from sequence 7 - co
v)
v that A

we can choose such a su'bsequence

‘tend YV —= o0 to definite limits



Ak, Yo 054,51 )

‘be any integer satisfying the condition (9). Then, we find
Vv @ a number V, - such that for

>,

Let
in the sequence
the following inequality is valid:
o ‘ V) 6462
- £ < =57 - 2FR (n Ax)

1 2j7n (K, 7v1
K= 1.8 . M,2In]|-

Conse quently.

2,L/e(n,r”’)<zfa/?(nxwzfvln(x /Y“”)l

6462 ; Ny
2+1 <1 Vi(g+f )

<{-

and hence on the basls of the theorem (I) we see that
represented in the. form (I0).
Thus, the 'theorem  (II) is proved.
‘Now let us pass to application of this theorem to the theory
of almost periodic functions. )
It should be noted that in accordance with the definition intro-
duced by H.Bohr, some continuous function o (#) determined on
he whole real axis 1s called almost periodic if to each & >0
ne can make correspond Lé- such that.in any interval on the
eal axis of length Lé- one can find € almost a period, i.e.
uch that T,

*n  can be

[F(2+7)- f(t)|‘£ : .

—o0< t <o

On the basis of this definition H ,Bohr proved the theorem
f homogeneous approximation, namely: for any almost periodic func-
ion #£(?) one can make correspond to 5>{7 such numbers
complex numvers) A,, ... Ay- and suoh real YV, ..V,  that

where 'F(.r,, .

N Vet
l$C)-2 Ace. | £¢
K={

—w<t <o .

It should be reminded that iong before H.Bohr P. Bohi, a famous
sclentist, with the aim to generalise the notion of periodicity had
introduced the notion of quasi-periodic functions (further generali-—
sation of which are almost periodic functions in the sense of H, Bohr).
According to Bohl's definition, theé continuous funotion F (%)

glven on the whole real axis is called the quasiperiodic one if

there are such linearly independent real numbers

wl L BT Y wm .
that to any £ 5 o one can make correspond 50 that any 2~
‘satisfying the inequalities £
' (11) |
A, (Z-Q)K )Eé ?5 , K= f, veny T

is € -~ almost period for #(¢). .
It follows from this definition that any quasi-—neriodic func-
tlon can be represented in the form

Flt)= F(wt, ..., w,?) crg)._-

,Zrr) is the continuous periodic funotion with
period 1. . ‘ :
~ Indeed we assume that

Flzx,,...,
for which

xmb=ﬁMf(ﬁ)
for any sequenc‘e ) ‘Z’ .
a?l-‘Z' - %7 (mod 1) .

This limit does exis as any two sequences 7, -, T, of T

have the property ' .

- . W (T, - T,) = 0 (m001)

l.e.

R(ak(ﬁ'Q»-—o,



~ from where by definition
F(OL) - £(T,)~
F(x,, ..

.X,,) is proved.

In the sé.me way the continuity
Taking

x,(: a)xt

Wy (T-2)~0 (moc 1)
and’ )
| R(we(r-#) =0
As ‘

F(Xqsoiiy 2, )

is ncmogreneously approximated by trigonometric sums of
' 1200 (NyXyt. it NXm)

- . s
1ti1s“olear that the quasi-periodic function
approximated by trigonometric sums

U INTASY e At

;where XK are linear sums of fundamental frequencies.

As 1s seen, the problem of the homogeneous trigonometric approxi-
mation of Boyle's quasi-periodic funetions is solved simply since the

definition itself of their almost periods explicitly contains ~the fun-

damental frequencies.

The situation with Bohr's almost periodic funotions is different,
and the proof of Bohr's funda.mental theory is rather ccmpiica.ted.

~~We “should like to show, on the basis of. Theorem II, that. in the ‘theory .

'of almost periodio functions one oan e.lso introduce “fundamental

frequencies™ s thus making the proof of the. theorem of trigonometric
approximation very simple.,

For this purpose let us prove the following theorem?
Theorem III

Let L>0 and & . be a set of points on the real axis such
tha.t in .any its interval of length L there 1s the point & .

there exist 1li-

:Then, for any }>0 and suffioiently small p > 1/
neraly independent Wys..., wy

having the property:

R 7

FOE) 1g homogeneously

ifor * eny A satisfylng the inequalities

R(Tw) P =1 s SENCE)
one can find such elements Ty, T3,73,74 of the set (2 4‘ that -
:IT—T1-T2+’[3+’[,/IQ?- ' (14)

Proof

Let. us consider the intervals
(2/774, 277?[*[,)) /77:0,/,

and denote by. T from this interval. It is

‘any point . &
obvious that '

T 2 oY o men o R
| Tezr, g,
Now we fix the integer X and some 0>  so that
/ 5 A
.K>-— K= 0<§<——-
1, 27; 77

Choose one more int eger positive 9 , satisfying the inequality

B (/ 546)>23 G=(2L+1) K-

_Consider the sequence of integers
E (KT(im)) . »
<.

One ‘can easily verify that this sequence satisi‘ies the conditions
of Theorem(II Y Indeed -

_’7_MI< IK|,
< | L8|+ L <2inin-6
| 71 -nz|>ll”["’” KT - R(K'z‘””) R(KT®) 2.

IK(T”"’ _‘”I—I>—--/ >0

Lowr)

for M. T,



Based on this theorem let us consider the corresponding sequence

Foerooi By, 054 =

and put.

Vo= K, Vi =KAy .. Vg = KA

e a
Noﬁ let 7T be some real num‘ber s:tisfying the inequalities
R(Tv.) £, k=01, ... g
. . ' /
i.e., .
R(TK)£G, R(TKA)EL .. R(TKAp%

Hence, it follows that
RIEKIA, }é 28,
e.nd therefore

2R [E(TK)f; }< 47za‘< /- 545

R{E@K) A, )2

(15)

Thus, on the basis of Theorem (II) we can verify that. there exist

such values /7,,/,, /13,7, of index m for

n=E(TK)= E(T(””/()+E(T’”’)/<) E(Z'("” K)- E(T("")

Consequently _
| 'Z‘K—’Z'm')/(—Z'(nz)K + Z'(”’)K Z'm”i( l 2 _g
and IT_T(n,_)z,(nz)ff(nsiz,(n.,)l 2_5}-_(4?
So 1f . Cwm i
' R(TV)£ 08, k=01, .

then
|T-T _TZ+Z-3+Z‘ I < ? .

where T,,'Z'Z,'Z'L‘Z'., are numbers-of the set & -

It should be noted now that for the set of numbers

- \}07 ))1,-7--)\)?

10

(16)

Q7))

one can always . put into correspondence the system of linearly 1nde-—
pendent numbers

wy,...,ws (s égd)
so that the numbers VJ will be sets of the combina.tion of r.«)J
\)’ N a)K
d k=

with 1ntegers NJ Ke o ;
Therefore, we have '

(v fc)é ZIN IRchn

£,k 43 \-..~K.

Méiflf\_/-,,(l jetis

Let

Assume
N P= -ﬁ-" . " i
Then, the inequalities ‘ S
R(wKT)_p, K=1,..., s

result in (16) resulting in (17), which proves our theorem.,.

Now let us come back to the theory of almost periodio funct-
ions. We take some almost periodic function £ (£) . Due to its
continuity to any & >0 . one can make correspond 6(8) such
that from the inequality

- )
| t'-t"1¢dcer
there follows
1§ () - ("€ € -
Now let us turn to theorem III and take in it as & the set .
of £/8 almost periods #({) .

"Put (?*3 . ? ; df(ii)

and find a sufficiently small p . i
Then; we can verify the presence of such linea.rly 1ndependent

T Wy Wy that for any : Q;’ satisfying the inequalities

.

R(ayDidp ae

one can find in @’ ‘such T,,TZ,TJ T,, that

u s



IT" T.,‘_Tz"'Ts +Tylé 6(‘25)

As these 7,,7,,T3,Tyare almcst periods. with &£/8 » then obviously
quantity

. 1 T=T1+TZ—T5-T'/
will be €/2  almost period for F(#) . 4s
| AT-T|£0(E/2)-
'then we see that T will be & almost period :

| £(¢+T)- FLE, -w<tco (9
90 for every £ >0 onme can find such p and such linearly

“independent

&

CO,)___ CL)S . S

>

that inequalities (18) result 1in (19), i.e..that 7  is
‘almost period. Now we see that Bohr's definition ca.n be reformulated
by a.na.logy with Bohl's definition. :

_The difference lies in that for Bohl's quasi—periodio funct-~
1ons the frequencies a.),, ,wsare fixed.and for almost periodic ones
their number S “depends on- & - .and oan tend to 1nf:|.nity_ as
E—0 Nevertheless, even for almost periodio Bohr's functions
one:‘can'easily oonstruct for each £ >0 : the corresponding conti.
‘nuous function - ‘ .

Fo(xy, ..., 2s) . * - (20)

periodic with period 1 with respect to x; (j=1,...,5)so that

If,(t> ~Fe (T, st )| £ € Z;: (21)

Hence, there immediately follows Bohl's fheory of trigonometric
‘approximation. - »

Let us show how Fe (x,,... -1'5) can be constructed.

" Consider the function ' .

S (22)

/_ﬁ(_xl) if R(x&)éJO

. Bp () =
P '{or , i R(x)zp

12

“Assume

for some~ ' . s = /
0£B,(x)25, |8 (o)lty .‘(\)
1.0 23
GP(¢+I)=3P(x) ) LGP(‘I)dx:.P' ,

P x) = G G e

It is clear that
® >0
if and only ifiiyni. ‘ -

R(.z:/-')<?,_ /=1 ....\p '

Otherwise — ° ' ) v P

e,

Conse quently, if

‘ ¢ (Cl), T,;:‘:r:;:‘;:éCQs;T-); 70’, .

then

|5 (£+7)-F(t)| 26, -o0< tcoo-

Therefore

A e R

1
—T-lcp(w,'c,..., W) (£+T)-F(¢)AT

U T*/]"Tqb (w, 7, W T)AT

Tl AR A ER L i

lIN
™

1-t
/ .,
- <;b w, (T-¢ ...cos - :
(1) rf_ 1 (T-t), (T-t)}{#(1)dT ‘.

J ¢ (w,T,... wsT)dT

- Hence

BERE



T

+ [ o z-wid, .,
[P (@r,..., w:7)

g T~ ws z‘,},e (T)AT

LF+ ‘f.' .
- £E+Cpl L (25
CP=Cunst-

From (22) and (23) we can conclude that there exists a limit
e JER .

.

{7 . ' ~ :
Fo (@2 = Pimn Ty PEHT o WTEIE@EAT (55)

Teoo

T 7
L[ P (@, 0sT)AT
o .
which is the continuous function 3f,,..,Xs with period 1. From (25)
there immediately follows (21). oo .
| Remark

. Here.are some explanatory remarks to the problem of existence
‘of the limit (26),
Let us take the Fourler expansion

5, (x) Zh,,(n)e‘”’“'
Znoc -12%inx
hy(n)- Ja e Gz- [0 Fe . dx+f(/‘(’—x) T e

‘and note that owlng to (23) it will be absolutely comrergent '

’ { ¢l izan
21|~z af(x)e dx|-2~\l [yl 2 57,47 %

(m

(27)

Therefore, we have an absclutely comvergent seriles

imx)

Plxy, k)= L Hy (m)e , (28)
: (m) : /

.where

(’77)-= (ny, T",nS) , /-/'p(/ﬂ)=ﬁp(n1)___/7‘p_(ns), (/771'):/‘712"#-"_4- NsXs - (29)

14

As Wy, ... ws are 11néa.rly 1ndependent,"then" ‘
’f CP(w,z-,.. WsT)AT ~ H/,(D) g(a) pl. O

Then, we have

S : TR
Tf(wT Xyyeee wST xs)f(’t‘)a'f , ‘ T

: ){ {2A(me)T : S

(;) (m)c”* j #(r)e ar ;. (mw)=maw,+...+ Nsws -

Consid ering that N

t ff()

we see that from the sequence 7 —=o00 we can chodse such a sub-
sequence 7 -~ co - that all quantities :

i Zn(rnw)‘[

|4 M = maxlf(al

1 (Teer el ™ gy
e #¢ AT
tend to the limits. Put
) T itm)T : . -
Lim L sce)e' ™ g < 2em) - Gy
T'--oo T 0 ’ : B ‘

Then, from (26) and (28) we get

H (lﬂ) - l(mx)Zn (32)
' FE (xU‘ x5> Z) H (0) Z/(lﬂ . V
and )
/-lp(m)IA (m) N L (33)
2 e Mem) | < 0 B s
/7",)(0) f (m)l Hﬁ( a) ' : S

Now let us consider the problem of limits ‘(31). We shall show
-that they exist not only for a speoifically choaen sequence 7w .
but for any 7 ——co . Note that 1t follows from relations (25),(26),
(32), and (33) that ‘for any € >0 there exists A/é /
suchthat, PR : ’ : : I

15



bl

l#8)-fy (D)€ 26, N e
vyhefe : i H (m) T )
Al ~Umw)2aT
f’!&' (t) ‘('n%"ﬁ) HP(O) a[(m) e . (35)

Here the symbol(imi<Ng) denotes inequalities ,""'ql"vg---””'s"”c-
As ’ENE (#) 1s a finite tri
LAk thare exlsts a limit '

gonometric sum, then for any real

o, {1 T ,."xt
[lm ?."./; f”f (t) e,t di-

T ~>o0

“We can £ind for &, A such Q that

{ (T AT T ;
f'f, Fu (B QT — % [ Fue (t)e" 7| < €
- N 0 -
all T’ 7  satisfylng the inequalities

T>Q T’>‘_Q.

(36)

)

Hence, from (34) 1t follows that

< 5€

14 (T kT T (AT
IT—,fof(r)e d'l’—TiLf(T)El

b
for all 7,7’ from inequality (39).

As € - can be whatever small, we see that there exlst limits
e T (AT | |
limd[Tscr)e |
: . Tew Tfo ! T -
any fixed A '

. :' Thus, instead of (31) we can write down

’ _ T i(mew) 27 : (G
31/(m)=[1m;ifaf(’l')flmw TdT- ©n

o !
[+ !

o :.Note. that owing to (34) anda (35) 1n tke trigonometric apﬁrﬁxima.-
on
;,ji!‘lgii;tlcény"are true frequencles of the almost periodio function £ (2,

1

16

obtained the contribution comes only from those Pa(mw) - -

f. e, for which

S 700

As concerns the factors of convergence .
easlly see that at fixed m

il

i(mw)é/?z' a

N - T ':‘
bim %f f‘(T)EV ar +0-

o
'/?( )
fplm) .
Hp0) T

- Hp(m) : '
H’pm)_ —.- ! by 6‘_—,0
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